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To realize the applications of stochastic differential equations with jumps, much attention has recently been paid to the construction
of efficient numerical solutions of the equations. Considering the fact that the use of the explicit methods often results in instability
and inaccurate approximations in solving stochastic differential equations, we propose two implicit methods, the 𝜃-Taylor method
and the balanced 𝜃-Taylor method, for numerically solving the stochastic differential equation with jumps and prove that the
numerical solutions are convergent with strong order 1.0. For a linear scalar test equation, the mean-square stability regions of
the methods are derived. Finally, numerical examples are given to evaluate the performance of the methods.

1. Introduction

Stochastic differential equations (SDEs) have been one of the
most important mathematical tools for dealing with many
problems in a variety of practical areas. However, SDEs are
in general so complex that the analytical solutions can rarely
be obtained. Thus, it is a common way to numerically solve
SDEs. Since the explicit numerical methods often result in
instability and inaccurate approximations to the solutions
unless the step-size is very small, it is often necessary to use
some implicit methods in numerically solving SDEs.

Generally speaking, there are two kinds of implicit
numerical methods. One is the semi-implicit methods in
which the drift components are computed implicitly while
the diffusion components are computed explicitly. Higham
[1, 2] studied the stochastic 𝜃-method for SDEs and SDEs
with jumps (SDEJs). When 𝜃 = 1, the stochastic 𝜃-method
is the backward Euler method. The backward Euler method
is discussed in [3–5] and the references therein. Hu and
Gan [6] proposed a class of drift-implicit one-step methods
for neutral stochastic delay differential equations with jump
diffusion. Higham and Kloeden [3, 7] constructed the split-
step backward Euler method and the compensated split-
step backward Euler method for SDEJs. Ding et al. [8]

introduced the split-step 𝜃-method which is more general
than the split-step backward Euler method. Wang and Gan
[9] studied split-step one-leg 𝜃 methods for SDEs. Buckwar
and Sickenberger [10] compared the mean-square stability
properties of the 𝜃-Maruyama and 𝜃-Milstein methods for
SDEs.

The other is the fully implicit methods in which both
the drift components and the diffusion components are
computed implicitly. Since implicit stochastic terms in the
implicit methods lead to infinite absolute moments of the
numerical solution, extensive research has been done to
address this issue [11–26]. For example, Milstein et al. [11]
proposed the balanced implicit method for the numerical
solutions of SDEs. Burrage and Tian [12] suggested three
implicit Taylor methods: the implicit Euler-Taylor method
with strong order 0.5, the implicit Milstein-Taylor method
with strong order 1.0, and the implicit Taylor method with
strong order 1.5. Kahl and Schurz [16] introduced the bal-
anced Milstein method for ordinary SDEs. Wang and Liu
[20, 21] proposed the semi-implicit Milstein method and
the split-step backward balanced Milstein method for stiff
stochastic systems. Furthermore, Haghighi andHosseini [23]
developed a class of general split-step balanced numerical
methods for SDEs.
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Let (Ω,F, {F
𝑡
}
𝑡∈[𝑡0 ,𝑇]

,P) be a complete probability space
with the filtration {F

𝑡
}
𝑡∈[𝑡0 ,𝑇]

satisfying the usual conditions
that F

𝑡
is right-continuous and F

0
contains all P-null sets.

In this paper, we consider the stochastic differential equations
with jumps of the form

d𝑥 (𝑡) = 𝑓 (𝑥 (𝑡)) d𝑡 + 𝑔 (𝑥 (𝑡)) d𝑊(𝑡) + ℎ (𝑥 (𝑡)) d𝑁(𝑡) ,

𝑡 ∈ [𝑡
0
, 𝑇] ;

𝑥 (𝑡
0
) = 𝑥
0
,

(1)

where𝑊(𝑡) isF
𝑡
-adaptedWiener process and𝑁(𝑡) is a scalar

poisson process with intensity 𝜆 and is independent of𝑊(𝑡).
Hu andGan [22, 25] proposed the balancedmethod for SDEJs
(1) and stochastic pantograph equations with jumps, respec-
tively, and proved that the numerical solution converges to
the analytical solution with rate 1/2. The asymptotic stability
of the balanced method for SDEJs (1) was obtained in [26].
To obtain higher order numerical schemes and improve the
accuracy of the numerical solutions, we propose two kinds
of implicit Taylor methods and prove that the numerical
solutions converge to the true solutions of SDEJs (1) with rate
1.0.

The rest of the paper is arranged as follows. In Section 2,
we introduce the 𝜃-Taylor methods and the fully implicit
balanced 𝜃-Taylor methods for SDEJs (1). The strong con-
vergence properties of these implicit methods are proved in
Section 3. The mean-square stability of the numerical solu-
tions is discussed in Section 4. Some numerical experiments
are performed in Section 5 to evaluate the performance of the
proposed numerical methods.

2. The Numerical Methods

Define a mesh 0 ≤ 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡
𝑛+1

< ⋅ ⋅ ⋅ < 𝑡
𝑁
= 𝑇

on the time interval [𝑡
0
, 𝑇] with 𝑡

𝑛
= 𝑛Δ and the step-size

Δ = 𝑇/𝑁. 𝑥
𝑛
is the numerical approximation to 𝑥(𝑡

𝑛
). Based

on appropriate stochastic Taylor expansions, Maghsoodi [27]
generalized the Milstein scheme to SDEJs and obtained the
order 1.0 strong Taylor scheme (Taylor for short) as

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑓 (𝑥

𝑛
) Δ + 𝑔 (𝑥

𝑛
) Δ𝑊
𝑛

+
1

2
𝑔 (𝑥
𝑛
) 𝑔
󸀠
(𝑥
𝑛
) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥

𝑛
) − ℎ
ℎ
(𝑥
𝑛
)) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥
𝑛
) − 𝑔 (𝑥

𝑛
)) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥
𝑛
) − ℎ (𝑥

𝑛
)) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥
𝑛
) ℎ
󸀠
(𝑥
𝑛
) − 𝑔
ℎ
(𝑥
𝑛
) + 𝑔 (𝑥

𝑛
)) Δ𝑍

𝑛
,

(2)

where 𝑔
ℎ
(𝑥) = 𝑔(𝑥 + ℎ(𝑥)), ℎ

ℎ
(𝑥) = ℎ(𝑥 + ℎ(𝑥)), and Δ𝑍

𝑛
=

∫
𝑡𝑛+1

𝑡𝑛

∫
𝑠

𝑡𝑛

d𝑊
𝑡
d𝑁
𝑠
= ∫
𝑡𝑛+1

𝑡𝑛

(𝑊
𝑠
−𝑊
𝑡𝑛
)d𝑁
𝑠
.

Note thatΔ𝑍
𝑛
= ∑
𝑗
(𝑊(𝜏
𝑗
)−𝑊(𝑡

𝑘
)) = ∑

𝑁𝑛+1

𝑗=𝑁𝑛+1
(𝑁
𝑛+1
−𝑗+

1)(𝑊(𝜏
𝑗
) − 𝑊(𝜏

𝑗−1
)) [28]. Given a jump time 𝜏

𝑗
in [𝑡
𝑛
, 𝑡
𝑛+1
),

Δ𝑍
1𝑛
(𝜏
𝑗
) = 𝑊(𝜏

𝑗
) − 𝑊(𝜏

𝑗−1
) ∼ 𝑁(0, 𝜏

𝑗
− 𝜏
𝑗−1
) (𝑁
𝑛
+ 1 ≤ 𝑗 ≤

𝑁
𝑛+1

). In addition, the random variable Δ𝑊
𝑛
= 𝑊(𝑡

𝑛+1
) −

𝑊(𝑡
𝑛
) is dependent on Δ𝑍

1𝑛
(𝜏
𝑗
), and its sample values can be

calculated by Δ𝑊
𝑛
= ∑
𝑁𝑛+1

𝑗=𝑁𝑛+1
Δ𝑍
1𝑛
(𝜏
𝑗
) + Δ𝑍

1𝑛
(𝑡
𝑛+1
) where

Δ𝑍
1𝑛
(𝑡
𝑛+1
) = 𝑊(𝑡

𝑛+1
) − 𝑊(𝜏

𝑁𝑛+1
) ∼ 𝑁(0, 𝑡

𝑛+1
− 𝜏
𝑁𝑛+1

).
By changing the explicit deterministic term into implicit

term, we have the following 𝜃-Taylor method:

𝑥
𝑛+1

= 𝑥
𝑛
+ Δ [(1 − 𝜃) 𝑓 (𝑥

𝑛
) + 𝜃𝑓 (𝑥

𝑛+1
)]

+ 𝑔 (𝑥
𝑛
) Δ𝑊
𝑛
+
1

2
𝑔 (𝑥
𝑛
) 𝑔
󸀠
(𝑥
𝑛
) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥

𝑛
) − ℎ
ℎ
(𝑥
𝑛
)) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥
𝑛
) − 𝑔 (𝑥

𝑛
)) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥
𝑛
) − ℎ (𝑥

𝑛
)) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥
𝑛
) ℎ
󸀠
(𝑥
𝑛
) − 𝑔
ℎ
(𝑥
𝑛
) + 𝑔 (𝑥

𝑛
)) Δ𝑍

𝑛
.

(3)

Note that the 𝜃-Taylor method (3) becomes the Taylor
method (2) when 𝜃 = 0.

Using the idea of the balanced implicit method and
combining it with the 𝜃-Taylormethod, we have the following
balanced 𝜃-Taylor method:

𝑥
𝑛+1

= 𝑥
𝑛
+ Δ [(1 − 𝜃) 𝑓 (𝑥

𝑛
) + 𝜃𝑓 (𝑥

𝑛+1
)]

+ 𝑔 (𝑥
𝑛
) Δ𝑊
𝑛
+
1

2
𝑔 (𝑥
𝑛
) 𝑔
󸀠
(𝑥
𝑛
) [(Δ𝑊

𝑛
)
2
− Δ]

+
1

2
(3ℎ (𝑥

𝑛
) − ℎ
ℎ
(𝑥
𝑛
)) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥
𝑛
) − 𝑔 (𝑥

𝑛
)) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥
𝑛
) − ℎ (𝑥

𝑛
)) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥
𝑛
) ℎ
󸀠
(𝑥
𝑛
) − 𝑔
ℎ
(𝑥
𝑛
) + 𝑔 (𝑥

𝑛
)) Δ𝑍

𝑛

+ 𝐶
𝑛
(𝑥
𝑛
− 𝑥
𝑛+1
) ,

(4)

where 𝐶
𝑛
= 𝐶(𝑥

𝑛
) = 𝐶

0
(𝑥
𝑛
)Δ + 𝐶

1
(𝑥
𝑛
)[(Δ𝑊

𝑛
)
2
− Δ] with

𝐶
0
(⋅) and 𝐶

1
(⋅) called control functions.

3. Convergence of the Implicit Taylor Methods

Let | ⋅ | be the Euclidean norm in R𝑑. If 𝐴 is a matrix, |𝐴| =
√trace(𝐴𝑇𝐴). Denote ‖𝑧‖

𝐿2
= (E|𝑧|

2
)
1/2 for 𝑧 ∈ R𝑑. To

prove the convergence of the numerical solutions, we make
the following assumptions.
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Assumption 1. The coefficient functions𝑓, 𝑔, and ℎ satisfy the
global Lipschitz condition

󵄨󵄨󵄨󵄨𝑓 (𝑥1) − 𝑓 (𝑥2)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑥1) − 𝑔 (𝑥2)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨ℎ (𝑥1) − ℎ (𝑥2)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑥
1
) 𝑔
󸀠
(𝑥
1
) − 𝑔 (𝑥

2
) 𝑔
󸀠
(𝑥
2
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑥
1
) ℎ
󸀠
(𝑥
1
) − 𝑔 (𝑥

2
) ℎ
󸀠
(𝑥
2
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨

(5)

for a positive constant 𝐿 and any 𝑥
1
, 𝑥
2
∈ R𝑑 and the linear

growth condition

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑔(𝑥)

󵄨󵄨󵄨󵄨
2

+ |ℎ(𝑥)|
2

+
󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥)𝑔

󸀠
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥)ℎ

󸀠
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿
󸀠
(1 + |𝑥|

2
)

(6)

for a positive constant 𝐿󸀠 and any 𝑥 ∈ R𝑑.

Assumption 2. The𝐶
0
(⋅) and𝐶

1
(⋅) are bounded 𝑑×𝑑-matrix-

valued functions. For any real numbers 𝛼
0
∈ [0, 𝛼

0
] and 𝛼

1
∈

[−𝛼
1
, 𝛼
1
] with 𝛼

0
≥ Δ and 𝛼

1
≥ |(Δ𝑊

𝑛
)
2
− Δ| for all step-size

Δ and 𝑥 ∈ R𝑑, the matrix𝑀(𝑥) = 𝐼 + 𝛼
0
𝐶
0
(𝑥) + 𝛼

1
𝐶
1
(𝑥) is

reversible and satisfies |(𝑀(𝑥))−1| ≤ 𝐵 < ∞, where 𝐼 is a unit
matrix and 𝐵 is a positive constant.

In what follows, we will derive the strong convergence
orders of the implicit Taylor methods for SDEJs (1).

3.1. Convergence of the 𝜃-Taylor Method. Define

𝑥
𝜃
(𝑡
𝑛+1
) = 𝑥 (𝑡

𝑛
)

+ Δ [(1 − 𝜃) 𝑓 (𝑥 (𝑡
𝑛
))

+ 𝜃𝑓 (𝑥 (𝑡
𝑛+1
))] + 𝑔 (𝑥 (𝑡

𝑛
)) Δ𝑊

𝑛

+
1

2
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
))

−𝑔
ℎ
(𝑥 (𝑡
𝑛
)) + 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑍

𝑛

(7)

by replacing the numerical approximations with the exact
solution values on the right-hand side of equation (3). Then,

the local error ofmethod (3) is defined by 𝛿𝜃(𝑡
𝑛+1
) = 𝑥(𝑡

𝑛+1
)−

𝑥
𝜃
(𝑡
𝑛+1
) and the global error of method (3) is defined by

𝜖
𝑛
= 𝑥(𝑡
𝑛
) − 𝑥
𝑛
.

Theorem 3. Under Assumption 1, the 𝜃-Taylor method (3) is
consistent with order 2 in the mean and with order 1.5 in the
mean square. That is, the local mean error and mean-square
error of the 𝜃-Taylor method (3) satisfy

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
E(𝛿
𝜃
(𝑡
𝑛+1
) | F
𝑡𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐻
1
Δ
2

𝑎𝑠 Δ 󳨀→ 0, (8)

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝜃
(𝑡
𝑛+1
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐻
2
Δ
3/2

𝑎𝑠 Δ 󳨀→ 0, (9)

where the constants𝐻
1
and𝐻

2
are independent of Δ.

Proof. To obtain the convergence rate of the 𝜃-Taylormethod,
we firstly introduce the local Taylor numerical approximation
𝑥
𝐴

𝑛+1
which is defined by

𝑥
𝐴

𝑛+1
= 𝑥 (𝑡

𝑛
) + 𝑓 (𝑥 (𝑡

𝑛
)) Δ + 𝑔 (𝑥 (𝑡

𝑛
)) Δ𝑊

𝑛

+
1

2
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥 (𝑡
𝑛
))

+ 𝑔 (𝑥 (𝑡
𝑛
))) Δ𝑍

𝑛
.

(10)

Then, there exists some constant𝐾
1
> 0 such that

E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝜃

𝑛+1
− 𝑥 (𝑡

𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 2E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝐴

𝑛+1
− 𝑥 (𝑡

𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

+ 2E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝜃

𝑛+1
− 𝑥
𝐴

𝑛+1
) | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝐾
1
Δ
4
+ 2E [

󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝜃

𝑛+1
− 𝑥
𝐴

𝑛+1
) | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

] .

(11)

Since

E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝜃

𝑛+1
− 𝑥
𝐴

𝑛+1
) | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

= E [
󵄨󵄨󵄨󵄨󵄨
E [𝜃Δ (𝑓 (𝑥 (𝑡

𝑛+1
)) − 𝑓 (𝑥 (𝑡

𝑛
))) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝐿𝜃ΔE[E [
󵄨󵄨󵄨󵄨𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛)

󵄨󵄨󵄨󵄨 | F𝑡𝑛]]
2

≤ 𝑂 (Δ
4
) ,

(12)

we obtain (E[|E[(𝑥𝜃
𝑛+1

− 𝑥(𝑡
𝑛+1
)) | F

𝑡𝑛
]|
2

])
1/2

≤ 𝑂(Δ
2
).
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On the other hand, since

E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜃

𝑛+1
− 𝑥
𝐴

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

| 𝑥
𝑛
= 𝑥 (𝑡

𝑛
)]

= 𝐿
2
𝜃
2
Δ
2
E [
󵄨󵄨󵄨󵄨𝑥 (𝑡𝑛+1) − 𝑥 (𝑡𝑛)

󵄨󵄨󵄨󵄨
2

]

≤ 𝑂 (Δ
3
) ,

(13)

we have

E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜃

𝑛+1
− 𝑥 (𝑡

𝑛+1
)
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 2E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝐴

𝑛+1
− 𝑥 (𝑡

𝑛+1
)
󵄨󵄨󵄨󵄨󵄨

2

]

+ 2E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜃

𝑛+1
− 𝑥
𝐴

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) .

(14)

Therefore, the result (9) is obtained.

Theorem 4. Under Assumption 1, the 𝜃-Taylor method (3) is
convergent with order 1 in the mean square. That is, the global
error satisfies

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜖
2

𝑛+1

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐻
3
Δ 𝑎𝑠 Δ 󳨀→ 0, (15)

where𝐻
3
is independent of Δ.

Proof. From the definitions of 𝛿
𝑛
and 𝜖
𝑛
, we have

𝜖
𝑛+1

= 𝜖
𝑛
+ 𝑢
𝑛
+ 𝛿
𝑛+1
, (16)

where
𝑢
𝑛
= Δ (1 − 𝜃) (𝑓 (𝑥 (𝑡

𝑛
)) − 𝑓 (𝑥

𝑛
))

+ Δ𝜃 (𝑓 (𝑥 (𝑡
𝑛+1
)) − 𝑓 (𝑥

𝑛+1
))

+ (𝑔 (𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
)) Δ𝑊

𝑛

+
1

2
(𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
))

− 𝑔 (𝑥
𝑛
) 𝑔
󸀠
(𝑥
𝑛
)) [(Δ𝑊)

2
− Δ]

+
1

2
[3 (ℎ (𝑥 (𝑡

𝑛
)) − ℎ (𝑥

𝑛
))

− (ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ

ℎ
(𝑥
𝑛
))] Δ𝑁

𝑛

+ [(𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥
𝑛
))

− (𝑔 (𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
))] Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
[(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ

ℎ
(𝑥
𝑛
))

− (ℎ (𝑥 (𝑡
𝑛
)) − ℎ (𝑥

𝑛
))] (Δ𝑁

𝑛
)
2

+ [(𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) ℎ
󸀠
(𝑥
𝑛
))

− (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥
𝑛
))

+ (𝑔 (𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
))] Δ𝑍

𝑛
.

(17)

Since 𝜖
𝑛
isF
𝑡𝑛
-measurable, we have fromTheorem 3 that

󵄨󵄨󵄨󵄨E ⟨𝛿𝑛+1, 𝜖𝑛⟩
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
E [E (⟨𝛿

𝑛+1
, 𝜖
𝑛
⟩ | F
𝑡𝑛
)]
󵄨󵄨󵄨󵄨󵄨

≤ E
󵄨󵄨󵄨󵄨󵄨
⟨E (𝛿

𝑛+1
| F
𝑡𝑛
) , 𝜖
𝑛
⟩
󵄨󵄨󵄨󵄨󵄨

≤ [Δ
−1
(E
󵄨󵄨󵄨󵄨󵄨
E (𝛿
𝑛+1

| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

)]
1/2

× (ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

)
1/2

≤ Δ
−1
(E
󵄨󵄨󵄨󵄨󵄨
E (𝛿
𝑛+1

| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

)

+ ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

≤ 𝐻
1
Δ
3
+ ΔE

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

,

(18)

where ⟨⋅, ⋅⟩ indicates the scalar product.
Noting that E|Δ𝑊

𝑛
|
2
= Δ, E|Δ𝑊

𝑛
|
4
= 3Δ
2, E(Δ𝑁

𝑛
)
2
=

𝜆Δ(1 + 𝜆Δ), E(Δ𝑁
𝑛
)
4
= 𝜆Δ(1 + 7𝜆Δ + 6(𝜆Δ)

2
+ (𝜆Δ)

3
), and

Δ𝑊
𝑛
is independent of Δ𝑁

𝑛
, we have from Assumption 1 that

E
󵄨󵄨󵄨󵄨(𝑔 (𝑥 (𝑡𝑛)) − 𝑔 (𝑥𝑛)) Δ𝑊𝑛

󵄨󵄨󵄨󵄨
2

≤ ΔE
󵄨󵄨󵄨󵄨𝑔 (𝑥 (𝑡𝑛)) − 𝑔 (𝑥𝑛)

󵄨󵄨󵄨󵄨
2

≤ 𝐿
2
ΔE|𝜖
𝑛
|
2
;

E
󵄨󵄨󵄨󵄨󵄨
(𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) 𝑔
󸀠
(𝑥
𝑛
)) [(Δ𝑊)

2
− Δ]

󵄨󵄨󵄨󵄨󵄨

2

≤ 2Δ
2
E
󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) 𝑔
󸀠
(𝑥
𝑛
)
󵄨󵄨󵄨󵄨󵄨

≤ 2𝐿
2
Δ
2
E|𝜖
𝑛
|
2
;

E
󵄨󵄨󵄨󵄨[3 (ℎ (𝑥 (𝑡𝑛))− ℎ (𝑥𝑛))− (ℎℎ (𝑥 (𝑡𝑛))− ℎℎ (𝑥𝑛))] Δ𝑁𝑛

󵄨󵄨󵄨󵄨
2

≤ 2𝜆Δ (1 + 𝜆Δ) [3E
󵄨󵄨󵄨󵄨ℎ (𝑥 (𝑡𝑛)) − ℎ (𝑥𝑛)

󵄨󵄨󵄨󵄨
2

+ E
󵄨󵄨󵄨󵄨ℎ (𝑥 (𝑡𝑛) + ℎ (𝑥 (𝑡𝑛))) − ℎ (𝑥𝑛 + ℎ (𝑥𝑛))

󵄨󵄨󵄨󵄨
2

]

≤ 2𝐿
2
𝜆Δ (1 + 𝜆Δ) (5 + 2𝐿

2
)E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

;

E
󵄨󵄨󵄨󵄨[(𝑔ℎ (𝑥 (𝑡𝑛))− 𝑔ℎ (𝑥𝑛))− (𝑔 (𝑥 (𝑡𝑛))− 𝑔 (𝑥𝑛))] Δ𝑊𝑛Δ𝑁𝑛

󵄨󵄨󵄨󵄨
2

≤ E
󵄨󵄨󵄨󵄨(𝑔ℎ (𝑥 (𝑡𝑛)) − 𝑔ℎ (𝑥𝑛)) − (𝑔 (𝑥 (𝑡𝑛)) − 𝑔 (𝑥𝑛))

󵄨󵄨󵄨󵄨
2

⋅ E|Δ𝑊
𝑛
|
2
⋅ E(Δ𝑁

𝑛
)
2

≤ 2𝐿
2
𝜆Δ
2
(1 + 𝜆Δ) (3 + 2𝐿

2
)E|𝜖
𝑛
|
2
;

E
󵄨󵄨󵄨󵄨󵄨
[(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ

ℎ
(𝑥
𝑛
)) − (ℎ (𝑥 (𝑡

𝑛
)) − ℎ (𝑥

𝑛
))] (Δ𝑁

𝑛
)
2󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝜆Δ (1 + 7𝜆Δ + 6(𝜆Δ)
2
+ (𝜆Δ)

3
) 𝐿
2
(3 + 2𝐿

2
)E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

;

E
󵄨󵄨󵄨󵄨󵄨
[ (𝑔 (𝑥 (𝑡

𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) ℎ
󸀠
(𝑥
𝑛
))

− (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥
𝑛
)) + (𝑔 (𝑥 (𝑡

𝑛
)) − 𝑔 (𝑥

𝑛
))] Δ𝑍

𝑛

󵄨󵄨󵄨󵄨
2
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≤ 6𝐿
2
(2 + 𝐿

2
)E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

⋅ E
󵄨󵄨󵄨󵄨Δ𝑍𝑛

󵄨󵄨󵄨󵄨
2

≤ 6𝐿
2
(2 + 𝐿

2
)E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

⋅ E
󵄨󵄨󵄨󵄨Δ𝑊𝑛 − Δ𝑍1𝑛(𝑡𝑛+1)

󵄨󵄨󵄨󵄨
2

≤ 24𝐿
2
(2 + 𝐿

2
) ΔE

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

.

(19)

Hence,

E
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

≤ 𝐽
1
ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 8𝐿
2
Δ
2
𝜃
2
E
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

, (20)

where 𝐽
1
= 8[4𝐿

2
+ 2𝐿
2
𝜆(1 + 𝜆)(5 + 2𝐿

2
) + 2𝐿

2
𝜆(1 + 𝜆)(3 +

2𝐿
2
) + 2𝜆(1 + 7𝜆 + 6𝜆

2
+ 𝜆
3
)𝐿
2
(3 + 2𝐿

2
) + 24𝐿

2
(2 + 𝐿

2
).

Noting that 𝑥(𝑡
𝑛
) and 𝑥

𝑛
are F

𝑡𝑛
-measurable and Δ𝑊

𝑛

and Δ𝑁
𝑛
are independent ofF

𝑡𝑛
, we have

E [(𝑔 (𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
)) Δ𝑊

𝑛
F
𝑡𝑛
] = 0;

E [(𝑔 (𝑥 (𝑡
𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) 𝑔
󸀠
(𝑥
𝑛
))

× ((Δ𝑊)
2
− Δ) | F

𝑡𝑛
] = 0;

E [[(𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥
𝑛
)) − (𝑔 (𝑥 (𝑡

𝑛
)) − 𝑔 (𝑥

𝑛
))]

×Δ𝑊
𝑛
Δ𝑁
𝑛
| F
𝑡𝑛
] = 0;

E [[(𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
) ℎ
󸀠
(𝑥
𝑛
))

− (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥
𝑛
))

+ (𝑔 (𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥

𝑛
)) ] Δ𝑍

𝑛
| F
𝑡𝑛
] = 0.

(21)

Therefore,
󵄨󵄨󵄨󵄨󵄨
E (𝑢
𝑛
| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Δ (1 − 𝜃)E [𝑓 (𝑥 (𝑡

𝑛
)) − 𝑓 (𝑥

𝑛
) | F
𝑡𝑛
]

+ 𝜃ΔE [𝑓 (𝑥 (𝑡
𝑛+1
)) − 𝑓 (𝑥

𝑛+1
) | F
𝑡𝑛
]

+
3

2
E [(ℎ (𝑥 (𝑡

𝑛
)) − ℎ (𝑥

𝑛
)) Δ𝑁

𝑛
| F
𝑡𝑛
]

−
1

2
E [(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ

ℎ
(𝑥
𝑛
)) Δ𝑁

𝑛
| F
𝑡𝑛
]

+
1

2
E [(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ

ℎ
(𝑥
𝑛
)) (Δ𝑁

𝑛
)
2

| F
𝑡𝑛
]

−
1

2
E [(ℎ (𝑥 (𝑡

𝑛
)) − ℎ (𝑥

𝑛
)) (Δ𝑁

𝑛
)
2

| F
𝑡𝑛
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐽
2
Δ
2
E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 6𝐿
2
𝜃
2
Δ
2
E [
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

| F
𝑡𝑛
] ,

(22)

where 𝐽
2
= 3𝐿
2
[2 + 3𝜆

2
+ (1 + 𝐿)

2
𝜆
2
+ (1 + 𝐿)

2
(1 + 𝜆)

2
+

𝜆
2
(1 + 𝜆)

2
]. Thus,

󵄨󵄨󵄨󵄨E ⟨𝜖𝑛, 𝑢𝑛⟩
󵄨󵄨󵄨󵄨 ≤ Δ
−1
(E
󵄨󵄨󵄨󵄨󵄨
E (𝑢
𝑛
| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

) + ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

≤ (1 + 𝐽
2
) ΔE

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 6𝐿
2
𝜃
2
ΔE
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

.

(23)

From the above arguments, we obtain

E
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

≤ E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ E
󵄨󵄨󵄨󵄨𝛿𝑛+1

󵄨󵄨󵄨󵄨
2

+ E
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

+ 2
󵄨󵄨󵄨󵄨E ⟨𝛿𝑛+1, 𝜖𝑛⟩

󵄨󵄨󵄨󵄨 + 2
󵄨󵄨󵄨󵄨E ⟨𝜖𝑛, 𝑢𝑛⟩

󵄨󵄨󵄨󵄨

≤ [1 + 2 (2 + 𝐽
1
+ 𝐽
2
) Δ]E

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 2𝐿
2
𝜃
2
Δ (Δ + 6)E

󵄨󵄨󵄨󵄨𝜖𝑛+1
󵄨󵄨󵄨󵄨
2

+ (𝐻
2
+ 2𝐻
1
) Δ
3
.

(24)

BecauseΔ → 0, we can assume 1−2𝐿2𝜃2Δ(Δ+6) > 0without
loss of generality. Let 𝐽

3
= 2(2 + 𝐽

1
+ 𝐽
2
). Then,

E
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

≤ (1 + 𝐽
3
Δ)E

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ (𝐻
2
+ 2𝐻
1
) Δ
3

= (𝐻
2
+ 2𝐻
1
) Δ
2
(1 + 𝐽

3
Δ)
𝑛+1

− 1

𝐽
3

≤ 𝐽
4
Δ
2
,

(25)

where 𝐽
4
= (𝐻
2
+ 2𝐻
1
)((𝑒
𝐽3𝑇 − 1)/𝐽

3
).

3.2. Convergence of the Balanced 𝜃-Taylor Method. Define

𝑥
𝐵
(𝑡
𝑛+1
)

= 𝑥 (𝑡
𝑛
) + Δ [(1 − 𝜃) 𝑓 (𝑥 (𝑡

𝑛
)) + 𝜃𝑓 (𝑥 (𝑡

𝑛+1
))]

+ 𝑔 (𝑥 (𝑡
𝑛
)) Δ𝑊

𝑛

+
1

2
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥 (𝑡
𝑛
))

+ 𝑔 (𝑥 (𝑡
𝑛
))) Δ𝑍

𝑛
+ 𝐶
𝑛
(𝑥 (𝑡
𝑛
) − 𝑥
𝐵
(𝑡
𝑛+1
))

(26)

by replacing the numerical approximations with the exact
solution values on the right-hand side of (4). Then, the local
error of method (4) is 𝛿𝐵(𝑡

𝑛+1
) = 𝑥(𝑡

𝑛+1
) − 𝑥
𝐵
(𝑡
𝑛+1
) and the

global error of method (4) is 𝜖
𝑛
= 𝑥(𝑡
𝑛
) − 𝑥
𝑛
.

Theorem5. UnderAssumptions 1 and 2, the balanced 𝜃-Taylor
method (4) is consistent with order 2 in the mean and with
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order 1.5 in the mean square. That is, the local mean error and
mean-square error of the balanced 𝜃-Taylor method (4) satisfy

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
E (𝛿
𝐵
(𝑡
𝑛+1
) | F
𝑡𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐻
4
Δ
2

𝑎𝑠 Δ 󳨀→ 0,

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐵
(𝑡
𝑛+1
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐻
5
Δ
3/2

𝑎𝑠 Δ 󳨀→ 0,

(27)

where the constants𝐻
4
and𝐻

5
are independent of Δ.

Proof. FromTheorem 3, we have

E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝐵

𝑛+1
− 𝑥 (𝑡

𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 2E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝜃

𝑛+1
− 𝑥 (𝑡

𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

+ 2E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝐵

𝑛+1
− 𝑥
𝜃

𝑛+1
) | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝐻
2

1
Δ
4
+ 2E [

󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝐵

𝑛+1
− 𝑥
𝜃

𝑛+1
) | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

] .

(28)

From the definitions of 𝑥𝜃
𝑛+1

and 𝑥𝐵
𝑛+1

in (7) and (26), we can
write

𝑥
𝐵

𝑛+1
− 𝑥
𝜃

𝑛+1

= −𝐶
𝑛
(𝑥 (𝑡
𝑛
) − 𝑥
𝐵
(𝑡
𝑛+1
))

= 𝐶
𝑛
[Δ [(1 − 𝜃) 𝑓 (𝑥 (𝑡

𝑛
)) + 𝜃𝑓 (𝑥 (𝑡

𝑛+1
))]

+ 𝑔 (𝑥 (𝑡
𝑛
)) Δ𝑊

𝑛

+
1

2
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥 (𝑡
𝑛
))

+𝑔 (𝑥 (𝑡
𝑛
))) Δ𝑍

𝑛
+ 𝐶
𝑛
(𝑥
𝑛
− 𝑥
𝐵

𝑛+1
)]

= (𝐼 + 𝐶
𝑛
)
−1

𝐶
𝑛

× [Δ [(1 − 𝜃) 𝑓 (𝑥 (𝑡
𝑛
)) + 𝜃𝑓 (𝑥 (𝑡

𝑛+1
))]

+ 𝑔 (𝑥 (𝑡
𝑛
)) Δ𝑊

𝑛
+
1

2
𝑔 (𝑥 (𝑡

𝑛
))

× 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]

+
1

2
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

+ (𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2

+ (𝑔 (𝑥 (𝑡
𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥 (𝑡
𝑛
))

+𝑔 (𝑥 (𝑡
𝑛
))) Δ𝑍

𝑛
] .

(29)

Since the components of the matrices 𝐶
0
(⋅) and 𝐶

1
(⋅) in 𝐶

𝑛
(⋅)

are bounded, there exists a positive constant 𝑀 such that
|𝐶
𝑖
| ≤ 𝑀 (𝑖 = 0, 1). Under Assumptions 1 and 2, we have
󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
Δ𝑓 (𝑥 (𝑡

𝑛
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

≤ 𝑀Δ
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑛)

󵄨󵄨󵄨󵄨E [
󵄨󵄨󵄨󵄨󵄨
𝐶
0
Δ + 𝐶

1
((Δ𝑊

𝑛
)
2

− Δ)
󵄨󵄨󵄨󵄨󵄨
| F
𝑡𝑛
]

≤ 𝐿
󸀠
𝑀𝐵(1 +

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑛)
󵄨󵄨󵄨󵄨
2

)
1/2

Δ
2
;

󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
𝑔 (𝑥 (𝑡

𝑛
)) Δ𝑊

𝑛
| F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨
= 0;

󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
))

× [(Δ𝑊
𝑛
)
2

− Δ] | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

≤ 𝐵𝑀
󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
))
󵄨󵄨󵄨󵄨󵄨

E [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
((Δ𝑊

𝑛
)
2

− Δ)
2󵄨󵄨󵄨󵄨󵄨󵄨󵄨
| F
𝑡𝑛
]

≤ 2𝐿
󸀠
𝑀𝐵(1 +

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
2

)
1/2

Δ
2
;

󵄨󵄨󵄨󵄨󵄨
[E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛
] | F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

≤ 𝜆𝐵𝑀
󵄨󵄨󵄨󵄨3ℎ (𝑥 (𝑡𝑛)) − ℎℎ (𝑥 (𝑡𝑛))

󵄨󵄨󵄨󵄨 Δ
2

≤ (2 + 𝐿) 𝐿
󸀠
𝐵𝑀(1 +

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑛)
󵄨󵄨󵄨󵄨
2

)
1/2

Δ
2
,

󵄨󵄨󵄨󵄨󵄨
E [(𝐼+ 𝐶

𝑛
)
−1

𝐶
𝑛
(𝑔
ℎ
(𝑥 (𝑡
𝑛
))− 𝑔 (𝑥 (𝑡

𝑛
)))

× Δ𝑊
𝑛
Δ𝑁
𝑛
| F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨
= 0;

󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
)))

× (Δ𝑁
𝑛
)
2

| F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

≤ 𝐵𝑀
󵄨󵄨󵄨󵄨ℎℎ (𝑥 (𝑡𝑛)) − ℎ (𝑥 (𝑡𝑛))

󵄨󵄨󵄨󵄨 𝜆Δ
2
(1 + 𝜆Δ)

≤ 𝐿
󸀠
𝐵𝑀𝜆(1 +

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑛)
󵄨󵄨󵄨󵄨
2

)
1/2

Δ
2
(1 + 𝜆Δ) ;

󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(𝑔 (𝑥 (𝑡

𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
))

− 𝑔
ℎ
(𝑥 (𝑡
𝑛
)) + 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑍

𝑛
| F
𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
E [(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(𝑔 (𝑥 (𝑡

𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
))

− 𝑔
ℎ
(𝑥 (𝑡
𝑛
)) + 𝑔 (𝑥 (𝑡

𝑛
)))

× (Δ𝑊
𝑛
− Δ𝑍
1𝑘
(𝑡
𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

= 0.

(30)
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Therefore,

E [
󵄨󵄨󵄨󵄨󵄨
E [(𝑥
𝐵

𝑛+1
− 𝑥 (𝑡

𝑛+1
)) | F

𝑡𝑛
]
󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝑂 (Δ
4
) . (31)

On the other hand, since

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
Δ [(1 − 𝜃) 𝑓 (𝑥 (𝑡

𝑛
)) + 𝜃𝑓 (𝑥 (𝑡

𝑛+1
))]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
4
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
𝑔 (𝑥
𝑛
) Δ𝑊
𝑛

󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝑂 (Δ
3
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
𝑔 (𝑥 (𝑡

𝑛
)) 𝑔
󸀠
(𝑥 (𝑡
𝑛
)) [(Δ𝑊

𝑛
)
2

− Δ]
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(3ℎ (𝑥 (𝑡

𝑛
)) − ℎ

ℎ
(𝑥 (𝑡
𝑛
))) Δ𝑁

𝑛

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(𝑔
ℎ
(𝑥 (𝑡
𝑛
)) − 𝑔 (𝑥 (𝑡

𝑛
))) Δ𝑊

𝑛
Δ𝑁
𝑛

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
4
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(ℎ
ℎ
(𝑥 (𝑡
𝑛
)) − ℎ (𝑥 (𝑡

𝑛
))) (Δ𝑁

𝑛
)
2󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) ;

E [
󵄨󵄨󵄨󵄨󵄨
(𝐼 + 𝐶

𝑛
)
−1

𝐶
𝑛
(𝑔 (𝑥 (𝑡

𝑛
)) ℎ
󸀠
(𝑥 (𝑡
𝑛
)) − 𝑔

ℎ
(𝑥 (𝑡
𝑛
))

+ 𝑔 (𝑥 (𝑡
𝑛
))) (Δ𝑍

𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) ,

(32)

we have

E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝐵

𝑛+1
− 𝑥 (𝑡

𝑛+1
)
󵄨󵄨󵄨󵄨󵄨

2

]

≤ 2E [
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡
𝑛+1
) − 𝑥
𝜃

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

] + 2E [
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜃

𝑛+1
− 𝑥
𝐵

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝑂 (Δ
3
) .

(33)

Theorem 6. Under Assumptions 1 and 2, the balanced 𝜃-
Taylor method (4) is convergent with order 1 in the mean
square. That is, the global error satisfies

max
0≤𝑛≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜖
2

𝑛+1

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐻
6
Δ 𝑎𝑠 Δ 󳨀→ 0, (34)

where𝐻
6
is independent of Δ.

Proof. From the definitions of 𝛿
𝑛
and 𝜖
𝑛
, we have

𝜖
𝑛+1

= 𝜖
𝑛
+ 𝑃
𝑛
+ 𝛿
𝑛+1
, (35)

where

𝑃
𝑛
= 𝑢
𝑛
+ 𝐶 (𝑥 (𝑡

𝑛
)) (𝑥 (𝑡

𝑛
) − 𝑥
𝐵
(𝑡
𝑛+1
))

− 𝐶 (𝑥
𝑛
) (𝑥
𝑛
− 𝑥
𝑛+1
)

= 𝑢
𝑛
+ 𝐶 (𝑥 (𝑡

𝑛
)) (𝑥 (𝑡

𝑛
) − 𝑥
𝑛
)

− 𝐶 (𝑥 (𝑡
𝑛
)) (𝑥
𝐵
(𝑡
𝑛+1
) − 𝑥
𝑛+1
)

+ (𝐶 (𝑥 (𝑡
𝑛
)) − 𝐶 (𝑥

𝑛
)) (𝑥
𝑛
− 𝑥
𝑛+1
)

= 𝑢
𝑛
− 𝐶 (𝑥 (𝑡

𝑛
)) 𝑃
𝑛

+ (𝐶 (𝑥 (𝑡
𝑛
)) − 𝐶 (𝑥

𝑛
)) (𝑥
𝑛
− 𝑥
𝑛+1
)

= (𝐼 + 𝐶 (𝑥 (𝑡
𝑛
)))
−1

× [𝑢
𝑛
+ (𝐶 (𝑥 (𝑡

𝑛
)) − 𝐶 (𝑥

𝑛
)) (𝑥
𝑛
− 𝑥
𝑛+1
)] .

(36)

Thus, there exists a constant 𝐽
5
such that

E
󵄨󵄨󵄨󵄨𝑃𝑛
󵄨󵄨󵄨󵄨
2

≤ 2𝐵
2
E
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

+ 2𝐵
2
E
󵄨󵄨󵄨󵄨[(𝐶0 (𝑥 (𝑡𝑛)) − 𝐶0 (𝑥𝑛)) Δ

+ (𝐶
1
(𝑥 (𝑡
𝑛
)) − 𝐶

1
(𝑥
𝑛
)) ((Δ𝑊

𝑛
)
2

− Δ)] (𝑥
𝑛
− 𝑥
𝑛+1
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐵
2
E
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

+ 4𝐵
2
𝑀
2
Δ
2
E
󵄨󵄨󵄨󵄨(𝑥𝑛 − 𝑥𝑛+1)

󵄨󵄨󵄨󵄨
2

≤ 2𝐵
2
𝐽
1
ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 2𝐵
2
𝐿
2
Δ
2
𝜃
2
E
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

+ 𝐽
5
Δ
3

(37)

and there exists a constant 𝐽
6
such that

󵄨󵄨󵄨󵄨󵄨
E (𝑃
𝑛
| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
E ((𝐼 + 𝐶 (𝑥 (𝑡

𝑛
)))
−1

× [𝑢
𝑛
+ (𝐶 (𝑥 (𝑡

𝑛
)) − 𝐶 (𝑥

𝑛
))

× (𝑥
𝑛
− 𝑥
𝑛+1
)] | F

𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐵
2󵄨󵄨󵄨󵄨󵄨
E (𝑢
𝑛
| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

+ 2𝐵
2

×
󵄨󵄨󵄨󵄨󵄨
E ((𝐶 (𝑥 (𝑡

𝑛
)) − 𝐶 (𝑥

𝑛
)) (𝑥
𝑛
− 𝑥
𝑛+1
) | F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐵
2
(𝐽
2
Δ
2
E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 𝐿
2
Δ
2
𝜃
2
E (
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

| F
𝑡𝑛
))

+ 2𝐵
2
Δ
󵄨󵄨󵄨󵄨󵄨
E ((𝐶

0
(𝑥 (𝑡
𝑛
))− 𝐶

0
(𝑥
𝑛
)) (𝑥
𝑛
− 𝑥
𝑛+1
) | F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐵
2
𝐽
2
Δ
2
E
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 2𝐵
2
𝐿
2
Δ
2
𝜃
2
E (
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

| F
𝑡𝑛
) + 𝐽
6
Δ
4
.

(38)
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Thus,
󵄨󵄨󵄨󵄨E ⟨𝜖𝑛, 𝑃𝑛⟩

󵄨󵄨󵄨󵄨

≤ Δ
−1
(E
󵄨󵄨󵄨󵄨󵄨
E (𝑃
𝑛
| F
𝑡𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

) + ΔE
󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

≤ (1 + 2𝐵
2
𝐽
2
) ΔE

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 12𝐵
2
𝐿
2
𝜃
2
ΔE
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

+ 𝐽
6
Δ
3
.

(39)

FromTheorem 5, we have
󵄨󵄨󵄨󵄨E ⟨𝛿𝑛+1, 𝜖𝑛⟩

󵄨󵄨󵄨󵄨 ≤ 𝐻4Δ
3
+ ΔE

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

. (40)

Therefore,

E
󵄨󵄨󵄨󵄨𝜖𝑛+1

󵄨󵄨󵄨󵄨
2

≤ (1 + 𝐽
7
Δ)E

󵄨󵄨󵄨󵄨𝜖𝑛
󵄨󵄨󵄨󵄨
2

+ 2𝐵
2
𝐿
2
𝜃
2
Δ (Δ + 12)E

󵄨󵄨󵄨󵄨𝜖𝑛+1
󵄨󵄨󵄨󵄨
2

+ (𝐽
5
+ 𝐻
5
+ 2𝐻
4
+ 2𝐽
6
) Δ
3
,

(41)

where 𝐽
7
= 2(𝐵

2
𝐽
1
+ 2 + 2𝐵

2
𝐽
2
). Because Δ → 0, we can

assume 1 − 2𝐵2𝐿2𝜃2Δ(Δ + 12) > 0 without loss of generality.
Let 𝐽
8
= 𝐽
5
+ 𝐻
5
+ 2𝐻
4
+ 2𝐽
6
. Then,

E
󵄨󵄨󵄨󵄨󵄨
𝜖
𝑛+1
|
2
≤ (1 + 𝐽

7
Δ)E

󵄨󵄨󵄨󵄨󵄨
𝜖
𝑛
|
2
+ 𝐽
8
Δ
3

= 𝐽
8
Δ
2
(1 + 𝐽

7
Δ)
𝑛+1

− 1

𝐽
7

≤ 𝐽
9
Δ
2
,

(42)

where 𝐽
9
= 𝐽
8
((𝑒
𝐽7𝑇 − 1)/𝐽

7
).

4. Stability of the Implicit Taylor Methods

In this section, we will discuss the stability properties of the
numericalmethods introduced in Section 2. Consider a scalar
linear test equation,

d𝑥 (𝑡) = 𝑎𝑥 (𝑡) d𝑡 + 𝑏𝑥 (𝑡) d𝑊(𝑡) + 𝑐𝑥 (𝑡) d𝑁(𝑡) ,

𝑥 (𝑡
0
) = 𝑥
0
,

(43)

where 𝑎, 𝑏, and 𝑐 are real constants. The solution of (43) is
𝑥(𝑡) = 𝑥

0
𝑒
(𝑎−(1/2)𝑏

2
)𝑡+𝑏𝑊(𝑡)

(1 + 𝑐)
𝑁(𝑡) and is mean-square (MS)

stable if 2𝑎 + 𝑏2 + 𝜆𝑐(2 + 𝑐) < 0 [2].
The one-step scheme of the test equation (43) is

𝑥
𝑛+1

= 𝑅 (𝑎, 𝑏, 𝑐, Δ, Δ𝑊
𝑛
, Δ𝑁
𝑛
) 𝑥
𝑛
. (44)

The numerical method is MS-stable if

𝑅 (𝑎, 𝑏, 𝑐, Δ, 𝜆) = E (𝑅
2
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
)) < 1, (45)

where 𝑅(𝑎, 𝑏, 𝑐, Δ, 𝜆) is called theMS-stability function of the
numerical method.

If the Taylor method (2) is applied to the test equation
(43), we obtain

𝑥
𝑛+1

= 𝑅
1
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
) 𝑥
𝑛
, (46)

where

𝑅
1
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
)

= 1 + (𝑎 −
1

2
𝑏
2
)Δ + 𝑏Δ𝑊

𝑛
+
1

2
𝑏
2
(Δ𝑊
𝑛
)
2

+
1

2
(2𝑐 − 𝑐

2
) Δ𝑁
𝑛
+ 𝑏𝑐Δ𝑊

𝑛
Δ𝑁
𝑛

+
1

2
𝑐
2
(Δ𝑁
𝑛
)
2

.

(47)

Let 𝑝 = 𝑎Δ, 𝑞 = 𝑏√Δ, and 𝑧 = 𝑐𝜆Δ. Then the MS-stability
function of the Taylor method is

𝑅
1
(𝑝, 𝑞, 𝑧, 𝑐)

= E (𝑅2
1
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
))

= 1 + 2𝑝 + 𝑞
2
+ 𝑝
2
+
1

2
𝑝𝑞
2
+
1

2
𝑞
4

+ (2 + 𝑐 + 2𝑝 + 𝑐𝑞
2
+ 2𝑞
2
) 𝑧

+ (2 + 2𝑐 +
1

2
𝑐
2
+ 𝑞
2
+ 𝑝) 𝑧

2

+ (𝑐 + 1) 𝑧
3
+
1

4
𝑧
4
.

(48)

Thus, the strong Taylormethod (2) for the linear test equation
(43) is MS-stable if 𝑅

1
(𝑝, 𝑞, 𝑧, 𝑐) < 1.

Applying the 𝜃-Taylor method (3) to the test equation
(43), we obtain

𝑥
𝑛+1

= 𝑅
2
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
, 𝜃) 𝑥
𝑛
, (49)

where

𝑅
2
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
, 𝜃)

=
1

1 − 𝑎𝜃Δ
[1 + ((1 − 𝜃) 𝑎 −

1

2
𝑏
2
) Δ

+ 𝑏Δ𝑊
𝑛
+
1

2
𝑏
2
(Δ𝑊
𝑛
)
2

+
1

2
(2𝑐 − 𝑐

2
) Δ𝑁
𝑛

+ 𝑏𝑐Δ𝑊
𝑛
Δ𝑁
𝑛
+
1

2
𝑐
2
(Δ𝑁
𝑛
)
2

] .

(50)

Then the MS-stability function of the 𝜃-Taylor method is

𝑅
2
(𝑝, 𝑞, 𝑧, 𝑐, 𝜃)

=
1

(1 − 𝑝𝜃)
2
[𝑅
1
(𝑝, 𝑞, 𝑧, 𝑐)

− 2𝑝𝜃 + 𝑝
2
𝜃
2
− 2𝑝
2
𝜃

−2𝑝𝑧𝜃 − 𝑝𝑧
2
𝜃] .

(51)
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Thus, the 𝜃-Taylormethod (3) for the linear test equation (43)
is MS-stable if 𝑅

2
(𝑝, 𝑞, 𝑧, 𝑐) < 1.

Applying the balanced 𝜃-Taylor method (4) to the test
equation (43), we obtain

𝑥
𝑛+1

= 𝑅
3
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
) 𝑥
𝑛
, (52)

where
𝑅
3
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
)

= ((1 − 𝑎𝜃Δ) 𝐼 + 𝐶
𝑛
)
−1

× [1 + ((1 − 𝜃) 𝑎 −
1

2
𝑏
2
)Δ

+ 𝑏Δ𝑊
𝑛
+
1

2
𝑏
2
(Δ𝑊
𝑛
)
2

+
1

2
(2𝑐 − 𝑐

2
) Δ𝑁
𝑛

+ 𝑏𝑐Δ𝑊
𝑛
Δ𝑁
𝑛
+
1

2
𝑐
2
(Δ𝑁
𝑛
)
2

+ 𝐶
𝑛
] .

(53)

Since E(𝑅2
3
) is rather complex in the general case, we try

to investigate the stability of balanced 𝜃-method (4) for the
following two typical cases.

Case 1. Let 𝐶
0
= −𝑎 and 𝐶

1
= 0. Then, applying the balanced

𝜃-Taylor method (4) with 𝐶
𝑛
= −𝑎Δ to the test equation (43),

we obtain

𝑥
𝑛+1

= 𝑅
󸀠

3
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
) 𝑥
𝑛
, (54)

where
𝑅
󸀠

3
(𝑎, 𝑏, 𝑐, Δ, Δ𝑊

𝑛
, Δ𝑁
𝑛
)

= (1 − 𝑎 (1 + 𝜃) Δ)
−1
[1 − 𝑎𝜃Δ −

1

2
𝑏
2
Δ + 𝑏Δ𝑊

𝑛

+
1

2
𝑏
2
(Δ𝑊
𝑛
)
2

+
1

2
(2𝑐 − 𝑐

2
) Δ𝑁
𝑛

+ 𝑏𝑐Δ𝑊
𝑛
Δ𝑁
𝑛
+
1

2
𝑐
2
(Δ𝑁
𝑛
)
2

] .

(55)

Then the MS-stability function of the balanced 𝜃-Taylor
method (4) with 𝐶

𝑛
= −𝑎Δ is

𝑅
󸀠

3
(𝑝, 𝑞, 𝑧, 𝑐)

=
1

(1 − 𝑝 (1 + 𝜃))
2

× [1 + 𝑞
2
+
1

2
𝑝𝑞
2
+
1

2
𝑞
4
− 2𝑝𝜃 + 𝑝

2
𝜃
2

+ (2 + 𝑐 + 𝑐𝑞
2
+ 2𝑞
2
− 2𝑝𝜃) 𝑧

+ (2 + 2𝑐 +
1

2
𝑐
2
+ 𝑞
2
− 𝑝𝜃) 𝑧

2

+ (𝑐 + 1) 𝑧
3
+
1

4
𝑧
4
] .

(56)

Thus, the balanced 𝜃-Taylor method (4) with 𝐶
𝑛
= −𝑎Δ for

the linear test equation (43) is MS-stable if 𝑅󸀠
3
(𝑝, 𝑞, 𝑧, 𝑐) < 1.

Case 2. Let 𝐶
0
= −𝑎 and 𝐶

1
= 𝑏
2. Then, applying the

balanced 𝜃-Taylormethod (4)with𝐶
𝑛
= −𝑎Δ+𝑏

2
((Δ𝑊
𝑛
)
2
−Δ)

to the test equation (43), we have

𝑥
𝑛+1

= 𝑅
󸀠󸀠

3
(𝑝, 𝑞, 𝑐, 𝐽, Δ𝑁

𝑛
) 𝑥
𝑛
, (57)

where
𝑅
󸀠󸀠

3
(𝑝, 𝑞, 𝑐, 𝐽, Δ𝑁

𝑛
)

= (1 − 𝑝𝜃 + 𝑞
2
(𝐽
2
− 1))
−1

× [1 − 𝑝𝜃 −
3

2
𝑞
2
+ 𝑞𝐽 +

3

2
𝑞
2
𝐽
2

+
1

2
(2𝑐 − 𝑐

2
) Δ𝑁
𝑛
+ 𝑞𝑐𝐽Δ𝑁

𝑛

+
1

2
𝑐
2
(Δ𝑁
𝑛
)
2

]

(58)

and 𝐽 is the standard Gaussian random variable 𝐽 =

Δ𝑊
𝑛
/√Δ ∼ 𝑁(0, 1). Then the MS-stability function of the

balanced 𝜃-Taylormethod (5)with𝐶
𝑛
= −𝑎Δ+𝑏

2
((Δ𝑊
𝑛
)
2
−Δ)

is

𝑅
󸀠󸀠

3
(𝑝, 𝑞, 𝑧, 𝑐, 𝐽, Δ𝑁

𝑛
)

=
1

√2𝜋

+∞

∑

−∞

(𝜆Δ)
𝑚
𝑒
−𝜆Δ

𝑚!

× ∫

+∞

−∞

(𝑅
󸀠󸀠

3
(𝑝, 𝑞, 𝑐, 𝑥,𝑚))

2

𝑒
−(𝑥
2
/2)d𝑥.

(59)

Thus, the balanced 𝜃-Taylor method (4) with 𝐶
𝑛
= −𝑎Δ +

𝑏
2
((Δ𝑊
𝑛
)
2
− Δ) for the linear test equation (43) is MS-stable

if 𝑅󸀠󸀠
3
(𝑝, 𝑞, 𝑧, 𝑐) < 1.
For the case of 𝑐 = −1 and 𝑧 = −1, the MS-stable regions

of the numerical methods for the test equation are plotted
in Figures 1 and 2. Figure 1 shows the MS-stable regions of
Taylor method, the 𝜃-Taylor method, and the balanced 𝜃-
Taylor method with 𝐶

0
= −𝑎 and 𝐶

1
= 0 when 𝜃 = 1/2 and

𝜃 = 1. Figure 2 shows theMS-stable regions of Taylormethod,
the 𝜃-Taylor method, and the balanced 𝜃-Taylor method with
𝐶
0
= −𝑎 and 𝐶

1
= 𝑏
2 when 𝜃 = 1/4 and 𝜃 = 1/2. It should

be noted that the MS-stable regions are the areas below the
plotted curves and symmetric about the 𝑝-axis. From Figures
1 and 2, it is observed that the MS-stable regions of the 𝜃-
Taylor method and the balanced 𝜃-Taylor method increase
as the parameter 𝜃 increases. The MS-stable properties of
the 𝜃-Taylor method and the balanced 𝜃-Taylor method are
better than the Taylor method. Furthermore, the MS-stable
properties of the balanced 𝜃-Taylor method with 𝐶

0
= −𝑎

and 𝐶
1
= 0 are better than those of the 𝜃-Taylor method for

all 𝜃 ∈ [0, 1]. In addition, the MS-stable properties of the
balanced 𝜃-Taylor method with 𝐶

0
= −𝑎 and 𝐶

1
= 𝑏
2 are

better than those of the 𝜃-Taylor method when 𝜃 ≤ 1/4, and
the MS-stable properties of the 𝜃-Taylor method are better
than those of the balanced 𝜃-Taylor method with 𝐶

0
= −𝑎

and 𝐶
1
= 𝑏
2 when 𝜃 ≥ 1/2.
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Table 1: Mean of the absolute errors for different values of Δ and different methods.

Methods Δ 2
−8

2
−7

2
−6

2
−5

2
−4

2
−3

2
−2

2
−1

𝜃-Taylor
𝜃 = 0 0.0024 0.0048 0.0099 0.0186 0.0389 0.0911 0.6853 3.0473
𝜃 = 1/2 0.0022 0.0043 0.0090 0.0177 0.0368 0.0805 0.2548 0.7407
𝜃 = 1 0.0042 0.0083 0.0170 0.0342 0.0699 0.1454 0.3025 0.5568

Balanced
𝜃-Taylor

𝜃 = 0 0.0021 0.0041 0.0083 0.0152 0.0317 0.0665 0.3852 1.5570
𝜃 = 1/2 0.0076 0.0134 0.0223 0.0361 0.0619 0.1504 0.7024 3.1984
𝜃 = 1 0.0075 0.0132 0.0217 0.0347 0.0582 0.1360 0.6285 2.6648

q

p

𝜃-Taylor with 𝜃 = 1/2

𝜃-Taylor with 𝜃 = 1

Taylor

Balanced 𝜃-Taylor with 𝜃 = 1/2

Balanced 𝜃-Taylor with 𝜃 = 1

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
−2 −1.5 −1 −0.5 0

Figure 1: MS-stable regions of the 𝜃-Taylor methods and the
balanced 𝜃-Taylor method with 𝐶

0
= −𝑎 and 𝐶

1
= 0.

5. Numerical Examples

In this section, we conduct some simulation to demonstrate
the convergence of the proposed implicit Taylor numerical
solutions (3) and (4) for the equation system (43) with the
coefficients 𝑎 = −4, 𝑏 = 1, 𝑐 = −0.5 and the jump intensity
𝜆 = 2. We compare the explicit solutions with the numerical
approximations for the step-sizes Δ = 2

−1
, 2
−2
, . . . , 2

−8.
To measure the accuracy and convergence property of the
proposed methods, we compute mean of the absolute errors
as

𝑒 =
1

2000

2000

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑖)

𝑁
− 𝑥
(𝑖)
(𝑡
𝑁
)
󵄨󵄨󵄨󵄨󵄨
. (60)

In Table 1, we report the simulated errors of the 𝜃-Taylor
method and the balanced 𝜃-Taylor method with 𝐶

0
= 1

and 𝐶
1
= 1 for different values of 𝜃 and Δ. Note that the

Taylor method is a special case of the 𝜃-Taylor method with
𝜃 = 0. FromTable 1, we know that the accuracy of the 𝜃-Taylor
method with 𝜃 = 1/2 and the balanced 𝜃-Taylor method with
𝜃 = 0 is higher than that of the Taylor method. The accuracy
of the balanced 𝜃-Taylor method with 𝜃 = 0 is the highest
for Δ ≤ 2

−2. When 𝜃 ≥ 1/2, the accuracy of the 𝜃-Taylor

q

p

𝜃-Taylor with 𝜃 = 1/2

𝜃-Taylor with 𝜃 = 1/4

Taylor

Balanced 𝜃-Taylor with 𝜃 = 1/4

Balanced 𝜃-Taylor with 𝜃 = 1/2

2

1.8

1.6

1.4

1.2

1

0.8
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0.4

0.2

0
−6 −5 −4 −3 −2 −1 0

Figure 2: MS-stable regions of the 𝜃-Taylor methods and the
balanced 𝜃-Taylor method with 𝐶

0
= −𝑎 and 𝐶

1
= 𝑏
2.

method is higher than that of the balanced 𝜃-Taylor method
with 𝐶

0
= 1 and 𝐶

1
= 1.

6. Conclusions

In this paper, we introduce two kinds of the implicit methods,
the 𝜃-Taylor method and the balanced 𝜃-Taylor method, for
solving stochastic differential equations with Poisson jumps.
It is proved that the proposed numerical methods have a
strong convergence order of 1.0. Moreover, the MS-stable
regions of the proposed numerical methods are derived for
a linear scalar test equation and it is demonstrated that the
𝜃-Taylor method and the balanced 𝜃-Taylor method have
better stable properties than the Taylor method. As has
been confirmed by the theoretical and the numerical results,
the proposed numerical methods perform satisfactorily in
solving SDEJs.
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