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Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in
Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking
water in space and especially in time (highly seasonal, interannual variability) and the scarcity of water resources. The mobility is
the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models
for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order
to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region.These models in
some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals
as predators.These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of
forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks
in their trajectories.

1. Introduction

It is well known that pastoralism is the name given to the
subsistence practice in which people care for and domesticate
animals, usually ungulates such as camels, cattle, reindeer,
sheep, and goats [1].

Pastoralism will continue for the near future in poor
nations [2–4], especially in Africa, because it is gener-
ally an efficient, low energy requiring subsistence base for
semiarid regions. During the 20th century, however, most
national governments tried to force pastoralists to stop their
migrations and to reduce the size of their herds in order
to prevent overgrazing. These efforts at controlling them
were consistently resisted by pastoralists. They usually saw
large herds as symbols of wealth and as security against
unpredictable climates and periodic epidemics among their
animals [5].

Livestock in the Sahel is now basically a usurper such as
land use regarding the vegetation that grows there naturally.
The pastoral farming systems are those in which more than

90% of the dry matter consumed by livestock comes from
grazing.The researchers focus in this paper on these pastoral-
farming systems. The transition from one system to another
is periodic and depends on climate and economic context
[6]. Part of pastoral population in the rural population varies
greatly from country to country. Livestock numbers are not
knownwith precision, because large part of statistics does not
differentiate production systems. Based on national statistics,
thus including agricultural areas, small ruminants are the
most numerous, before cattle. Animal density can only be
determined on well-defined regions, for which there are the
number of both animals and areas used by livestock.The data
always differ by authors.

The pastoral system is moving towards a systems
approach mixed crop-livestock farming. This trend goes in
North Africa with the grazing of steppe. In the Sahel, the
environmental consequences are less obvious [2, 7, 8]. The
vast majority of feed consumed by ruminants in Sahelian
region is still formed by natural pastures. Savannas, steppes,
and training fallow provide the basis of livestock feed, even
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in sedentary farming or being intensified. It is important to
evaluate or to monitor their progress [1, 6].

There have beenmany problems about pastoral livelihood
vulnerability. The dry lands cannot support sustained and
reliable agriculture because of low and variable rainfall
and high temperatures. Pastoralism, however, is extremely
well suited to this type of environment. Pastoralists make
optimum use of the dry lands by practicing a mobile and
extensive livestock-keeping system. They move according to
where and when fodder becomes available and use different
herd management strategies such as herd splitting, herd
diversification, and herd maximization to ensure that they
spread the risk of livestock loss from droughts, diseases, and
theft. All the while, they make maximum use of the available
vegetation without degrading the environment [1].

Different explanations have been advanced for the
increasing vulnerability of pastoralists. Population growth in
pastoral areas has created pressure on land. Climate change
has increased the frequency of droughts, floods, and livestock
diseases. However, these natural factors only exacerbate
the effects of a harsh policy and legal environment that
is focused on “modernizing” and settling pastoralists. The
increased vulnerability of pastoral livelihoods to shocks and
other drivers of change are in many ways a function of the
cumulative effect of these policies [1].

Long-term sustainable pastoral development requires a
good knowledge of the dynamics of multiple factors under-
lining pastoralism and here research has a crucial role to play.
Alongside support to improve primary and secondary educa-
tion is the need to strengthen institutions of higher learning
and research in pastoral areas of Africa [5]. Such institutions
require support to conduct research on a range of political,
social, and natural science subjects and at levels, which range
from local adaptation to regional integration and global
trends. The links between research and policy also need to
be strengthened, so that policy responds to the dynamics of
pastoral livelihoods in an efficient manner [5]. This paper is
our contribution to this research in pastoral areas of Africa.

2. Model Construction

In Africa, the Sahel has a wet season (June to October) and a
dry season (November to May) which are very distinct, and
livestock is greatly influenced by the amount of grass and
shrubs. As we said previously, more than 90% of dry matter
consumed by livestock comes from grazing. Some problems
as overgrazing or scarcity of water are frequently observed.
These problems force some pastoralists to migrate with their
herd. According to these facts, the intrinsic production of
forage resources can be a negative number, even the intrinsic
disponibility of water resources. The intrinsic production 𝑟

of forage resources can be written as 𝑟 = 𝑟
0
− 𝑟
1
, where

𝑟
0
= 𝑟
01
𝑝+ 𝑟
02
as given in [8], 𝑝 denotes the precipitation, 𝑟

02

is the growth rate of the grasses and others without precip-
itation, and 𝑟

1
is the disappearing rate due to many reasons

(competition, respiration, and human harvesting) different
from herd’s nutrition. The particularity of this model, which
is the difference with classic predator-prey models in the
literature, is the fact that the intrinsic production rate can

be negative (𝑟 < 0). This situation is frequently observed
in Sub-Saharan Africa, particularly in Sahelian region when
precipitations are scarce. Intensification of this situation can
conduct pastoralists to migrate with their herds: this is the
transhumance. We also know [9] that tropical livestock unit
(TLU) is a basic criterion for a head of cattle weighing 250 kg.
The daily volume of consumption of dry matter per TLU
amounted to 6.5 kg. However, since this criterion varies,
there is obviously the case with differences depending on the
country, even within each country. The test described here is
also currently used officially by the Ministry of Agriculture
and Livestock in Niger [9].

Parameter 𝐾 denotes the maximal number of livestock
in this paper. When considering the question of the number
of livestock that can be raised on a given surface, it is first
important to know the amount of forage needed for livestock.
To calculate the volumeneeded to feed livestock,measured by
the volume of solids, the amount of assimilation of dry mate-
rials by livestock is generally estimated to be approximately
1.4% to 3.0% of the weight of livestock. In the Sahelian region,
by experience, the following values are generally used on the
basis of tropical livestock unit, in order to compute the daily
volume of required dry matter per head [9].

One cattle: 5.2 kg [6.5 kg (TLU) × 0.8 (index of the
considered space)]. Two goats and sheep: 1.0 kg [6.5 kg
(TLU) × 0.15 (index of the considered space)]. We can calcu-
late the number of heads that can be raised with the formula
below [9]. Rearing capacity = [(volume of feed supply of
natural grassland × utilization rate) divided by (daily volume
required per capita solids)] × number of days of reliance on
natural grassland.

Let us give some hypotheses concerning the models in
this paper.

(H1) The herds, forage, and water resources considered in
this paper are in the same area.

(H2) When the intrinsic production is nonnegative, if
feed resources are not consumed, they change their
amount to the maximal production capacity and
therefore storage. In this case the feed resources grow
logistically.When the intrinsic production is negative,
the feed resources will disappear at long time, and
this situation conducts pastoralists to migrate with
their herds: this corresponds to the transhumance
situation.

(H3) If the herd is helpless, its number of animals or
its tropical livestock unit (TLU) decreases and may
disappear if nothing is done.

(H4) Interactions between the herd and forage resources
are following the functional response of Michaelis-
Menten or Holling function response of type II.

(H5) Consumption of resources has an instant effect on the
reduction of forage resources and increased biomass
of the herd, in proportion to their consumption.

In the study of interactions between herds, forage, and
water resources, it is crucial to determine which specific
form of functional response, describing the amount of
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resources consumed by an animal in the herd per unit
time, is ecologically plausible and provides a solid basis for
theoretical development. As in [11–13], density dependence
of the resources will be the starting point, which gives a
functional response. In the simplest case, such a function is
a linear function of the forage resources density (𝑅), which is
integrated into the classic Lotka-Volterra model. The linear
functional response is a limited case and can only be seen
over a short period. But one can use the Michaelis-Menten
or Holling response function of type II defined by 𝜙(𝑅) =

(𝐵𝜔
0
𝑅/(1 + 𝐵𝜔

1
𝑅)), where 𝑅 denotes the forage resources

density, 𝜔
0
and 𝜔

1
denote, respectively, the time taken by a

herd’s animal to search and consume forage resources, and
𝐵 is the herd consumption rate per unit of time. With the
Holling function response of type II, it is well known that the
diminution of forage resources due to the herd consumption
increases and the forage density decreases and becomes
constant at the end. In the model formulated here, 𝛾 is the
removal rate from the herd (death, off take. . .); parameter 𝑒
denotes the conversion rate of the forage resources consumed
by the herd’s animals into their biomass. When there is no
herd, the dynamics of forage resources can be governed by
the logistic equation, but the intrinsic production can be
negative, such that (0,0) is a stable equilibrium. Setting 𝐻(𝑡)
as the tropical livestock unit of the herd at day 𝑡, the function
𝑔(𝑅,𝐻) = 𝐵𝜔

0
𝑅(𝑡)𝐻(𝑡)/(1 + 𝐵𝜔

1
𝑅(𝑡)) can also be written as

𝑔(𝑅,𝐻) = 𝑞𝑅(𝑡)𝐻(𝑡)/(1 + 𝑎𝑅(𝑡)), where 𝑞 = 𝐵𝜔
0
denotes

the utilization rate of forage resources and 𝑎 = 𝐵𝜔
1
denotes

the satiety rate of herd’s animals. The following differential
equations model interactions between forage resources and
animals of the herd:

𝑑𝑅 (𝑡)

𝑑𝑡

= (𝑟
01
𝑝 + 𝑟
02
− 𝑟
1
) (1 −

𝑅

𝐾

)𝑅 −

𝑞𝑅𝐻

1 + 𝑎𝑅

,

𝑑𝐻 (𝑡)

𝑑𝑡

= 𝑒

𝑞𝑅𝐻

1 + 𝑎𝑅

− 𝛾𝐻.

(1)

According to a study conducted by the Japan Green
Resources Corporation (JGRC) [9], in a region where the
average annual precipitation is 500–600mm, the volume
of dry matter production of grass per hectare in natural
grassland was in tons 1.54 in 1997, 1.6 in 1998, and 1.8 in
1999 (according to research conducted onmowing inOctober
each year). Among wild herbs growing in this region are the
grasses that cattle prefer, but they also appreciate the taste of
some legumes.

Until now, in many cases (excluding reservoir dams)
small artificial wells and natural ponds were used to supply
livestock with drinking water. In all these cases, the storage
capacity of water is low, and we find ourselves in a situation
of chronic lack of water during the dry season. In addition,
the storage capacity of water ponds in some places decreases
by the reduction of vegetation in the water accumulation
area and the influx of land in the ponds. There is sometimes
also conflict when cattle in two villages must share the same
drinking water source [9]. It is well known that it is not easy
to get water in Sahelian region. For sustainable use of water
sources that are ponds, it is also necessary to take a measure
of water conservation preventing the influx sand around

ponds. For example, one study of the Japan Green Resources
Corporation showed that establishment of lines of stones can
retain the sand and promote the restoration of wild vegeta-
tion. The earth is accumulating inside line of stones (the side
from which comes the influx); the storage capacity of water
becomes higher and ability to grow fodder crops and planting
fodder trees becomes larger.This allows obtaining fodder and
shade for livestock, and it becomes possible to revive the
natural clam that was impoverished around the pond, as a
grazing area including a watering place for the cattle [9].

The pool of Eda (which is straddled between the villages
of Magou and Eda in Niger) had long been used as a point
of watering the cattle moving to the Burkina Faso, but due
to the decrease in its subsequent storage capacity of water
to the influx of sand in the pool, it could not provide the
volume of water required to move livestock and livestock of
the two villages. But thanks to the digging of the pond and the
establishment of lines of stones (some with citizen participa-
tion), the revegetation of weeds is increasing, and livestock
numbers even greater than in the past are not gathering [10].

The variable𝐻(𝑡) is the tropical livestock unit of the herd
at time 𝑡, 𝑅(𝑡) is the forage resources density (kilograms of
dry matter per hectare) at time 𝑡, 𝑊(𝑡) denotes the water
resources at time 𝑡, 𝑚 is the removal rate from the herd,
𝑒
1
is the conversing rate of forage resources consumed into

herd biomass, and 𝑒
2
is the conversing rate of water resources

consumed into herd biomass; as previously, 𝑟
1
= 𝑟
1

01
𝑝 +

𝑟
1

02
− 𝑟
1

1
is the intrinsic production of forage resources and

𝑟
1
= 𝑟
2

01
𝑝 + 𝑟
2

02
− 𝑟
2

1
the intrinsic disponibility of water; 𝑝 is

the precipitation rate in the area; 𝐾
1
is the maximal capacity

of the considered area to support forage resources; 𝐾
2
is the

maximal capacity of the area to contain large quantity of
water; 𝑞

1
and 𝑞
2
are, respectively, the utilization rates of forage

and water resources.
Following [14, 15], we set 𝑞

𝑖
= (𝜔
0𝑖
/𝜔
1𝑖
) and 𝑎

𝑖
= (1/𝐵𝜔

1𝑖
).

The dynamical model for interactions between herds, forage
resources, and water is given by the following system of
differential equations:

𝑑𝑅

𝑑𝑡

= (𝑟
1

01
𝑝 + 𝑟
1

02
− 𝑟
1

1
) (1 −

𝑅

𝐾
1

)𝑅 −

𝑞
1
𝑅𝐻

𝑎
1
+ 𝑅

,

𝑑𝑊

𝑑𝑡

= (𝑟
2

01
𝑝 + 𝑟
2

02
− 𝑟
2

1
) (1 −

𝑊

𝐾
2

)𝑊 −

𝑞
2
𝑊𝐻

𝑎
2
+𝑊

,

𝑑𝐻

𝑑𝑡

= −𝑚𝐻 + 𝑒
1

𝑞
1
𝑅𝐻

𝑎
1
+ 𝑅

+ 𝑒
2

𝑞
2
𝑊𝐻

𝑎
2
+𝑊

.

(2)

We therefore have three trophic levels: one predator and
two preys. The intrinsic production rates 𝑟

1
and 𝑟
2
defined,

as previously, can be negative values. In the absence of forage
and water resources (𝑟

1
< 0 and 𝑟

2
< 0), the herd is doomed

if nothing is done. In this case, pastoralists will migrate with
their herds (transhumance). Its workforce decreases and goes
to extinction if nothing is done. But, in the absence of the
herd, forage resources are stored and accumulate until the
limit capacity when 𝑟

1
> 0; forage resources can disappear

when 𝑟
1
< 0. The water resources can accumulate to exceed

the carrying capacity, but it will very quickly go back to limit
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capacity when 𝑟
2
> 0; water resources can disappear when

𝑟
2
< 0.
Let us give now amathematical analysis of System (1) and

interpretations of the results in terms of pastoralism, using
the data [10].

3. Mathematical Results and Interpretations in
Sahelian Context

3.1. Results of System (1)

Lemma 1. The nonnegative orthant 𝐼𝑅2
+
is positively invariant

by the trajectories of System (1), and the set 𝐷 = {(𝑅,𝐻) ∈

𝐼𝑅
2

+
/𝑅 ≤ 𝐾} is a compact forward and absorbing set for System

(1).

Remark 2. This theorem confirms the fact that forage
resources quantity and the number of animals in the herd
are always nonnegative numbers, since their trajectories are
always in 𝐼𝑅

2

+
. Moreover, the forage resources quantity is

bounded.This is ecologically plausible since temperatures are
usually high and the stockage capacity is limited.

Lemma 3. The sign of the intrinsic production r has an
incidence on the dynamics of forage resources and then on the
dynamics of the herd’s animals.

(1) If 𝑟 > 0, then the forage resources converge to the
maximal number of livestock K for a long time.

(2) If 𝑟 < 0, then the forage resources will disappear for a
long time if nothing is done. This situation conducts to
the transhumance of pastoralists with their herds.

Lemma 4. Much equilibrium exists for System (1).

(1) Equilibrium 𝐸
0
= (0, 0) and equilibrium 𝐸

1
= (𝐾, 0)

exist without any condition.
(2) When 𝑟 > 0, 𝐸

2
= (𝑅

∗
, 𝐻
∗
) = (𝛾/(𝑒𝑞 − 𝑎𝛾);

(𝑟/𝑞)(1+𝑎𝑅
∗
)(1−(𝑅

∗
/𝐾))) is an ecologically acceptable

equilibrium if 𝑒𝑞 > 𝑎𝛾 and the threshold 𝑅
1

=

(𝑒𝑞𝐾/𝛾(1 + 𝑎𝐾)) is such that 𝑅
1
≥ 1. Therefore, with

these conditions satisfied, there are three equilibria for
System (1).

(3) When 𝑟 < 0, 𝐸
2

= (𝑅
∗
, 𝐻
∗
) = ((𝛾/(𝑒𝑞 −

𝑎𝛾)); (𝑟/𝑞)(1 + 𝑎𝑅
∗
)(1 − (𝑅

∗
/𝐾))) is an ecologically

acceptable equilibrium if 𝑒𝑞 > 𝑎𝛾 and the threshold
𝑅
1
= (𝑒𝑞𝐾/𝛾(1 + 𝑎𝐾)) is such that 𝑅

1
< 1. Therefore,

with these conditions satisfied, there are three equilibria
for System (1).

Theorem 5. The following properties hold concerning System
(1).

(1) The equilibrium 𝐸
0
is a saddle-node when 𝑟 > 0 and a

stable node when 𝑟 < 0.
(2) If 𝑟 > 0, 𝐸

1
is a globally asymptotically stable node

when 𝑅
1
< 1 and a saddle-node with stability for

forage resources and instability for herds when 𝑅
1
> 1.

If 𝑟 < 0, 𝐸
1
is a saddle-node when 𝑅

1
< 1 and a

locally unstable node when 𝑅
1
> 1. 𝐸

1
is a globally

asymptotically stable node when 𝑅
1
= 1. The centre

manifold in this case is given by 𝑊𝑐 = {𝑥 = ℎ(𝑦) :

ℎ(0) = 𝐾, ℎ
󸀠
(0) = 𝑎

1
}, where ℎ(𝑦) = 𝐾 + 𝑎

1
𝑦 + 𝑎
2
𝑦
2
+

𝑂(𝑦
3
), 𝑎
1
= −(𝑞𝐾/𝑟(1 + 𝑎𝐾)), 𝑎

2
= −(𝑎

2

1
(2𝑟𝑎 + ((𝑟 +

𝛾)/𝐾)) + 𝑞𝑎
1
/𝑟(1 + 𝑎𝐾)).

(3) The equilibrium 𝐸
2
is not ecologically acceptable when

𝑅
1
< 1. If 1 < 𝑅

1
≤ 1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)), then 𝐸

2
is

a globally asymptotically stable focus and when 𝑅
1
>

1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)), 𝐸
2
is an unstable focus and there

exists a limit cycle for System (1). This phenomenon
corresponds to supercritical Hopf bifurcation [16].

Remark 6. The stability of equilibrium 𝐸
0
= (0, 0)means that

there will be no more forage resources and no animal of the
herd in the considered area for a long moment. There can
be many explanations to this situation. Droughts can cause
animalsmortalities through starvation, emergency slaughter-
ing, and sales, or definitive herdsmigrations (transhumance),
which can create severe drops in the herd sizes. The Sahelian
region is particularly affected by such climate shocks [17].
Droughts can also cause forages’ disappearance, and then the
equilibrium 𝐸

0
is stable. When this removal concerns only

animals of the herd, depending on some climatic changes,
the forage resources growth towards the maximal quantity
needed for livestock and the equilibrium𝐸

1
= (𝐾, 0) is stable.

Concerning the coexisting equilibrium 𝐸
2
= (𝑅
∗
, 𝐻
∗
), there

is a Hopf bifurcation. The pastoral interpretation of Hopf
bifurcation is that animals in the herd will coexist with the
forage resources, exhibiting oscillatory balance behavior. We
have a peak for the herd trajectory, followed by a peak for
forage trajectory.

Theorem 7. Stability of 𝐸
1
and 𝐸

2

(1) If 1 < 𝑅
1
≤ 1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)), then 𝐸

2
is a globally

asymptotically stable focus when 𝑟 > 0 and an unstable
focus when 𝑟 < 0.

(2) If 𝑅
1
> 1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)), then 𝐸

2
is an unstable

focus when 𝑟 > 0 and a globally asymptotically stable
focus when 𝑟 < 0.

(3) If 𝑅
1
= 1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)), then 𝐸

2
is a center point,

with neutral stability.
(4) If 𝑅

1
< 1, then 𝐸

1
is a globally asymptotically stable

node when 𝑟 > 0.
(5) If 𝑅

1
> 1, then 𝐸

1
is an unstable saddle-node when

𝑟 > 0 and equilibrium 𝐸
2
exists.

(6) If 𝑅
1
= 1, then 𝐸

1
is a globally asymptotically stable

nodewhen 𝑟 > 0 and just a locally asymptotically stable
node when 𝑟 < 0.

Remark 8 (Hopf bifurcation). There is a limit cycle when
𝑅
1
passes through the value 1 + (𝑒𝑞/𝑎𝛾(1 + 𝑎𝐾)). This

phenomenon is known as Hopf bifurcation. Since the limit
cycle is stable, it is a supercritical Hopf bifurcation. The
pastoral interpretation of Hopf bifurcation as we said is that
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Table 1: Parameter values for transhumance in System (1).

Parameters Description Estimated value/range Reference
𝑟
01

Intrinsic production coefficient 10–20 kgDM/ha [9]
𝑟
02

Intrinsic production without precipitations 5–10 kgDM/ha [9]
𝑝 Precipitations 500–600mm/yr [9]
𝑟
1

Intrinsic disappearance of forage resources 90–120 kgDM/ha [9]
𝑒 Forage biomass conversion rate 0.015 per day [10]
𝑎 Herd’s satiety rate 0.01/ha [10]
𝐾 Maximal capacity of forage production 500–600 kgDM/ha [10]
𝑞 Utilization rate of forage resources 0.4 per day [9]
𝛾 Removal rate in the herd 1.0 per day [10]

Table 2: Parameter values for transhumance in System (2).

Parameters Description Estimated value/range Reference
𝑟
01

1 Intrinsic production of forage 10–20 kgDM/ha [9]
𝑟
01

2 Intrinsic production of water 700–800 kgDM/ha [9]
𝑟
02

1 Forage production without precipitations 5–10 kgDM/ha [9]
𝑟
02

2 Water production without precipitations 100–200mm/yr [9]
𝑝 Precipitations 500–600mm/yr [9]
𝑟
1

1 Intrinsic disappearance of forage resources 90–120 kgDM/ha [9]
𝑟
1

2 Intrinsic disappearance of water resources 150–250mm/yr [9]
𝑒
1

Forage biomass conversion rate 0.015 per day [10]
𝑒
2

Water biomass conversion rate 0.0154 per day [10]
𝑎
1

Herd’s satiety rate from forage 0.03/ha [10]
𝑎
2

Herd’s satiety rate from water 0.02/ha [10]
𝐾
1

Maximal capacity of forage production 7000–9000 kgDM/ha [10]
𝐾
2

Maximal capacity of water production 900mm/yr [10]
𝑞
1

Forage utilization rate 0.4 per day [9]
𝑞
2

Water utilization rate 0.6 per day [9]
𝑚 Herd’s removal rate 1 per day [10]

animals in the herd will coexist with the forage resources,
exhibiting oscillatory balance behavior.

This can be explained by the resilience of vegetation,
which means the ability of the ecosystem to withstand
unusual stress and recover spontaneously once they have
disappeared.Thus, an investigation in [18] showed that cereal
production in the Sahelwent fromadeficit of onemillion tons
in 1987 to surplus 1 million tons in 1988.

3.2. Results of System (2)

Lemma 9. The nonnegative orthant 𝐼𝑅2
+
is positively invariant

by the trajectories of System (2), and the set𝐷
2
= {(𝑅,𝑊,𝐻) ∈

𝐼𝑅
3

+
/𝑅 ≤ 𝐾

1
,𝑊 ≤ 𝐾

2
} is a compact forward and absorbing set

for System (2).

Remark 10. Any trajectory with initial condition in the
nonnegative orthant 𝐼𝑅3

+
is trapped and will stay inside.

The nonnegative orthant 𝐼𝑅3
+
is then positively invariant and

System (2) is mathematically well posed.We can then say that
System (2) is well posed, since forage resources 𝑅(𝑡), water

resources 𝑊(𝑡), and the tropical livestock unit of the herd
𝐻(𝑡) are always nonnegative quantities.

Theorem 11. Equilibria of System (2)
The equilibria 𝐸

10
= (0, 0, 0), 𝐸

11
= (𝐾

1
, 0, 0), 𝐸

12
=

(0, 𝐾
2
, 0), and 𝐸

13
= (𝐾
1
, 𝐾
2
, 0) of System (2) exist without

any condition, and

𝐸
2
= (𝑅
∗
,𝑊
∗
, 𝐻
∗
)

= (𝑅
∗
,

𝑚𝑎
1
𝑎
2
+ (𝑚𝑎

2
− 𝑒
1
𝑞
1
𝑎
2
) 𝑅
∗

(𝑒
2
𝑞
2
𝑎
1
− 𝑚𝑎
1
) + (𝑒
1
𝑞
1
+ 𝑒
2
𝑞
2
− 𝑚)𝑅

∗
,

𝑟
1

𝑞
1

(1 −

𝑅
∗

𝐾
1

))

(3)

is an ecologically acceptable equilibrium if 𝑅∗ is a nonnegative
value which satisfies equation

𝑐
0
(𝑅
∗
)
4
+ 𝑐
1
(𝑅
∗
)
3
+ 𝑐
2
(𝑅
∗
)
2
+ 𝑐
3
𝑅
∗
+ 𝑐
4
= 0, (4)

with 𝑅∗ > 𝐾
1
, 𝑊∗ > 𝐾

2
, and 𝑒

1
𝑞
1
< 𝑚 < 𝑒

2
𝑞
2
, and the

coefficients 𝑐
𝑖
are given in Appendix A.
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Figure 1: Phase portrait of the herd’s animals and forage resources
when r < 0. This illustrates the global stability of equilibrium 𝐸

0
=

(0, 0) for System (1). This is a new situation, which happens during
migration of pastoralists with their herds, calling transhumance; the
pastoralists leave the area because of scarcity of forage resources.The
parameters in this case are given in Table 1.

Proposition 12 (descartes criterion). The number of positive
real roots of the polynomial equation is less than or equal to
the number of changes in coefficient of ordered polynomial
coefficients, and these two numbers have the same parity.

Proposition 13 (descartes rule of signs-I). The number of
positive roots of the polynomial equation with real coefficients
does not exceed the number of sign changes in its coefficients. A
zero coefficient is not counted as a sign change.

Proposition 14 (descartes rule of signs-II). The number of
positive roots of the polynomial equation with real coefficients
does not exceed the number of sign changes in its coefficients
and differs from it by a multiple of two. A zero coefficient is not
counted as a sign change.

Using Descartes criterion and Descartes’ rule of signs, the
number of positive real roots of the polynomial equation given
by (3) depends on the number of sign changes in its coefficients
(𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
).

Theorem 15. Stability of equilibria

(1) The equilibrium 𝐸
10
= (0, 0, 0) is a locally asymptoti-

cally stable node if 𝑟
1
< 0 and 𝑟

2
< 0. 𝐸

10
is a saddle-

node if 𝑟
1
< 0 and 𝑟

2
> 0 or 𝑟

1
> 0 and 𝑟

2
< 0.

(2) The equilibrium 𝐸
11
= (𝐾
1
, 0, 0) is a locally asymptot-

ically stable node if 𝑟
1
> 0, 𝑟

2
< 0, and 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+

𝐾
1
)) < 𝑚.

(3) The equilibrium 𝐸
12
= (0, 𝐾

2
, 0) is a locally asymptot-

ically stable node if 𝑟
1
< 0, 𝑟

2
> 0, and 𝑒

2
(𝑞
2
𝐾
2
/(𝑎
2
+

𝐾
2
)) < 𝑚.
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Figure 2: Phase portrait of System (1). Illustration of the local
asymptotic stability of equilibrium 𝐸

0
= (0, 0) and equilibrium

𝐸
1
= (𝐾, 0). These situations happen during transhumance; the

pastoralists leave the area because of scarcity of forage resources
or some local conditions. The rest of parameters in this case are
given in Table 1, with 𝑟

01
= 200 kgDM/ha, 𝑟

02
= 55 kgDM/ha,

𝑟
1
= 80 kgDM/ha, and 𝐾 = 30 kgDM/ha such that 𝑟 > 0.

(4) Theequilibrium𝐸
13
= (𝐾
1
, 𝐾
2
, 0) is a locally asymptot-

ically stable node if 𝑟
1
> 0, 𝑟

2
> 0, and 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+

𝐾
1
)) + 𝑒
2
(𝑞
2
𝐾
2
/(𝑎
2
+ 𝐾
2
)) < 𝑚. 𝐸

13
is a saddle-node

if one or two of the three conditions are not satisfied
and an unstable node if the three conditions are not
satisfied.

(5) The coexisting equilibrium 𝐸
2

= (𝑅
∗
,𝑊
∗
, 𝐻
∗
) of

System (2), given as previously by

𝐸
2
= (𝑅
∗
,𝑊
∗
, 𝐻
∗
)

= (𝑅
∗
,

𝑚𝑎
1
𝑎
2
+ (𝑚𝑎

2
− 𝑒
1
𝑞
1
𝑎
2
) 𝑅
∗

(𝑒
2
𝑞
2
𝑎
1
− 𝑚𝑎
1
) + (𝑒
1
𝑞
1
+ 𝑒
2
𝑞
2
− 𝑚)𝑅

∗
,

𝑟
1

𝑞
1

(1 −

𝑅
∗

𝐾
1

))

(5)

when it exists, can be locally asymptotically stable if the Routh-
Hurwitz conditions

𝐻
1
= V
1
> 0,

𝐻
2
= V
1
V
2
− V
3
> 0,

𝐻
3
= V
3
> 0

(6)

are satisfied, where V
1
, V
2
, and V

3
are given as in the proof in

Appendix B. Moreover, the system exhibits periodic oscillations
with alternative peaks of forage, water, and the herd trajecto-
ries.

Remark 16. It is difficult for cattle to adequately live in
Sahelian region when forage resources or water resources
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Figure 3: Chronological evolution and phase portrait of the herd individuals and forage resources of System (1) when 𝑟
01
= 200 kgDM/ha,

𝑟
02
= 55 kgDM/ha, 𝑟

1
= 80 kgDM/ha, 𝐾 = 30–600 kgDM/ha, 𝑒 = 0.05/day, 𝑎 = 0.013/ha, 𝑞 = 0.4/day, and 𝛾 = 0.07/day. Global stability of

equilibrium 𝐸
1
= (𝐾, 0) for System (1). This illustrates the case when pastoralists decide to migrate for reasons different from unavailability

of forage resources.

have dried up completely.When at least one of two completely
lacks resources, pastoralists can be forced to migrate with
livestock in order to avoid disaster. In addition, feed resources
and water resources are often somewhat related since the
fresh leaves have water content of about 80%. Transhumance
can therefore take place when one of the two resources has
failed to herd and in this case, pastoralists migrate while
the second resource is available in the area. The stability
of 𝐸
10
, 𝐸
11
, 𝐸
12
, and 𝐸

13
characterizes these situations. In

usual predator-prey models, it is virtually impossible to
have stability for 𝐸

10
, 𝐸
11
, and 𝐸

12
, becausestability of 𝐸

10
,

for example,means thatthe entire population will disappear,
which is not the main objective when coupling preys and

predators. However, this is easily explained in pastoralism as
it corresponds to transhumance.

4. Numerical Simulations and Interpretations

The parameters values come from [9, 10] and references
therein, and we use the same method as in [9] to compute
some parameters values. Let us recall these formulas, in order
to have the livestock capacity in natural grassland.

(1) Assuming that the production volume of fresh grasses
is 8000 kg/ha, the estimated water contained in fresh
grasses is around 80% (thismeans 20% of drymatter).
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Figure 4: Chronological evolution of the herd’s animals and forage resources of System (1) when 𝑟 = 500 kgDM/ha, 𝑒 = 0.05/day, 𝑎 =

0.013/ha, 𝐾 = 10–40 kgDM/ha, 𝑞 = 0.4/day, and 𝛾 = 0.07/day. Stability of the coexisting equilibrium 𝐸
2
= (𝑅
∗
, 𝐻
∗
).
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Figure 5: Phase portrait of the herd’s animals and forage resources of System (1) when 𝑟 = 500 kgDM/ha, 𝑒 = 0.05/day, 𝑎 = 0.013/ha,
𝐾 = 8–30 kgDM/ha, 𝑞 = 0.4/day, and 𝛾 = 0.07/day. Illustration of the stability of the unique coexisting equilibrium 𝐸

2
= (𝑅
∗
, 𝐻
∗
) for four

initial conditions.

(2) The dry matter (DM) obtained for the livestock is
5.2 kg/day for cattle and 1 kg/day for goats and sheep.

The production volume of the forage resources with 40%
as utilization rate can then be computed:

8000 kg/ha × 0.2 × 0.4 = 640 kgDM/ha.
Thenumber of animalswhich is possible in pasture is then

given by
640 kgDM/ha: (5.2 kgDM × 365 days) = 0.34 head/ha
for cattle,

640 kgDM/ha: (1.0 kgDM × 365 days) = 1.75 head/ha
for goats and sheep.

We also have in Tables 1 and 2 the parameters values
obtained in [9, 10], which correspond to the situation where
the intrinsic production 𝑟 = 𝑟

01
𝑝 + 𝑟
02
− 𝑟
1
is negative. This

means that, at this moment, the removal quantity of forage
resources, which is due to competition or which is used to
feed the livestock, is greater than the intrinsic production.
This situation can force pastoralists to leave the area and
migrate elsewhere in order to feed their herds.
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Figure 6: Phase portrait of the herd’s animals and forage resources
of System (1) when 𝑟 = 500 kgDM/ha, 𝑒 = 0.05/day, 𝑎 = 0.013/ha,
𝐾 = 8–30 kgDM/ha, 𝑞 = 0.4/day, and 𝛾 = 0.07/day. Illustration of
the stability of the unique coexisting equilibrium 𝐸

2
= (𝑅
∗
, 𝐻
∗
) for

four initial conditions.
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Figure 7: Chronological evolution of the herd’s animals and forage
resources of System (1) when 𝑟 = 650 kgDM/ha, 𝑒 = 0.05/day,
𝑎 = 0.013/ha,𝐾 = 800 kgDM/ha, 𝑞 = 0.4/day, and 𝛾 = 1.0/day.This
illustrates the global stability of the unique coexisting equilibrium
𝐸
2
= (𝑅

∗
, 𝐻
∗
). This means that the herd’s animals and forage

resources have periodic curves since there is a stable limit cycle.The
two populations can exist together.

Figure 1 illustrates global stability of equilibrium (0, 0).
Figure 2 illustrates coexistence and local stability of equilibria
(0, 0) and (𝐾, 0). Figure 3 illustrates the global asymptotic
stability of equilibrium (𝐾, 0). Figures 4 and 5 illustrate the
global asymptotic stability of equilibrium 𝐸

2
= (𝑅
∗
, 𝐻
∗
).

Figures 6, 7, and 8 illustrate existence of periodic solutions
and then Hopf bifurcation with a stable limit cycle.
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Figure 8: Phase portrait for illustration of a stable limit cycle around
coexisting equilibrium of System (1) for 𝐸

2
= (𝑅

∗
, 𝐻
∗
) for 𝑟 =

700 kgDM/ha, 𝑒 = 0.05/day, 𝑎 = 0.013/ha, 𝐾 = 960 kgDM/ha,
𝑞 = 0.4/day, and 𝛾 = 1.0/day.Thismeans that there is a supercritical
Hopf bifurcation.
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Figure 9: Phase portrait corresponding to the disappearing of forage
resources and water resources and removal of the pastoralists with
their herds for System (2).We can observe here the global asymptotic
stability of 𝐸

10
= (0, 0, 0) when 𝑟

1
= −0.4 < 0 and 𝑟

2
= −60 < 0. The

rest of parameters are in Tables 1 and 2.

Figure 9 illustrates the global asymptotic stability of
equilibrium (0, 0, 0). Figure 10 illustrates the local stability
of equilibria 𝐸

10
, 𝐸
11
, and 𝐸

12
. Figure 11 illustrates existence

of periodic solutions with alternative peaks of trajectories.
Figure 12 illustrates the global stability of equilibrium 𝐸

13
=

(𝐾
1
, 𝐾
2
, 0).
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Figure 10: Phase portrait of System (2) showing the coexistence of 𝐸
10
, 𝐸
11
, 𝐸
12
. Equilibria 𝐸

11
and 𝐸

12
correspond to the removal of the

pastoralists with their herd and persistence of forage or water resources. We can observe here the local asymptotic stability of 𝐸
11
= (𝐾
1
, 0, 0),

𝐸
12
= (0, 𝐾

2
, 0), and 𝐸

10
= (0, 0, 0) when 𝑟

1
= 400 kgDM/ha and 𝑝 = 3000mm.The rest of parameters are in Tables 1 and 2.
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Figure 11: Illustration of periodicity of the trajectories at equilib-
rium 𝐸

2
= (𝑅

∗
,𝑊
∗
, 𝐻
∗
) for System (2). Alternative peaks are

observed between the trajectories of the flock, feed resources, and
water resources when 𝑟

1
= 800 kgDM/ha, 𝑟

2
= 700 kgDM/ha,

𝑝 = 600mm, 𝐾
1
= 1000 kgDM/ha, and 𝐾

2
= 900 kgDM/ha. The

rest of parameters are in Tables 1 and 2.

5. Conclusion

A mathematical model for pastoralism has been considered
in order to explain and predict some situations in Sahelian
region. This is one of the first deterministic models of pas-
toralism analyzed with interpretations. The results obtained
in this paper have been simulated with the data in [9, 10]
and confirm many observations throughout pastoralism’s
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Figure 12: (a) Chronological evolution of herd’s animals, forage,
and water resources of System (2). We observe the global stability
of equilibrium 𝐸

13
= (𝐾

1
, 𝐾
2
, 0) when 𝑟

1
= 200 kgDM/ha, 𝑟

2
=

300 kgDM/ha, 𝑝 = 600mm, 𝐾
1

= 800 kgDM/ha, and 𝐾
2

=

900 kgDM/ha. (b) Phase portrait of System (2) showing the local
stability of equilibria𝐸

11
and𝐸

12
.The rest of parameters are in Tables

1 and 2.

literature concerning interactions of forage resources and
herds. At the end of this first part, we can say that since
forage resources can be also considered sometimes as water
resources, it will be better for us to add in the previous
equations of System (1) another equation in order to take into
account the water resources.

The statistics show the importance of livestock to the
national economy in tropical arid countries. Two opposing
trends develop: the continued contribution of livestock in
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national economy and the growing risk of deterioration of
pastoral resource savings.

Sustainable pastoral resource management, equitable and
secured access to pastoral resources, and peace and security
which are always the aims of framework policy are also the
guidelines of our contribution to pastoralism by mathemati-
cal models.Thus, it is necessary that these issues be addressed
through a comprehensive pastoral policy, which confers full
political, social, economic, and environmental benefits to the
pastoral communities. The deterministic models proposed
and analyzed in this paper are firstly to participate to these
efforts. Although considerable efforts with some positive
results are being made throughout Africa, a great deal more
still needs to be done. This calls for both commitments
from individual countries and cooperation at the regional
and continental levels. We think that mathematical models
can considerably contribute to increasing comprehension
of pastoralism and therefore increase the quality of life of
pastoralists. The models considered in this paper exhibit
periodic oscillations when some conditions are satisfied. The
comprehension of conditions to have periodic oscillations
and then coexistence of herds, forage, and water resources
can help pastoralists to better understand their environment.
With this coexistence, there are alternative peaks of livestock
tropical unit, forage resources, and water resources. This
means that when these conditions are satisfied, pastoralists
can live in some areas without transhumance, with disponi-
bility of forage and water resources.

Appendices

A. Expression of coefficients in Theorem 11

The points 𝐸
10
, 𝐸
11
, 𝐸
12
, and 𝐸

13
are obviously equilibria of

System (2) without any condition.The coexisting equilibrium
is given by the system

𝐻
∗
=

𝑟
1

𝑞
1

(1 −

𝑅
∗

𝐾
1

) (𝑎
1
+ 𝑅
∗
) =

𝑟
2

𝑞
2

(1 −

𝑊
∗

𝐾
2

) (𝑎
2
+𝑊
∗
) ,

𝑟
1

𝑞
1

(1 −

𝑅
∗

𝐾
1

) (𝑎
1
+ 𝑅
∗
) =

𝑟
2

𝑞
2

(1 −

𝑊
∗

𝐾
2

) (𝑎
2
+𝑊
∗
) ,

𝑒
1
𝑞
1

𝑅
∗

𝑎
1
+ 𝑅
∗
+ 𝑒
2
𝑞
2

𝑊
∗

𝑎
2
+𝑊
∗
= 𝑚.

(A.1)

The third equation implies

𝑊
∗
=

𝑚𝑎
1
𝑎
2
+ (𝑚𝑎

2
− 𝑒
1
𝑞
1
𝑎
2
) 𝑅
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(𝑒
2
𝑞
2
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1
𝑞
1
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2
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∗
. (A.2)

The expressions of𝐻∗ and𝑊∗ are positives if𝑅∗ > 𝐾
1
,𝑊∗ >

𝐾
2
, and 𝑒

1
𝑞
1
< 𝑚 < 𝑒

2
𝑞
2
. In order to give the expression of

𝑅
∗, let us consider the second equation of the system
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+
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(A.3)

Then, setting 𝛾
1
= 𝑚𝑎

2
− 𝑒
1
𝑞
1
𝑎
2
, 𝛾
2
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− 𝑚𝑎
1
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− 𝑚, the previous equation finally becomes
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3
(𝑅
∗
)
2
+

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

2

− 𝑎
1
𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

2
𝑅
∗
− 2𝑎
1
𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2
𝛾
3
(𝑅
∗
)
2

− 𝑎
1
𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

3
(𝑅
∗
)
3
− 𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

2
(𝑅
∗
)
2

+ 2

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2
𝛾
3
𝑅
∗
+

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

3
(𝑅
∗
)
3

− 2𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2
𝛾
3
(𝑅
∗
)
3
− 𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

3
(𝑅
∗
)
4

= 𝑎
2
𝐾
2
𝑟
2
𝛾
2

2
+ 2𝑎
2
𝐾
2
𝑟
2
𝛾
2
𝛾
3
𝑅
∗
+ 𝑎
2
𝐾
2
𝑟
2
𝛾
2

3
(𝑅
∗
)
2

+ 𝑚𝑎
1
𝑎
2
𝛾
2
(𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
)

+ (𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
) (𝑚𝑎
1
𝑎
2
𝛾
3
+ 𝛾
1
𝛾
2
) 𝑅
∗

× 𝛾
1
𝛾
3
(𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
) (𝑅
∗
)
2
− 𝑟
2
(𝑚𝑎
1
𝑎
2
)
2

− 2𝑟
2
𝑚𝑎
1
𝑎
2
𝛾
1
𝑅
∗
− 𝑟
2
𝛾
2

1
(𝑅
∗
)
2
.

(A.4)

This polynomial can be written in the following form:

𝑐
0
(𝑅
∗
)
4
+ 𝑐
1
(𝑅
∗
)
3
+ 𝑐
2
(𝑅
∗
)
2
+ 𝑐
3
𝑅
∗
+ 𝑐
4
= 0, (A.5)

where

𝑐
0
= 𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

3
> 0,

𝑐
1
= 2𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2
𝛾
3
+

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

3
(

𝑎
1

𝐾
1

− 1) ,

𝑐
2
= − 𝑎

1

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

3
+ 2𝑎
1
𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2
𝛾
3
+ 𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

2

+ 𝑎
2
𝐾
2
𝑟
2
𝛾
2

3
+ 𝛾
1
𝛾
2
(𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
) − 𝑟
2
𝛾
2

1
,

𝑐
3
= − 2𝑎

1

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2
𝛾
3
− 2

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2
𝛾
3

+ 𝑎
1
𝑟
1

𝐾
2
𝑞
2

𝐾
1
𝑞
1

𝛾
2

2
+ 2𝑎
2
𝐾
2
𝑟
2
𝛾
2
𝛾
3

+ (𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
) (𝑚𝑎
1
𝑎
2
𝛾
3
+ 𝛾
1
𝛾
2
) − 𝑟
2
(𝑚𝑎
1
𝑎
2
)
2

− 2𝑟
2
𝑚𝑎
1
𝑎
2
𝛾
1
,

𝑐
4
= − 𝑎

1

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

2
−

𝑟
1

𝑞
1

𝐾
2
𝑞
2
𝛾
2

2
+ 𝑎
2
𝐾
2
𝑟
2
𝛾
2

2

+ 𝑚𝑎
1
𝑎
2
𝛾
2
(𝐾
2
𝑟
2
− 𝑎
2
𝑟
2
) .

(A.6)



12 Abstract and Applied Analysis

B. Proof of Theorem Theorem 15

(1)At equilibrium 𝐸
10
, the eigenvalues of the Jacobianmatrix

are 𝜆
1
= 𝑟
1
, 𝜆
2
= 𝑟
2
, and 𝜆

3
= −𝑚. Then, 𝐸

10
is a locally

asymptotically stable node if 𝑟
1
< 0 and 𝑟

2
< 0.

(2) At equilibrium 𝐸
11
, the eigenvalues of the Jacobian

matrix are 𝜆
1
= −𝑟
1
, 𝜆
2
= 𝑟
2
, and 𝜆

3
= −𝑚 + 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+

𝐾
1
)).Then,𝐸

11
is a locally asymptotically stable node if 𝑟

1
> 0,

𝑟
2
< 0, and 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+ 𝐾
1
)) < 𝑚.

(3) At equilibrium 𝐸
12
, the eigenvalues of the Jacobian

matrix are 𝜆
1
= −𝑟
1
, 𝜆
2
= 𝑟
2
, and 𝜆

3
= −𝑚 + 𝑒

2
(𝑞
2
𝐾
2
/(𝑎
2
+

𝐾
2
)).Then,𝐸

12
is a locally asymptotically stable node if 𝑟

1
> 0,

𝑟
2
< 0, and 𝑒

2
(𝑞
2
𝐾
2
/(𝑎
2
+ 𝐾
2
)) < 𝑚.

(4) At equilibrium 𝐸
13
, the eigenvalues of the Jacobian

matrix are 𝜆
1
= −𝑟
1
, 𝜆
2
= −𝑟
2
, and 𝜆

3
= −𝑚 + 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+

𝐾
1
))+𝑒
2
(𝑞
2
𝐾
2
/(𝑎
2
+𝐾
2
)).Then,𝐸

13
is a locally asymptotically

stable node if 𝑟
1
> 0, 𝑟

2
> 0, and 𝑒

1
(𝑞
1
𝐾
1
/(𝑎
1
+ 𝐾
1
)) +

𝑒
2
(𝑞
2
𝐾
2
/(𝑎
2
+ 𝐾
2
)) < 𝑚. The herd will disappear, and forage

resources and water resources will go to the maximal storage
capacity.

(5) At equilibrium (𝑅
∗
,𝑊
∗
, 𝐻
∗
), using the relations in

System (2) gives the Jacobian matrix

𝐽 (𝑅
∗
,𝑊
∗
, 𝐻
∗
) =

(

(

(

(

−

𝑟
1

𝑞
1

𝑅
∗
+

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

0 −

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

0 −

𝑟
2

𝑞
2

𝑊
∗
+

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

−

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑒
1

𝑞
1
𝐻
∗

𝑎
1
+ 𝑅
∗
− 𝑒
1

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2
𝑒
2

𝑞
2
𝐻
∗

𝑎
2
+𝑊
∗
− 𝑒
2

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

0

)

)

)

)

. (B.1)

The characteristic polynomial is in the form

𝑝 (𝜆) = 𝜆
3
+ V
1
𝜆
2
+ V
2
𝜆 + V
3
= 0, (B.2)

where

V
1
=

𝑟
2

𝐾
2

𝑊
∗
−

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2
+

𝑟
1

𝐾
1

𝑅
∗
−

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2
,

V
2
=

𝑟
1

𝐾
1

𝑅
∗ 𝑟2

𝐾
2

𝑊
∗
−

𝑟
2

𝐾
2

𝑊
∗ 𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2
−

𝑟
1

𝐾
1

𝑅
∗ 𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

−

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑟
1

𝐾
1

𝑅
∗ 𝑒2

𝑞
2
𝐻
∗

𝑎
2
+𝑊
∗

+

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑟
1

𝐾
1

𝑅
∗ 𝑒2

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

+

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

𝑒
2
𝑞
2
𝐻
∗

𝑎
2
+𝑊
∗

−

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑒
2
𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

+

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑟
2

𝐾
2

𝑊
∗ 𝑞1

𝐻
∗

𝑎
1
+ 𝑅
∗

−

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑟
2

𝐾
2

𝑊
∗ 𝑒1

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

−

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑒
1
𝑞
1
𝐻
∗

𝑎
1
+ 𝑅
∗

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

+

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑒
1
𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2
,

V
3
=

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑟
1

𝐾
1

𝑅
∗ 𝑒2

𝑞
2
𝐻
∗

𝑎
2
+𝑊
∗
−

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑟
1

𝐾
1

𝑅
∗ 𝑒2

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

−

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

𝑒
2
𝑞
2
𝐻
∗

𝑎
2
+𝑊
∗

+

𝑞
2
𝑊
∗

𝑎
2
+𝑊
∗

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

𝑒
2
𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

+

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑟
2

𝐾
2

𝑊
∗ 𝑒1

𝑞
1
𝐻
∗

𝑎
1
+ 𝑅
∗
−

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑟
2

𝐾
2

𝑊
∗ 𝑒1

𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

−

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑒
1
𝑞
1
𝐻
∗

𝑎
1
+ 𝑅
∗

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2

+

𝑞
1
𝑅
∗

𝑎
1
+ 𝑅
∗

𝑒
1
𝑞
1
𝑅
∗
𝐻
∗

(𝑎
1
+ 𝑅
∗
)
2

𝑞
2
𝑊
∗
𝐻
∗

(𝑎
2
+𝑊
∗
)
2
.

(B.3)

The Routh-Hurwitz conditions for stability of this equi-
librium are

𝐻
1
= V
1
> 0,

𝐻
2
= V
1
V
2
− V
3
> 0,

𝐻
3
= V
3
> 0.

(B.4)
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When these conditions are satisfied, a coexisting equi-
librium when it exists is locally asymptotically stable and
globally asymptotically stable if there is a unique coexisting
equilibrium.This ends the proof.
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