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This paper is concerned with robust stability analysis of uncertain Roesser-type discrete-time two-dimensional (2D) systems. In
particular, the underlying parameter uncertainties of system parameter matrices are assumed to belong to a convex bounded
uncertain domain, which usually is named as the so-called polytopic uncertainty and appears typically in most practical systems.
Robust stability criteria are proposed for verifying the robust asymptotical stability of the related uncertain Roesser-type discrete-
time 2D systems in terms of linear matrix inequalities. Indeed, a parameter-dependent Lyapunov function is applied in the proof of
our main result and thus the obtained robust stability criteria are less conservative than the existing ones. Finally, the effectiveness
and applicability of the proposed approach are demonstrated by means of some numerical experiments.

1. Introduction

During the past several decades, the well-known Lyapunov
stability theory has become an efficient tool for dealing with
the problem of stability analysis of many kinds of uncertain
systems [1–6]. However, those earlier results on stability
analysis of uncertain systems are developed by using the so-
called common quadratic Lyapunov function (CQLF) [7].
Actually, the CQLF applies a single Lyapunov matrix for all
the submodels and therefore the obtained stability criteria are
rather conservative.With the purpose of further releasing the
conservatism of the stability criteria, the affine parameter-
dependent Lyapunov function (APDLF) has been proposed
in [8], where the fixed quadratic Lyapunov function is
replaced by a Lyapunov function with affine dependence on
the underlying uncertain parameters. Because of the con-
struction of such parameter-dependent Lyapunov functions,
the conservatism could be released a lot as a tradeoff.

On the other hand, the famous 2D systems model could
represent a wide range of practical plants, for example, water
stream heating, thermal processes, biomedical imaging, gas
absorption, river pollution modeling, data processing and
transmission, process of gas filtration, grid based wireless
sensor networks, and so forth, [9, 10]. As a result, a consid-
erable interest in stability analysis of 2D systems has emerged

during the past two decades [11–15]. Recently, the 2D system
theory has also been applied to address the problem of
stability analysis 2D state-space digital filters with saturation
arithmetic in [16–30].However, it is worth noting thatmost of
the aforementioned results are feasible for linear 2D systems
without uncertainties. As is well known, most of the practical
2D dynamical systems in the realistic world are subject to
parameter uncertainties and the above results would fail to
work when some uncertain parameters occur in the practical
settings.

In particular, it is worth noting that the Roesser-type
discrete-time 2D system’s information is propagated along
two independent directions and this fact makes the problem
of stability analysis more complicated. Due to the complexity
of mathematical analysis of Roesser-type discrete-time 2D
systems with parameter uncertainties, there has been little
literature which focuses on robust stability analysis of uncer-
tain Roesser-type discrete-time 2D systems so far. Thus, this
problem needs to be further investigated and this fact moti-
vates us to carry out this task in this paper.

Based on the above analysis, the problem of robust sta-
bility analysis of Roesser-type discrete-time 2D systems with
parameter uncertainties will be addressed via the Lyapunov
stability theory. The parameter uncertainties of 2D system’s
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parameter matrices are assumed to belong to a convex
bounded uncertain domain, which usually is named as the
so-called polytopic uncertainty and appears typically in most
modeling processes of uncertainties. An efficient parameter-
dependent Lyapunov function is applied in the derivation of
our main result and thus the obtained robust stability criteria
are less conservative than the existing ones. Moreover, robust
stability criteria are given to verify the robust asymptotical
stability of the uncertain Roesser-type discrete-time 2D
systems in terms of linear matrix inequalities. Finally, the
effectiveness and applicability of the proposed approach are
demonstrated by means of numerical examples.

The rest of this paper is organized as follows: following the
introduction, some preliminaries are provided in Section 2.
In Section 3, LMI-based robust stability criteria are proposed
for verifying the robust asymptotical stability of the uncertain
Roesser-type discrete-time 2D systems. A numerical example
is given to demonstrate the effectiveness of the given
approach in Section 4. Finally, some conclusions are also
given in Section 5.

The following notations are applied for simplicity. A star∗
in a symmetric matrix denotes the transposed element in the
symmetric position; the symbol 𝐼 represents the identity
matrix with appropriate dimension;𝑋 > 0 (or 𝑋 ≥ 0) means
thematrix𝑋 is symmetric and positive definite (or symmetric
and positive semidefinite);𝑋𝑇 denotes the transpose of𝑋.

2. Preliminaries

Consider a class of uncertain discrete-time 2D systems which
is described by the Roesser-type model

x+ (𝑘, 𝑙) = 𝐴 (𝛼) x (𝑘, 𝑙) , (1)

with

x (𝑘, 𝑙) = [

xℎ (𝑘, 𝑙)
xV (𝑘, 𝑙)] , x+ (𝑘, 𝑙) = [

xℎ (𝑘 + 1, 𝑙)

xV (𝑘, 𝑙 + 1)

] , (2)

where 𝑘 and 𝑙 are two integers in Z+. xℎ(⋅, ⋅) is the horizontal
state in R𝑛1 and xV(⋅, ⋅) is the vertical state in R𝑛2 , where 𝑛

1

and 𝑛
2
are dimensions of the horizontal state vector and the

vertical state vector, respectively. The system coefficient
matrix 𝐴(𝛼) is not precisely known but belongs to a convex
bounded uncertain domain:

𝐴 (𝛼) = [

𝐴
11

(𝛼) 𝐴
12

(𝛼)

𝐴
21

(𝛼) 𝐴
22

(𝛼)

] , (3)

with 𝐴
11
(𝛼) ∈ R𝑛1×𝑛1 , 𝐴12(𝛼) ∈ R𝑛1×𝑛2 , 𝐴21(𝛼) ∈ R𝑛2×𝑛1 ,

and𝐴
22
(𝛼) ∈ R𝑛2×𝑛2 , respectively. Specially, these matrices

𝐴
11
(𝛼), 𝐴12(𝛼), 𝐴21(𝛼), and 𝐴

22
(𝛼) belong to a convex bou-

nded (polytope type) uncertain domainP given as follows:

P := { (𝐴
11
, 𝐴
12
, 𝐴
21
, 𝐴
22
) (𝛼) : (𝐴

11
, 𝐴
12
, 𝐴
21
, 𝐴
22
) (𝛼)

=

𝑟

∑

𝑖=1

𝛼
𝑖
(𝐴
11

𝑖
, 𝐴
12

𝑖
, 𝐴
21

𝑖
, 𝐴
22

𝑖
) ; 𝛼 ∈ Δ

𝑟
} ,

(4)

where Δ
𝑟
is the so-called unit simplex given by

Δ
𝑟
= {𝛼 ∈ R𝑟 :

𝑟

∑

𝑖=1

𝛼
𝑖
= 1, 𝛼

𝑖
≥ 0; 𝑖 = 1, . . . , 𝑟} . (5)

Moreover, the boundary conditions along two independent
directions are defined as xℎ(0, 𝑙) = 𝑓(𝑙) and xV(𝑘, 0) = 𝑔(𝑘),
where 𝑓(𝑙) and 𝑔(𝑘) are boundary conditions along the hori-
zontal direction and vertical direction, respectively.

Finally, let us end this section by giving a definition and a
lemma which will play an important role in the following
proof.

Denote𝑋
𝑁

= sup{‖x(𝑘, 𝑙)‖ : 𝑁 = 𝑘 + 𝑙}, and then we give
the definition of robust asymptotical stability for uncertain
Roesser-type discrete-time 2D system (1).

Definition 1. The uncertain Roesser-type discrete-
time 2D system (1) is robust asymptotically stable if
lim
𝑘→∞,𝑙→∞

𝑋
𝑁

= 0 with the initial and boundary con-
ditions xℎ(0, 𝑙) = 𝑓(𝑙) and xV(𝑘, 0) = 𝑔(𝑘).

Lemma 2 (see [7]). Given matrices 𝑄 = 𝑄
𝑇 and 𝑅 = 𝑅

𝑇 with
appropriate dimensions, the inequality ( 𝑄 𝑆

𝑆
𝑇
𝑅
) > 0 is equivalent

to 𝑅 > 0, 𝑄 − 𝑆𝑅
−1
𝑆
𝑇
> 0.

3. Main Results

In this section, by using the Lyapunov stability theory, suffi-
cient robust stability criteria for ensuring the robust asymp-
totical stability of the underlying uncertain Roesser-type
discrete-time 2D system (1)will be proposed in terms of linear
matrix inequalities. Indeed, less conservative robust stability
conditions are given bymeans of a parameter-dependent Lya-
punov function and a slack method for exploiting the alge-
braic properties of the uncertain Roesser-type discrete-time
2D system (1).

Theorem 3. The uncertain Roesser-type discrete-time 2D sys-
tem (1) is robust asymptotically stable if there exist appropri-
ately dimensional matrices 𝑃

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑟; 𝑖 ≤ 𝑗 ≤ 𝑟, with

𝑃
𝑖𝑗
= [

𝑃
1

𝑖𝑗
∗

𝑃
3

𝑖𝑗
𝑃
2

𝑖𝑗

] , 𝑃
1

𝑖𝑗
∈ R𝑛1×𝑛1 ,

𝑃
2

𝑖𝑗
∈ R𝑛2×𝑛2 , 𝑃

3

𝑖𝑗
∈ R𝑛2×𝑛1 ,

(6)

such that the following LMIs hold:

[

−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑖
−𝑃
𝑖𝑖

] < 0, 𝑖 = 1, 2, . . . , 𝑟;

[

−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑗

−𝑃
𝑖𝑖

] + [

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑖
−𝑃
𝑖𝑗

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑖 < 𝑗;
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[

−𝑃
𝑗𝑗

∗

𝑃
𝑗𝑗
𝐴
𝑖

−𝑃
𝑗𝑗

] + [

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑗

−𝑃
𝑖𝑗

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑖 < 𝑗;

[

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑙
−𝑃
𝑖𝑗

] + [

−𝑃
𝑖𝑙

∗

𝑃
𝑖𝑙
𝐴
𝑗

−𝑃
𝑖𝑙

] + [

−𝑃
𝑗𝑙

∗

𝑃
𝑗𝑙
𝐴
𝑖

−𝑃
𝑗𝑙

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 2, 𝑖 < 𝑗 < 𝑙 ≤ 𝑟.

(7)

Proof. Consider the following parameter-dependent Lya-
punov function which is suitable for the uncertain Roesser-
type discrete-time 2D system (1):

𝑉 (x (𝑘, 𝑙)) = x𝑇 (𝑘, 𝑙) 𝑃𝛼𝛼x (𝑘, 𝑙) , (8)

where thematrix𝑃
𝛼𝛼

is a positive definitematrix andwith the
following structure: 𝑃

𝛼𝛼
= ∑
𝑟

𝑖=1
∑
𝑖≤𝑗≤𝑟

𝛼
𝑖
𝛼
𝑗
[

𝑃
1

𝑖𝑗
∗

𝑃
3

𝑖𝑗
𝑃
2

𝑖𝑗

], 𝑃1 ∈

R𝑛1×𝑛1 , 𝑃2 ∈ R𝑛2×𝑛2 , 𝑃3 ∈ R𝑛2×𝑛1 .
Then, the variation of the parameter-dependent Lya-

punov function 𝑉(x(𝑘, 𝑙)) could be described as

Δ𝑉 (x (𝑘, 𝑙)) = x𝑇 (𝑘, 𝑙) (𝐴(𝛼)
𝑇
𝑃
𝛼𝛼

𝐴 (𝛼) − 𝑃
𝛼𝛼

) x (𝑘, 𝑙) .

(9)

By applying the Lyapunov stability theory, the uncertain
Roesser-type discrete-time 2D system (1) is robust asymptot-
ically stable if the following inequality holds:

𝐴(𝛼)
𝑇
𝑃
𝛼𝛼

𝐴 (𝛼) − 𝑃
𝛼𝛼

< 0. (10)

Applying Lemma 2 to (10), it can be concluded that
inequality (10) is equivalent to the following inequality:

Φ = [

−𝑃
𝛼𝛼

∗

𝑃
𝛼𝛼

𝐴 (𝛼) −𝑃
𝛼𝛼

] < 0. (11)

On the other hand, reordering the expression of Ψ, one can
obtain

Φ = [

−𝑃
𝛼𝛼

∗

𝑃
𝛼𝛼

𝐴 (𝛼) −𝑃
𝛼𝛼

]

=

𝑟

∑

𝑖=1

𝛼
3

𝑖
Φ
𝑖𝑖𝑖

+

𝑟−1

∑

𝑖=1

∑

𝑗>𝑖

𝛼
2

𝑖
𝛼
𝑗
Φ
𝑖𝑖𝑗

+

𝑟−1

∑

𝑖=1

∑

𝑗>𝑖

𝛼
2

𝑖
Υ
𝑗
Γ
𝑖𝑗𝑗

+

𝑟−2

∑

𝑖=1

∑

𝑗>𝑖

∑

𝑙>𝑗

𝛼
𝑖
𝛼
𝑗
𝛼
𝑙
Φ
𝑖𝑗𝑙
,

(12)

where we have

Φ
𝑖𝑖𝑖

= [

−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑖

−𝑃
𝑖𝑖

] ,

Φ
𝑖𝑖𝑗

= [

−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑗

−𝑃
𝑖𝑖

] + [

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑖
−𝑃
𝑖𝑗

] ,

Φ
𝑖𝑗𝑗

= [

−𝑃
𝑗𝑗

∗

𝑃
𝑗𝑗
𝐴
𝑖

−𝑃
𝑗𝑗

] + [

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑗

−𝑃
𝑖𝑗

] ,

Φ
𝑖𝑗𝑙

= [

−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑙
−𝑃
𝑖𝑗

] + [

−𝑃
𝑖𝑙

∗

𝑃
𝑖𝑙
𝐴
𝑗

−𝑃
𝑖𝑙

]

+ [

−𝑃
𝑗𝑙

∗

𝑃
𝑗𝑙
𝐴
𝑖

−𝑃
𝑗𝑙

] .

(13)

From (10)–(12), if the LMI-based stability conditions (7) hold,
inequality (10) evidently holds, which guarantee the robust
asymptotical stability for the uncertain Roesser-type discrete-
time 2D system (1).

This completes the proof.

Remark 4. From (1) and (4), the parameter uncertainties of
2D system parameter matrices are assumed to belong to a
convex bounded uncertain domain. Then, LMI-based robust
stability criteria are given for ensuring the robust asympt-
otical stability of the underlying uncertain Roesser-type dis-
crete-time 2D systems in Theorem 3. Indeed, the parameter-
dependent Lyapunov function 𝑉(x(𝑘, 𝑙)) = x𝑇(𝑘, 𝑙)𝑃

𝛼𝛼
x(𝑘, 𝑙)

is applied in the derivation of our main result and thus the
obtained robust stability criteria are less conservative than
before. Furthermore, the effectiveness and applicability of the
proposed results will be demonstrated bymeans of numerical
experiments in the following section.

4. Numerical Examples

Consider the uncertain Roesser-type discrete-time two-
dimensional systems described as follows:

[

𝑥
ℎ
(𝑘 + 1, 𝑙)

𝑥
V
(𝑘, 𝑙 + 1)

] =

2

∑

𝑖=1

𝛼
𝑖
(𝐴
𝑖
[

𝑥
ℎ
(𝑘, 𝑙)

𝑥
V
(𝑘, 𝑙)

]) , (14)

where 𝐴
1
= [
1+𝑎
1
𝑇
1
(𝑎
1
𝑎
2
+𝑎
0
)𝑇
1

𝑇
2
1+𝑎
2
𝑇
2

] and 𝐴
2
= [
1+𝑎
1
𝑇
1
𝑎
1
𝑎
2
𝑇
1

𝑇
2
1+𝑎
2
𝑇
2

]. And
the following parameter values about 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑇
1
, and 𝑇

2
are

given: 𝑎
0
= −2, 𝑎

1
= −3, 𝑇

1
= 0.1, and 𝑇

2
= 0.2. Furthermore,

the initial and boundary conditions of the above uncertain
Roesser-type discrete-time two-dimensional systems are set
as 𝑥ℎ(0, 𝑙) = 6 cos(𝑙) for 𝑙 < 30 and 𝑥

V
(𝑘, 0) = 4 sin(𝑘) for 𝑘 <

30 and 𝑥
ℎ
(0, 𝑙) = 0 for 𝑙 ≥ 30 and 𝑥

V
(𝑘, 0) = 0 for 𝑘 ≥ 30.

Let 𝑎
2
= −0.6; the stability criteria given inTheorem 3 are

feasible by solving LMIs (7), which guarantee the robust
asymptotical stability for the underlying uncertain Roesser-
type discrete-time 2D systems. On the other hand, Figures 1
and 2 show the state trajectory of the system state variables
𝑥
ℎ
(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6, respectively.

From Figures 1 and 2, it is easy to see that the state trajectories
of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are robust asymptotically stable in this

case.
Let 𝑎
2
= −2.9; the stability criteria given inTheorem 3 are

feasible by solving LMIs (7), which guarantee the robust
asymptotical stability for the underlying uncertain Roesser-
type discrete-time 2D systems. On the other hand, Figures 3
and 4 show the state trajectory of the system state variables



4 Abstract and Applied Analysis

0
10

20
30

40

0
10

20
30

40
−10

−5

0

5

10

kl

x
h

(
k
,
l
)

Figure 1: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −0.6.

0
10

20
30

40

0
10

20
30

40
−4

−2

0

2

4

k
l

x
�

(
k
,
l
)

Figure 2: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎

2
= −0.6.

𝑥
ℎ
(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6, respectively.

FromFigures 3 and 4, it is easy to see that the state trajectories
of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are robust asymptotically stable in this

case.
Let 𝑎
2
= −8.9; the stability criteria given inTheorem 3 are

not feasible by solving LMIs (7), which do not guarantee the
robust asymptotical stability for the underlying uncertain
Roesser-type discrete-time 2D systems. On the other hand,
Figures 5 and 6 show the state trajectory of the system state
variables 𝑥

ℎ
(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6,

respectively. From Figures 5 and 6, it is easy to see that the
state trajectories of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are not robust asymp-

totically stable in this case. Now, it could be concluded that
the effectiveness and applicability of the proposed approach
given in Theorem 3 are illustrated by means of numerical
experiments.

5. Conclusions

Theproblem of robust stability analysis of a class of uncertain
Roesser-type discrete-time 2D systems has been addressed by
using an efficient parameter-dependent Lyapunov function.
In particular, the parameter uncertainties of the underlying
2D system’s parameter matrices belong to a convex bounded
uncertain domain, which often is named as polytopic uncer-
tainty and appears typically in most practical systems. In
order to ensure the robust asymptotic stability of the
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Figure 3: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −2.9.
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Figure 4: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎

2
= −2.9.
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Figure 5: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −8.9.
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Figure 6: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎
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= −8.9.
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uncertain Roesser-type discrete-time 2D systems, LMI-based
robust stability criteria are proposed by exploiting the alge-
braic properties of the convex bounded uncertain domain.
Finally, a numerical example is provided to demonstrate the
effectiveness and applicability of the approach given in this
paper.
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