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Theobjective of this paper is to present a numerical iterativemethod for solving systems of first-order ordinary differential equations
subject to periodic boundary conditions.This iterative technique is based on the use of the reproducing kernelHilbert spacemethod
in which every function satisfies the periodic boundary conditions. The present method is accurate, needs less effort to achieve the
results, and is especially developed for nonlinear case. Furthermore, the present method enables us to approximate the solutions
and their derivatives at every point of the range of integration. Indeed, three numerical examples are provided to illustrate the
effectiveness of the present method. Results obtained show that the numerical scheme is very effective and convenient for solving
systems of first-order ordinary differential equations with periodic boundary conditions.

1. Introduction

Systems of ordinary differential equations with periodic
boundary value conditions, the so-called periodic boundary
value problems (BVPs), are well known for their applications
in sciences and engineering [1–5]. In this paper, we focus
on finding approximate solutions to systems of first-order
periodic BVPs, which are a combination of systems of first-
order ordinary differential equations and periodic boundary
conditions. In fact, accurate and fast numerical solutions of
systems of first-order periodic BVPs are of great importance
due to their wide applications in scientific and engineering
research.

Numericalmethods are becomingmore andmore impor-
tant in mathematical and engineering applications, simply
not only because of the difficulties encountered in finding
exact analytical solutions but also because of the ease with
which numerical techniques can be used in conjunction
with modern high-speed digital computers. A numerical
procedure for solving systems of first-order periodic BVPs

based on the use of reproducing kernel Hilbert space (RKHS)
method is discussed in this work.

Among a substantial number of works dealing with
systems of first-order periodic BVPs, we mention [6–10].
The existence of solutions to systems of first-order periodic
BVPs has been discussed as described in [6]. In [7], the
authors have discussed some existence anduniqueness results
of periodic solutions for first-order periodic differential
systems. Also, in [8] the authors have provided the existence,
multiplicity, and nonexistence of positive periodic solutions
for systems of first-order periodic BVPs. Furthermore, the
existence of periodic solutions for the coupled first-order
differential systems of Hamiltonian type is carried out in [9].
Recently, the existence of positive solutions for systems of
first-order periodic BVPs is proposed in [10]. Formore results
on the solvability analysis of solutions for systems of first-
order periodic BVPs, we refer the reader to [11–15], and for
numerical solvability of different categories of BVPs, one can
consult [16–19].
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Investigation about systems of first-order periodic BVPs
numerically is scarce. In this paper, we utilize a methodical
way to solve these types of differential systems. In fact,
we provide criteria for finding the approximate and exact
solutions to the following system:
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reproducing kernel spaces. Here, we assume that (1) subject
to the periodic boundary conditions (2) has a unique solution
on [0, 1].

Reproducing kernel theory has important applications in
numerical analysis, differential equations, integral equations,
probability and statistics, and so forth [20–22]. In the last
years, extensive work has been done using RKHS method
which provides numerical approximations for linear and
nonlinear equations. This method has been implemented in
several operator, differential, integral, and integrodifferential
equations side by side with their theories. The reader is
kindly requested to go through [23–35] in order to know
more details about RKHS method, including its history, its
modification for use, its applications, and its characteristics.

The rest of the paper is organized as follows. In the next
section, two reproducing kernel spaces are described in order
to formulate the reproducing kernel functions. In Section 3,
some essential results are introduced and a method for the
existence of solutions for (1) and (2) is described. In Section 4,
we give an iterative method to solve (1) and (2) numerically.
Numerical examples are presented in Section 5. Section 6
ends this paper with brief conclusions.

2. Construct of Reproducing Kernel Functions

In this section, two reproducing kernels needed are con-
structed in order to solve (1) and (2) using RKHS method.
Before the construction, we utilize the reproducing kernel
concept. Throughout this paper, C is the set of complex
numbers, 𝐿2[𝑎, 𝑏] = {𝑢 | ∫
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Definition 1 (see [23]). Let 𝐸 be a nonempty abstract set. A
function𝑅 : 𝐸×𝐸 → C is a reproducing kernel of theHilbert
space𝐻 if

(1) for each 𝑥 ∈ 𝐸, 𝑅(⋅, 𝑥) ∈ 𝐻,
(2) for each 𝑥 ∈ 𝐸 and 𝜑 ∈ 𝐻, ⟨𝜑(⋅), 𝑅(⋅, 𝑥)⟩ = 𝜑(𝑥).

Remark 2. Condition (2) in Definition 1 is called “the repro-
ducing property,” which means that the value of the function
𝜑 at the point 𝑥 is reproducing by the inner product of 𝜑(⋅)
with 𝑅(⋅, 𝑥). A Hilbert space which possesses a reproducing
kernel is called a RKHS.

To solve (1) and (2) using RKHS method, we first define
and construct a reproducing kernel space 𝑊
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An important subset of the RKHSs is the RKHSs asso-
ciated with continuous kernel functions. These spaces have
wide applications, including complex analysis, harmonic
analysis, quantum mechanics, statistics, and machine learn-
ing.
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where 𝑝
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Reproducing kernel functions possess some important
properties such as being symmetric, unique, and nonnega-
tive. The reader is asked to refer to [23–35] in order to know
more details about reproducing kernel functions, including
their mathematical and geometrical properties, their types
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a bounded linear operator from the space 𝑊
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𝑖
(𝑥)}
∞

𝑖=1
of the

space 𝑊
2

2
[0, 1], it can be derived from the Gram-Schmidt

orthogonalization process of {𝜓
𝑖
(𝑥)}
∞

𝑖=1
as follows:

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (10)

where 𝛽
𝑖𝑘
are orthogonalization coefficients and are given as

𝛽
𝑖𝑗
=

1

󵄩
󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

, for 𝑖 = 𝑗 = 1,

𝛽
𝑖𝑗
=

1

√
󵄩
󵄩
󵄩
󵄩
𝜓
𝑖

󵄩
󵄩
󵄩
󵄩

2

− ∑
𝑖−1

𝑘=1
(⟨𝜓
𝑖
, 𝜓
𝑘
⟩
𝑊
2

2

)

2

, for 𝑖 = 𝑗 ̸= 1,

𝛽
𝑖𝑗
= −

1

√
󵄩
󵄩
󵄩
󵄩
𝜓
𝑖

󵄩
󵄩
󵄩
󵄩

2

− ∑
𝑖−1

𝑘=1
(𝑐
𝑖𝑘
)
2

𝑖−1

∑

𝑘=𝑗

⟨𝜓
𝑖
, 𝜓
𝑘
⟩
𝑊
2

2

𝛽
𝑘𝑗
,

for 𝑖 > 𝑗.

(11)

Clearly, 𝜓
𝑖
(𝑥) = 𝐿

∗
𝜑
𝑖
(𝑥) = ⟨𝐿

∗
𝜑
𝑖
(𝑥), 𝑅

𝑥
(𝑦)⟩
𝑊
2

2

=

⟨𝜑
𝑖
(𝑥), 𝐿

𝑦
𝑅
𝑥
(𝑦)⟩
𝑊
1

2

= 𝐿
𝑦
𝑅
𝑥
(𝑦)|
𝑦=𝑥
𝑖

∈ 𝑊
2

2
[0, 1]. Thus, 𝜓

𝑖
(𝑥)

can be written in the form 𝜓
𝑖
(𝑥) = 𝐿

𝑦
𝑅
𝑥
(𝑦)|
𝑦=𝑥
𝑖

, where 𝐿
𝑦

indicates that the operator 𝐿 applies to the function of 𝑦.

Theorem 8. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1], then {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is a

complete function system of the space 𝑊2
2
[0, 1].

Proof. For each fixed 𝑢
𝑠
(𝑥) ∈ 𝑊

2

2
[0, 1], let ⟨𝑢

𝑠
(𝑥), 𝜓

𝑖
(𝑥)⟩
𝑊
2

2

=

0. In other words, one can write ⟨𝑢
𝑠
(𝑥), 𝜓

𝑖
(𝑥)⟩
𝑊
2

2

=

⟨𝑢
𝑠
(𝑥), 𝐿
∗
𝜑
𝑖
(𝑥)⟩
𝑊
2

2

= ⟨𝐿𝑢
𝑠
(𝑥), 𝜑
𝑖
(𝑥)⟩
𝑊
1

2

= 𝐿𝑢
𝑠
(𝑥
𝑖
) = 0. Note

that {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1]; therefore 𝐿𝑢

𝑠
(𝑥) = 0. It follows

that 𝑢
𝑠
(𝑥) = 0, 𝑠 = 1, 2, . . . , 𝑛, from the existence of 𝐿−1. So,

the proof of the theorem is complete.

Lemma 9. If 𝑢
𝑠
(𝑥) ∈ 𝑊

2

2
[0, 1], then there exist positive

constants 𝑀{𝑠} such that ‖𝑢(𝑖)
𝑠
(𝑥)‖
𝐶

≤ 𝑀
{𝑠}
‖𝑢
𝑠
(𝑥)‖
𝑊
2

2

, 𝑖 = 0, 1,
𝑠 = 1, 2, . . . , 𝑛, where ‖𝑢

𝑠
(𝑥)‖
𝐶
= max

0≤𝑥≤1
|𝑢
𝑠
(𝑥)|.

Proof. For any 𝑥, 𝑦 ∈ [0, 1], we have 𝑢
(𝑖)

𝑠
(𝑥) =

⟨𝑢
𝑠
(𝑦), 𝜕
𝑖

𝑥
𝑅
𝑥
(𝑦)⟩
𝑊
2

2

. By the expression form of the kernel
function 𝑅

𝑥
(𝑦), it follows that ‖𝜕

𝑖

𝑥
𝑅
𝑥
(𝑦)‖
𝑊
2

2

≤ 𝑀
{𝑠}

𝑖
. Thus,

|𝑢
(𝑖)

𝑠
(𝑥)| = |⟨𝑢

𝑠
(𝑥), 𝜕
𝑖

𝑥
𝑅
𝑥
(𝑥)⟩
𝑊
2

2

| ≤ ‖𝜕
𝑖

𝑥
𝑅
𝑥
(𝑥)‖
𝑊
2

2

‖𝑢
𝑠
(𝑥)‖
𝑊
2

2

≤

𝑀
{𝑠}

𝑖
‖𝑢
𝑠
(𝑥)‖
𝑊
2

2

. Hence, ‖𝑢(𝑖)
𝑠
(𝑥)‖
𝐶
≤ max

𝑖=0,1
{𝑀
{𝑠}

𝑖
}‖𝑢
𝑠
(𝑥)‖
𝑊
2

2

,
𝑖 = 0, 1, 𝑠 = 1, 2, . . . , 𝑛.

The internal structure of the following theorem is as
follows: firstly, we will give the representation form of the
exact solutions of (1) and (2) in the form of an infinite
series in the space 𝑊

2

2
[0, 1]. After that, the convergence of

approximate solutions 𝑢
𝑠,𝑚

(𝑥) to the exact solutions 𝑢
𝑠
(𝑥),

𝑠 = 1, 2, . . . , 𝑛, will be proved.

Theorem 10. For each 𝑢
𝑠
, 𝑠 = 1, 2, . . . , 𝑛 in the space𝑊2

2
[0, 1],

the series ∑∞
𝑖=1

⟨𝑢
𝑠
(𝑥), 𝜓

𝑖
(𝑥)⟩𝜓

𝑖
(𝑥) is convergent in the sense of

the norm of 𝑊2
2
[0, 1]. On the other hand, if {𝑥

𝑖
}
∞

𝑖=1
is dense on

[0, 1], then the following hold:

(i) the exact solutions of (9) could be represented by

𝑢
𝑠
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1
(𝑥
𝑘
) , 𝑢
2
(𝑥
𝑘
) , . . . , 𝑢

𝑛
(𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

(12)

(ii) the approximate solutions of (9)

𝑢
𝑠,𝑚

(𝑥)

=

𝑚

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1
(𝑥
𝑘
) , 𝑢
2
(𝑥
𝑘
) , . . . , 𝑢

𝑛
(𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

(13)

and 𝑢
(𝑖)

𝑠,𝑚
(𝑥), 𝑖 = 0, 1, are converging uniformly to the

exact solutions 𝑢
𝑠
(𝑥) and their derivatives as𝑚 → ∞,

respectively.

Proof. For the first part, let 𝑢
𝑠
(𝑥) be solutions of

(9) in the space 𝑊
2

2
[0, 1]. Since 𝑢

𝑠
(𝑥) ∈ 𝑊

2

2
[0, 1],

∑
∞

𝑖=1
⟨𝑢
𝑠
(𝑥), 𝜓

𝑖
(𝑥)⟩𝜓

𝑖
(𝑥) is the Fourier series expansion

about normal orthogonal system {𝜓
𝑖
(𝑥)}
∞

𝑖=1
, and 𝑊

2

2
[0, 1] is

the Hilbert space, then the series ∑
∞

𝑖=1
⟨𝑢
𝑠
(𝑥), 𝜓

𝑖
(𝑥)⟩𝜓

𝑖
(𝑥) is

convergent in the sense of ‖ ⋅ ‖
𝑊
2

2

. On the other hand, using
(10), it easy to see that

𝑢
𝑠
(𝑥) =

∞

∑

𝑖=1

⟨𝑢
𝑠
(𝑥) , 𝜓

𝑖
(𝑥)⟩
𝑊
2

2

𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢
𝑠
(𝑥) , 𝜓

𝑘
(𝑥)⟩
𝑊
2

2

𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢
𝑠
(𝑥) , 𝐿

∗
𝜑
𝑘
(𝑥)⟩
𝑊
2

2

𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿𝑢
𝑠
(𝑥) , 𝜑

𝑘
(𝑥)⟩
𝑊
1

2

𝜓
𝑖
(𝑥)
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=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐹
𝑠
(𝑥, 𝑢
1
(𝑥) , 𝑢

2
(𝑥) , . . . , 𝑢

𝑛
(𝑥)) ,

𝜑
𝑘
(𝑥)⟩
𝑊
1

2

𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1
(𝑥
𝑘
) , 𝑢
2
(𝑥
𝑘
) , . . . ,

𝑢
𝑛
(𝑥
𝑘
)) 𝜓
𝑖
(𝑥) .

(14)

Therefore, the form of (12) is the exact solutions of (9). For
the second part, it is easy to see that by Lemma 9, for any 𝑥 ∈

[0, 1],
󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
(𝑖)

𝑠,𝑚
(𝑥) − 𝑢

(𝑖)

𝑠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⟨𝑢
𝑠,𝑚

(𝑥) − 𝑢
𝑠
(𝑥) , 𝑅

(𝑖)

𝑥
(𝑥)⟩
𝑊
2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑖

𝑥
𝑅
𝑥
(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩𝑊
2

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑚

(𝑥) − 𝑢
𝑠
(𝑥)

󵄩
󵄩
󵄩
󵄩𝑊
2

2

≤ 𝑀
{𝑠}

𝑖

󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑚

(𝑥) − 𝑢
𝑠
(𝑥)

󵄩
󵄩
󵄩
󵄩𝑊
2

2

,

(15)

where 𝑖 = 0, 1 and 𝑀
{𝑠}

𝑖
are positive constants. Hence, if

‖𝑢
𝑠,𝑚

(𝑥) − 𝑢
𝑠
(𝑥)‖
𝑊
2

2

→ 0 as 𝑚 → ∞, the approximate
solutions 𝑢

𝑠,𝑚
(𝑥) and 𝑢

(𝑖)

𝑠,𝑚
(𝑥), 𝑖 = 0, 1, 𝑠 = 1, 2, . . . , 𝑛,

are converged uniformly to the exact solutions 𝑢
𝑠
(𝑥) and

their derivatives, respectively. So, the proof of the theorem is
complete.

We mention here that the approximate solutions 𝑢
𝑠,𝑚

(𝑥)

in (13) can be obtained directly by taking finitely many terms
in the series representation for 𝑢

𝑠
(𝑥) of (12).

4. Construction of Iterative Method

In this section, an iterative method of obtaining the solutions
of (1) and (2) is represented in the reproducing kernel
space 𝑊

2

2
[0, 1] for linear and nonlinear cases. Initially, we

will mention the following remark about the exact and
approximate solutions of (1) and (2).

In order to apply the RKHS technique to solve (1) and
(2), we have the following two cases based on the algebraic
structure of the function 𝐹

𝑠
, 𝑠 = 1, 2, . . . , 𝑛.

Case 1. If (1) is linear, then the exact and approximate solu-
tions can be obtained directly from (12) and (13), respectively.

Case 2. If (1) is nonlinear, then in this case the exact and
approximate solutions can be obtained by using the following
iterative algorithm.

Algorithm 11. According to (12), the representation form of
the solutions of (1) can be denoted by

𝑢
𝑠
(𝑥) =

∞

∑

𝑖=1

𝐵
{𝑠}

𝑖
𝜓
𝑖
(𝑥) , 𝑠 = 1, 2, . . . , 𝑛, (16)

where 𝐵
{𝑠}

𝑖
= ∑

𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1,𝑘−1

(𝑥
𝑘
), 𝑢
2,𝑘−1

(𝑥
𝑘
), . . .,

𝑢
𝑛,𝑘−1

(𝑥
𝑘
)). In fact, 𝐵

{𝑠}

𝑖
in (16) are unknown; one

will approximate 𝐵
{𝑠}

𝑖
using known 𝐴

{𝑠}

𝑖
. For numerical

computations, one defines the initial functions 𝑢
𝑠,0

(𝑥
1
) = 0,

put 𝑢
𝑠,0

(𝑥
1
) = 𝑢
𝑠
(𝑥
1
), and define the 𝑚-term approximations

to 𝑢
𝑠
(𝑥) by

𝑢
𝑠,𝑚

(𝑥) =

𝑚

∑

𝑖=1

𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥) , 𝑠 = 1, 2, . . . , 𝑛, (17)

where the coefficients 𝐴
{𝑠}

𝑖
of 𝜓
𝑖
(𝑥), 𝑖 = 1, 2, . . . , 𝑛, 𝑠 =

1, 2, . . . , 𝑛, are given as

𝐴
{𝑠}

1
= 𝛽
11
𝐹
𝑠
(𝑥
1
, 𝑢
1,0

(𝑥
1
) , 𝑢
2,0

(𝑥
1
) , . . . , 𝑢

𝑛,0
(𝑥
1
)) ,

𝑢
𝑠,1

(𝑥) = 𝐴
{𝑠}

1
𝜓
1
(𝑥) ,

𝐴
{𝑠}

2
=

2

∑

𝑘=1

𝛽
2𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1,𝑘−1

(𝑥
𝑘
) , 𝑢
2,𝑘−1

(𝑥
𝑘
) , . . . ,

𝑢
𝑛,𝑘−1

(𝑥
𝑘
)) ,

𝑢
𝑠,2

(𝑥) =

2

∑

𝑖=1

𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥) ,

...

𝐴
{𝑠}

𝑛
=

𝑚

∑

𝑘=1

𝛽
𝑚𝑘

𝐹
𝑠
(𝑥
𝑘
, 𝑢
1,𝑘−1

(𝑥
𝑘
) , 𝑢
2,𝑘−1

(𝑥
𝑘
) , . . . ,

𝑢
𝑛,𝑘−1

(𝑥
𝑘
)) ,

𝑢
𝑠,𝑚

(𝑥) =

𝑚−1

∑

𝑖=1

𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥) .

(18)

Here, we note that, in the iterative process of (17), we can
guarantee that the approximations𝑢

𝑠,𝑚
(𝑥) satisfy the periodic

boundary conditions (2). Now, the approximate solutions
𝑢
𝑀

𝑠,𝑚
(𝑥) can be obtained by taking finitely many terms in the

series representation of 𝑢
𝑠,𝑚

(𝑥) and

𝑢
𝑀

𝑠,𝑚
(𝑥)

=

𝑀

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1,𝑚−1

(𝑥
𝑘
) , 𝑢
2,𝑚−1

(𝑥
𝑘
) , . . . ,

𝑢
𝑛,𝑚−1

(𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

𝑠 = 1, 2, . . . , 𝑛.

(19)

Now, we will proof that 𝑢
𝑠,𝑚

(𝑥) in the iterative formula
(17) are converged to the exact solutions 𝑢

𝑠
(𝑥) of (1). In

fact, this result is a fundamental in the RKHS theory and its
applications. The next two lemmas are collected in order to
prove the prerecent theorem.

Lemma 12. If ‖𝑢
𝑠,𝑚

(𝑥) − 𝑢
𝑠
(𝑥)‖
𝑊
2

2

→ 0, 𝑥
𝑚

→ 𝑦 as
𝑚 → ∞, and 𝐹

𝑠
(𝑥, V
1
, V
2
, . . . , V

𝑛
) is continuous in [0, 1]
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with respect to 𝑥, V
𝑖
, for 𝑥 ∈ [0, 1] and V

𝑖
∈ (−∞,∞),

then 𝐹
𝑠
(𝑥
𝑚
, 𝑢
1,𝑚−1

(𝑥
𝑚
), 𝑢
2,𝑚−1

(𝑥
𝑚
), . . . , 𝑢

𝑛,𝑚−1
(𝑥
𝑚
)) →

𝐹
𝑠
(𝑦, 𝑢
1
(𝑦), 𝑢
2
(𝑦), . . . , 𝑢

𝑛
(𝑦)), 𝑠 = 1, 2, . . . , 𝑛 as 𝑚 → ∞.

Proof. Firstly, we will prove that 𝑢
𝑠,𝑚−1

(𝑥
𝑚
) → 𝑢

𝑠
(𝑦) in the

sense of ‖ ⋅ ‖
𝑊
2

2

. Since

󵄨
󵄨
󵄨
󵄨
𝑢
𝑠,𝑚−1

(𝑥
𝑚
) − 𝑢
𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑢
𝑠,𝑚−1

(𝑥
𝑚
) − 𝑢
𝑠,𝑚−1

(𝑦) + 𝑢
𝑠,𝑚−1

(𝑦) − 𝑢
𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑢
𝑠,𝑚−1

(𝑥
𝑚
) − 𝑢
𝑠,𝑚−1

(𝑦)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢
𝑠,𝑚−1

(𝑦) − 𝑢
𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨
.

(20)

By reproducing property of 𝑅
𝑥
(𝑦), we have 𝑢

𝑠,𝑚−1
(𝑥
𝑚
) =

⟨𝑢
𝑠,𝑚−1

(𝑥), 𝑅
𝑥
𝑚

(𝑥)⟩ and 𝑢
𝑠,𝑚−1

(𝑦) = ⟨𝑢
𝑠,𝑚−1

(𝑥), 𝑅
𝑦
(𝑥)⟩. Thus,

|𝑢
𝑠,𝑚−1

(𝑥
𝑚
) − 𝑢s,𝑚−1(𝑦)| = |⟨𝑢

𝑠,𝑚−1
(𝑥), 𝑅

𝑥
𝑚

(𝑥) − 𝑅
𝑦
(𝑥)⟩
𝑊
2

2

| ≤

‖𝑢
𝑠,𝑚−1

(𝑥)‖
𝑊
2

2

‖𝑅
𝑥
𝑚

(𝑥) − 𝑅
𝑦
(𝑥)‖
𝑊
2

2

. From the symmetry
of 𝑅
𝑥
(𝑦), it follows that ‖𝑅

𝑥
𝑚

(𝑥) − 𝑅
𝑦
(𝑥)‖
𝑊
2

2

→ 0 as
𝑚 → ∞. Hence, |𝑢

𝑠,𝑚−1
(𝑥
𝑚
) − 𝑢
𝑠,𝑚−1

(𝑦)| → 0 as soon
as 𝑥
𝑚

→ 𝑦. On the other hand, by Theorem 10 part (ii),
for any 𝑦 ∈ [0, 1], it holds that |𝑢

𝑠,𝑚−1
(𝑦) − 𝑢

𝑠
(𝑦)| → 0

as 𝑚 → ∞. Therefore, 𝑢
𝑠,𝑚−1

(𝑥
𝑚
) → 𝑢

𝑠
(𝑦) in the

sense of ‖ ⋅ ‖
𝑊
2

2

as 𝑥
𝑚

→ 𝑦 and 𝑚 → ∞. Thus,
by means of the continuation of 𝐹

𝑠
, it is obtained

that 𝐹
𝑠
(𝑥
𝑚
, 𝑢
1,𝑚−1

(𝑥
𝑚
), 𝑢
2,𝑚−1

(𝑥
𝑚
), . . . , 𝑢

𝑛,𝑚−1
(𝑥
𝑚
)) →

𝐹
𝑠
(𝑦, 𝑢
1
(𝑦), 𝑢
2
(𝑦), . . . , 𝑢

𝑛
(𝑦)), 𝑠 = 1, 2, . . . , 𝑛 as𝑚 → ∞.

Lemma 13. For 𝑗 ≤ 𝑚, one has 𝐿𝑢
𝑠,𝑚

(𝑥
𝑗
) = 𝐿𝑢

𝑠
(𝑥
𝑗
) =

𝐹
𝑠
(𝑥
𝑗
, 𝑢
1,𝑗−1

(𝑥
𝑗
), 𝑢
2,𝑗−1

(𝑥
𝑗
), . . . , 𝑢

𝑛,𝑗−1
(𝑥
𝑗
)), 𝑠 = 1, 2, . . . , 𝑛.

Proof. The proof of 𝐿𝑢
𝑠,𝑚

(𝑥
𝑗
) = 𝐹

𝑠
(𝑥
𝑗
, 𝑢
1,𝑗−1

(𝑥
𝑗
),

𝑢
2,𝑗−1

(𝑥
𝑗
), . . . , 𝑢

𝑛,𝑗−1
(𝑥
𝑗
)) will be obtained by induction

as follows: if 𝑗 ≤ 𝑚, then 𝐿𝑢
𝑠,𝑚

(𝑥
𝑗
) = ∑

𝑚

𝑖=1
𝐴
{𝑠}

𝑖
𝐿𝜓
𝑖
(𝑥
𝑗
) =

∑
𝑚

𝑖=1
𝐴
{𝑠}

𝑖
⟨𝐿𝜓
𝑖
(𝑥), 𝜑
𝑗
(𝑥)⟩
𝑊
1

2

= ∑
𝑚

𝑖=1
𝐴
{𝑠}

𝑖
⟨𝜓
𝑖
(𝑥), 𝐿
∗

𝑗
𝜑(𝑥)⟩

𝑊
2

2

= ∑
𝑚

𝑖=1
𝐴
{𝑠}

𝑖
⟨𝜓
𝑖
(𝑥), 𝜓

𝑗
(𝑥)⟩
𝑊
2

2

. Using the orthogonality of
{𝜓
𝑖
(𝑥)}
∞

𝑖=1
, it yields that

𝑗

∑

𝑙=1

𝛽
𝑗𝑙
𝐿𝑢
𝑠,𝑚

(𝑥
𝑙
)

=

𝑚

∑

𝑖=1

𝐴
{𝑠}

𝑖
⟨𝜓
𝑖
(𝑥) ,

𝑗

∑

𝑙=1

𝛽
𝑗𝑙
𝜓
𝑙
(𝑥)⟩

𝑊
2

2

=

𝑚

∑

𝑖=1

𝐴
{𝑠}

𝑖
⟨𝜓
𝑖
(𝑥) , 𝜓

𝑗
(𝑥)⟩
𝑊
2

2

= 𝐴
{𝑠}

𝑗

=

𝑗

∑

𝑙=1

𝛽
𝑗𝑙
𝐹
𝑠
(𝑥
𝑙
, 𝑢
1,𝑙−1

(𝑥
𝑙
) , 𝑢
2,𝑙−1

(𝑥
𝑙
) , . . . , 𝑢

𝑛,𝑙−1
(𝑥
𝑙
)) .

(21)

Now, if 𝑗 = 1, then 𝐿𝑢
𝑠,𝑚

(𝑥
1
) = 𝐹

𝑠
(𝑥
1
, 𝑢
1,0

(𝑥
1
), 𝑢
2,0

(𝑥
1
),

. . . , 𝑢
𝑛,0

(𝑥
1
)). Again, if 𝑗 = 2, then 𝛽

21
𝐿𝑢
𝑠,𝑚

(𝑥
1
) +

𝛽
22
𝐿𝑢
𝑠,𝑚

(𝑥
2
) = 𝛽

21
𝐹
𝑠
(𝑥
1
, 𝑢
1,0

(𝑥
1
), 𝑢
2,0

(𝑥
1
), . . . , 𝑢

𝑛,0
(𝑥
1
)) +

𝛽
22
𝐹
𝑠
(𝑥
2
, 𝑢
1,1

(𝑥
2
), 𝑢
2,1

(𝑥
2
), . . . , 𝑢

𝑛,1
(𝑥
2
)). Thus, 𝐿𝑢

𝑠,𝑚
(𝑥
2
) =

𝐹
𝑠
(𝑥
2
, 𝑢
1,1

(𝑥
2
), 𝑢
2,1

(𝑥
2
), . . . , 𝑢

𝑛,1
(𝑥
2
)). Indeed, it is easy to

see by using mathematical induction that 𝐿𝑢
𝑠,𝑚

(𝑥
𝑗
) =

𝐹
𝑠
(𝑥
𝑗
, 𝑢
1,𝑗−1

(𝑥
𝑗
), 𝑢
2,𝑗−1

(𝑥
𝑗
), . . . , 𝑢

𝑛,𝑗−1
(𝑥
𝑗
)), 𝑠 = 1, 2, . . . , 𝑛.

But on the other hand, from Theorem 10, 𝑢
𝑠,𝑚

(𝑥) converge
uniformly to 𝑢

𝑠
(𝑥). It follows that, on taking limits in (17),

𝑢
𝑠
(𝑥) = ∑

∞

𝑖=1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥). Therefore, 𝑢

𝑠,𝑚
(𝑥) = 𝑃

𝑚
𝑢
𝑠
(𝑥), where

𝑃
𝑚
is an orthogonal projector from the space𝑊2

2
[0, 1] to Span

{𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑚
}. Thus,

𝐿𝑢
𝑠,𝑚

(𝑥
𝑗
)

= ⟨𝐿𝑢
𝑠,𝑚

(𝑥) , 𝜑
𝑗
(𝑥)⟩
𝑊
1

2

= ⟨𝑢
𝑠,𝑚

(𝑥) , 𝐿
∗

𝑗
𝜑 (𝑥)⟩

𝑊
2

2

= ⟨𝑃
𝑚
𝑢
𝑠
(𝑥) , 𝜓

𝑗
(𝑥)⟩
𝑊
2

2

= ⟨𝑢
𝑠
(𝑥) , 𝑃

𝑚
𝜓
𝑗
(𝑥)⟩
𝑊
2

2

= ⟨𝑢
𝑠
(𝑥) , 𝜓

𝑗
(𝑥)⟩
𝑊
2

2

= ⟨𝐿𝑢
𝑠
(𝑥) , 𝜑

𝑗
(𝑥)⟩
𝑊
1

2

= 𝐿𝑢
𝑠
(𝑥
𝑗
) ,

(22)

as 𝑗 ≤ 𝑚 and 𝑠 = 1, 2, . . . , 𝑛.

Theorem 14. If ‖𝑢
𝑠,𝑚

‖
𝑊
2

2

is bounded and {𝑥
𝑖
}
∞

𝑖=1
is dense on

[0, 1], then the 𝑚-term approximate solutions 𝑢
𝑠,𝑚

(𝑥) in the
iterative formula (17) converge to the exact solutions 𝑢

𝑠
(𝑥) of

(9) in the space 𝑊
2

2
[0, 1] and 𝑢

𝑠
(𝑥) = ∑

∞

𝑖=1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥), 𝑠 =

1, 2, . . . , 𝑛, where 𝐴{𝑠}
𝑖
is given by (18).

Proof. The proof consists of the following three steps.
Firstly, we will prove that the sequence {𝑢

𝑠,𝑚
}
∞

𝑚=1
in (17) is

monotone increasing in the sense of ‖ ⋅ ‖
𝑊
2

2

. By Theorem 8,
{𝜓
𝑖
}
∞

𝑖=1
is the complete orthonormal system in the space

𝑊
2

2
[0, 1]. Hence, we have ‖𝑢

𝑠,𝑚
‖
2

𝑊
2

2

= ⟨𝑢
𝑠,𝑚

(𝑥), 𝑢
𝑠,𝑚

(𝑥)⟩
𝑊
2

2

=

⟨∑
𝑚

𝑖=1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥), ∑

𝑚

𝑖=1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥)⟩
𝑊
2

2

= ∑
𝑚

𝑖=1
(𝐴
{𝑠}

𝑖
)

2

. Therefore,
‖𝑢
𝑠,𝑚

‖
𝑊
2

2

, 𝑠 = 1, 2, . . . , 𝑛, is monotone increasing. Sec-
ondly, we will prove the convergence of 𝑢

𝑠,𝑚
(𝑥). From (17),

we have 𝑢
𝑠,𝑚+1

(𝑥) = 𝑢
𝑠,𝑚

(𝑥) + 𝐴
{𝑠}

𝑚+1
𝜓
𝑚+1

(𝑥). From the
orthogonality of {𝜓

𝑖
(𝑥)}
∞

𝑖=1
, it follows that ‖𝑢

𝑠,𝑚+1
‖
2

𝑊
2

2

=

‖𝑢
𝑠,𝑚

‖
2

𝑊
2

2

+ (𝐴
{𝑠}

𝑚+1
)
2

= ‖𝑢
𝑠,𝑚−1

‖
2

𝑊
2

2

+ (𝐴
{𝑠}

𝑚
)
2
+ (𝐴
{𝑠}

𝑚+1
)
2

=

⋅ ⋅ ⋅ = ‖𝑢
𝑠,0

‖
2

𝑊
2

2

+ ∑
𝑚+1

𝑖=1
(𝐴
{𝑠}

𝑖
)
2. Since, the sequence {𝑢

𝑠,𝑚
}
∞

𝑚=1

is monotone increasing in the sense of ‖ ⋅ ‖
𝑊
2

2

. Due to
the condition that ‖𝑢

𝑠,𝑚
‖
𝑊
2

2

is bounded, ‖𝑢
𝑠,𝑚

‖
𝑊
2

2

is con-
vergent as 𝑚 → ∞. Then, there exist constants 𝑐

{𝑠}

such that ∑
∞

𝑖=1
(𝐴
{𝑠}

𝑖
)
2

= 𝑐
{𝑠}. It implies that 𝐴

{𝑠}

𝑖
=

∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹
𝑠
(𝑥
𝑘
, 𝑢
1,𝑘−1

(𝑥
𝑘
), 𝑢
2,𝑘−1

(𝑥
𝑘
), . . . , 𝑢

𝑛,𝑘−1
(𝑥
𝑘
)) ∈ 𝑙

2, 𝑖 =

1, 2, . . .. On the other hand, since (𝑢
𝑠,𝑚

− 𝑢
𝑠,𝑚−1

) ⊥ (𝑢
𝑠,𝑚−1

−

𝑢
𝑠,𝑚−2

) ⊥ ⋅ ⋅ ⋅ ⊥ (𝑢
𝑠,𝑚+1

− 𝑢
𝑠,𝑚

) it follows for 𝑙 > 𝑚 that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑙
(𝑥) − 𝑢

𝑠,𝑚
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

𝑊
2

2

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑙

(𝑥) − 𝑢
𝑠,𝑙−1

(𝑥) + 𝑢
𝑠,𝑙−1

(𝑥) − ⋅ ⋅ ⋅

+𝑢
𝑠,𝑙+1

(𝑥) − 𝑢
𝑠,𝑚

(𝑥)
󵄩
󵄩
󵄩
󵄩

2

𝑊
2

2

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑙

(𝑥) − 𝑢
𝑠,𝑙−1

(𝑥)
󵄩
󵄩
󵄩
󵄩

2

𝑊
2

2

+ ⋅ ⋅ ⋅

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑠,𝑙+1

(𝑥) − 𝑢
𝑠,𝑚

(𝑥)
󵄩
󵄩
󵄩
󵄩

2

𝑊
2

2

.

(23)
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Furthermore, ‖𝑢
𝑠,𝑙
(𝑥) − 𝑢

𝑠,𝑙−1
(𝑥)‖
2

𝑊
2

2

= (𝐴
{𝑠}

𝑙
)
2. Conse-

quently, as 𝑙, 𝑚 → ∞, we have ‖𝑢
𝑠,𝑙
(𝑥) − 𝑢

𝑠,𝑚
(𝑥)‖
2

𝑊
2

2

=

∑
𝑙

𝑖=𝑚+1
(𝐴
{𝑠}

𝑖
)
2

→ 0. Considering the completeness of
𝑊
2

2
[0, 1], there exists 𝑢

𝑠
(𝑥) ∈ 𝑊

2

2
[0, 1] such that 𝑢

𝑠,𝑙
(𝑥) →

𝑢
𝑠
(𝑥), 𝑠 = 1, 2, . . . , 𝑛 as 𝑙 → ∞ in the sense of

‖ ⋅ ‖
𝑊
2

2

. Thirdly, we will prove that 𝑢
𝑠
(𝑥) are the solutions

of (9). Since {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1], for any 𝑥 ∈ [0, 1],

there exists subsequence {𝑥
𝑚
𝑗

}
∞

𝑗=1

, such that 𝑥
𝑚
𝑗

→ 𝑥 as
𝑗 → ∞. From Lemma 13, it is clear that 𝐿𝑢

𝑠
(𝑥
𝑚
𝑗

) =

𝐹
𝑠
(𝑥
𝑚
𝑗

, 𝑢
1,𝑚
𝑗
−1
(𝑥
𝑘
), 𝑢
2,𝑚
𝑗
−1
(𝑥
𝑘
), . . . , 𝑢

𝑛,𝑚
𝑗
−1
(𝑥
𝑘
)). Hence, let

𝑗 → ∞; by Lemma 12 and the continuity of 𝐹
𝑠
, we have

𝐿𝑢
𝑠
(𝑥) = 𝐹

𝑠
(𝑥, 𝑢
1
(𝑥), 𝑢
2
(𝑥), . . . , 𝑢

𝑛
(𝑥)). That is, 𝑢

𝑠
(𝑥) satisfies

(1). Also, since 𝜓
𝑖
(𝑥) ∈ 𝑊

2

2
[0, 1], clearly, 𝑢

𝑠
(𝑥) satisfies the

periodic boundary conditions (2). In other words, 𝑢
𝑠
(𝑥) are

the solutions of (1) and (2), where 𝑢
𝑠
(𝑥) = ∑

∞

𝑖=1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥) and

𝐴
{s}
𝑖
are given by (18). The proof is complete.

According to the internal structure of the presentmethod,
it is obvious that if we let 𝑢

𝑠
(𝑥) denote the exact solutions

of (9), 𝑢
𝑠,𝑚

(𝑥) denote the approximate solutions obtained by
the RKHS method as given by (17), and 𝑟

{𝑠}

𝑚
(𝑥) denote the

difference between 𝑢
𝑠,𝑚

(𝑥) and 𝑢
𝑠
(𝑥), where 𝑥 ∈ [0, 1] and

𝑠 = 1, 2, . . . , 𝑛, then ‖𝑟
{𝑠}

𝑚
(𝑥)‖

2

𝑊
2

2

= ‖𝑢
𝑠
(𝑥) − 𝑢

𝑠,𝑚
(𝑥)‖
2

𝑊
2

2

=

‖∑
∞

𝑖=𝑚+1
𝐴
{𝑠}

𝑖
𝜓
𝑖
(𝑥)‖

2

𝑊
2

2

= ∑
∞

𝑖=𝑚+1
(𝐴
{𝑠}

𝑖
)

2

and ‖𝑟
{𝑠}

𝑚−1
(𝑥)‖

2

𝑊
2

2

=

∑
∞

𝑖=𝑚
(𝐴
{𝑠}

𝑖
)

2

or ‖𝑟{𝑠}
𝑚

(𝑥)‖
𝑊
2

2

≤ ‖𝑟
{𝑠}

𝑚−1
(𝑥)‖
𝑊
2

2

. Consequently, this
shows the following theorem.

Theorem 15. The difference 𝑟
{𝑠}

𝑚
(𝑥), 𝑠 = 1, 2, . . . , 𝑛, is mono-

tone decreasing in the sense of the norm of 𝑊2
2
[0, 1].

5. Numerical Examples

In this section, the theoretical results of the previous sections
are illustrated bymeans of some numerical examples in order
to illustrate the performance of the RKHSmethod for solving
systems of first-order periodic BVPs and justify the accuracy
and efficiency of the method. To do so, we consider the
following three nonlinear examples. These examples have
been solved by the presented method with different values
of 𝑚 and 𝑀. Results obtained by the method are compared
with the exact solution of each example by computing the
absolute and relative errors and are found to be in good
agreement with each other. In the process of computation, all
experiments were performed inMAPLE 13 software package.

Example 1. Consider the following first-order nonlinear dif-
ferential system:

𝑢
󸀠

1
(𝑥) − 𝑢

1
(𝑥) + (𝑢

2
(𝑥))
3

= 𝑓
1
(𝑥) ,

𝑢
󸀠

2
(𝑥) − sinh (𝑢

1
(𝑥)) 𝑢

2
(𝑥) = 𝑓

2
(𝑥) ,

𝑓
1
(𝑥) = (𝑥 − 1) (cos𝑥 − sin𝑥) + sin𝑥 + 𝑒

3𝑥(𝑥−1)
,

𝑓
2
(𝑥) = (sinh (sin (𝑥) (1 − 𝑥)) + 2𝑥 − 1) 𝑒

𝑥(𝑥−1)
,

(24)

subject to the periodic boundary conditions

𝑢
1
(0) = 𝑢

1
(1) ,

𝑢
2
(0) = 𝑢

2
(1) .

(25)

The exact solutions are 𝑢
1
(𝑥) = (𝑥 − 1) sin(𝑥) and 𝑢

2
(𝑥) =

𝑒
𝑥(𝑥−1).

Using RKHS method, take 𝑥
𝑖

= (𝑖 − 1)/(𝑀 − 1), 𝑖 =

1, 2, . . . ,𝑀, on [0, 1]. The numerical results at some selected
grid points for 𝑀 = 101 and 𝑚 = 3 are given in Tables 1 and
2 for the dependent variables 𝑢

1
(𝑥) and 𝑢

2
(𝑥), respectively.

The present method enables us to approximate the solu-
tions and their derivatives at every point of the range of
integration.Hence, it is possible to pick any point in [0, 1] and
as well the approximate solutions and their derivatives will be
applicable. Next, new numerical results for Example 1 which
include the absolute error at some selected gird points in [0, 1]

for approximating 𝑢󸀠
1
(𝑥) and 𝑢

󸀠

2
(𝑥), where 𝑥

𝑖
= (𝑖−1)/(𝑀−1),

𝑖 = 1, 2, . . . ,𝑀,𝑀 = 101, and𝑚 = 3, are given in Table 3.

Example 2. Consider the following first-order nonlinear
differential system:

𝑢
󸀠

1
(𝑥) + √𝑢

1
(𝑥) + 1𝑢

2
(𝑥) = 𝑓

1
(𝑥) ,

V󸀠
2
(𝑥) − 𝑢

1
(𝑥) (𝑢

2
(𝑥))
2

+ (𝑢
2
(𝑥))
2

= 𝑓
2
(𝑥) ,

𝑓
1
(𝑥) = (𝑥

4
− 2𝑥
3
+ 𝑥
2
+ 1)

−1/2

+ 4𝑥
3
− 6𝑥
2
+ 2𝑥,

𝑓
2
(𝑥) = −

𝑥
4
+ 2𝑥
3
− 5𝑥
2
+ 2𝑥 − 1

(𝑥
4
− 2𝑥
3
+ 𝑥
2
+ 1)
2

,

(26)

subject to the periodic boundary conditions

𝑢
1
(0) = 𝑢

1
(1) ,

𝑢
2
(0) = 𝑢

2
(1) .

(27)

The exact solutions are 𝑢
1
(𝑥) = (𝑥(𝑥 − 1))

2 and 𝑢
2
(𝑥) =

1/((𝑥(𝑥 − 1))
2
+ 1).

Using RKHS method, take 𝑥
𝑖

= (𝑖 − 1)/(𝑀 − 1), 𝑖 =

1, 2, . . . ,𝑀, on [0, 1]. The numerical results at some selected
grid points for 𝑀 = 101 and 𝑚 = 3 are given in Tables 4 and
5 for the dependent variables 𝑢

1
(𝑥) and 𝑢

2
(𝑥), respectively.

Example 3. Consider the following first-order nonlinear
differential system:

𝑢
󸀠

1
(𝑥) + 𝑢

3
(𝑥) 𝑒
𝑢
1
(𝑥)

+ (𝑢
2
(𝑥))
2

= 𝑓
1
(𝑥) ,

𝑢
󸀠

2
(𝑥) − 𝑢

2
(𝑥) 𝑒
−𝑢
1
(𝑥)

+ (𝑢
3
(𝑥))
2

= 𝑓
2
(𝑥) ,

𝑢
󸀠

3
(𝑥) − 𝑢

1
(𝑥) 𝑢
2
(𝑥) 𝑢
3
(𝑥) = 𝑓

3
(𝑥) ,
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Table 1: Numerical results of 𝑢
1
(𝑥) for Example 1.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 −0.133827 −0.13382630119666272 9.92359 × 10

−7
7.41522 × 10

−6

0.32 −0.213905 −0.21390423277976867 1.02844 × 10
−6

4.80792 × 10
−6

0.48 −0.240125 −0.24012413380235342 1.03748 × 10
−6

4.32058 × 10
−6

0.64 −0.214990 −0.21498933621279104 1.02268 × 10
−6

4.75685 × 10
−6

0.80 −0.143471 −0.14347022966680445 9.88513 × 10
−7

6.88997 × 10
−6

0.96 −0.032768 −0.03276672205464815 9.40677 × 10
−7

2.87075 × 10
−5

Table 2: Numerical results of 𝑢
2
(𝑥) for Example 1.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 0.874240 0.8742398572490666 4.41286 × 10

−7
5.04765 × 10

−7

0.32 0.804447 0.8044464859485744 6.70233 × 10
−7

8.33160 × 10
−7

0.48 0.779112 0.7791116154224935 7.50275 × 10
−7

9.62986 × 10
−7

0.64 0.794216 0.7942151498560056 7.02761 × 10
−7

8.84848 × 10
−7

0.80 0.852144 0.8521432738935479 5.15073 × 10
−7

6.04443 × 10
−7

0.96 0.962328 0.9623277968729329 1.35849 × 10
−7

1.41167 × 10
−7

Table 3: Absolute error of approximating 𝑢
󸀠

1
(𝑥) and 𝑢

󸀠

2
(𝑥) for Example 1.

Derivative 𝑥 = 0.16 𝑥 = 0.48 𝑥 = 0.64 𝑥 = 0.96

𝑢
󸀠

1
(𝑥) 3.96943 × 10

−6
4.14991 × 10

−6
4.09071 × 10

−6
3.7627 × 10

−6

𝑢
󸀠

2
(𝑥) 8.88178 × 10

−7
3.15362 × 10

−6
1.11022 × 10

−6
2.10942 × 10

−7

Table 4: Numerical results of 𝑢
1
(𝑥) for Example 2.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 0.0180634 0.01806252000000006 8.39999 × 10

−7
4.65029 × 10

−5

0.32 0.0473498 0.04734840000000003 1.35999 × 10
−6

2.87224 × 10
−5

0.48 0.0623002 0.06229859999999997 1.56000 × 10
−6

2.50401 × 10
−5

0.64 0.0530842 0.05308272000000007 1.43999 × 10
−6

2.71267 × 10
−5

0.80 0.0256000 0.02559900000000005 9.99999 × 10
−7

3.90625 × 10
−5

0.96 0.0014746 0.00147432000000012 2.39999 × 10
−7

1.62760 × 10
−4

Table 5: Numerical results of 𝑢
2
(𝑥) for Example 2.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 0.982257 0.982258015821409 8.80077 × 10

−7
8.95974 × 10

−7

0.32 0.954791 0.954792235061675 1.35412 × 10
−6

1.41824 × 10
−6

0.48 0.941354 0.941355026122341 1.50133 × 10
−6

1.59487 × 10
−6

0.64 0.949592 0.949593136843461 1.41570 × 10
−6

1.49085 × 10
−6

0.80 0.975039 0.975040039211652 1.03765 × 10
−6

1.06422 × 10
−6

0.96 0.998528 0.998527858662958 2.47537 × 10
−7

2.47902 × 10
−7

Table 6: Numerical results of 𝑢
1
(𝑥) for Example 3.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 −0.144332 −0.1443317288548306 6.42035 × 10

−7
4.44831 × 10

−6

0.32 −0.245389 −0.2453879153282803 1.24493 × 10
−6

5.07330 × 10
−6

0.48 −0.287149 −0.2871473420226861 1.53927 × 10
−6

5.36052 × 10
−6

0.64 −0.261884 −0.2618830218641385 1.35777 × 10
−6

5.18460 × 10
−6

0.80 −0.174353 −0.1743525808946390 8.06250 × 10
−7

4.62423 × 10
−6

0.96 −0.0391567 −0.0391565628696831 1.52332 × 10
−7

3.89030 × 10
−6
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Table 7: Numerical results of 𝑢
2
(𝑥) for Example 3.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 1.14385 1.143849565677054 7.02579 × 10

−7
6.14223 × 10

−7

0.32 1.24309 1.243088505342329 1.22692 × 10
−6

9.86995 × 10
−7

0.48 1.28351 1.283510460180459 1.44905 × 10
−6

1.12897 × 10
−6

0.64 1.25910 1.259102236286934 1.31435 × 10
−6

1.04388 × 10
−6

0.80 1.17351 1.173510014918347 8.56073 × 10
−7

7.29498 × 10
−7

0.96 1.03915 1.039146624444131 1.84037 × 10
−7

1.77104 × 10
−7

Table 8: Numerical results of 𝑢
3
(𝑥) for Example 3.

𝑥 Exact solution Approximate solution Absolute error Relative error
0.16 0.874645 0.8746445398520759 7.43544 × 10

−7
8.50109 × 10

−7

0.32 0.806168 0.8061672349997103 1.20922 × 10
−6

1.49996 × 10
−6

0.48 0.781712 0.7817107460286419 1.39143 × 10
−6

1.77998 × 10
−6

0.64 0.796259 0.7962584197762563 1.28185 × 10
−6

1.60984 × 10
−6

0.80 0.852827 0.8528264441003238 8.85879 × 10
−7

1.03876 × 10
−6

0.96 0.962337 0.9623371578286029 2.12773 × 10
−7

2.21100 × 10
−7

𝑓
1
(𝑥) = (cosh (𝑥 (𝑥 − 1)) + 𝑥 (𝑥 − 1)) (𝑥 (𝑥 − 1) + 1)

+ 𝑒
−2𝑥(𝑥−1)

+

2𝑥 − 1

𝑥 (𝑥 − 1) + 1

,

𝑓
2
(𝑥) = (cosh (𝑥 (𝑥 − 1)) + 𝑥 (𝑥 − 1))

2

− 𝑒
−𝑥(𝑥−1)

(2𝑥 − 1) −

𝑒
−𝑥(𝑥−1)

𝑥 (𝑥 − 1) + 1

,

𝑓
3
(𝑥) = sinh (𝑥 (𝑥 − 1)) (2𝑥 − 1)

− (cosh (𝑥 (𝑥 − 1)) + 𝑥 (𝑥 − 1))

× ln (𝑥 (𝑥 − 1) + 1) 𝑒
−𝑥(𝑥−1)

+ 2𝑥 − 1,

(28)

subject to the periodic boundary conditions

𝑢
1
(0) = 𝑢

1
(1) ,

𝑢
2
(0) = 𝑢

2
(1) ,

𝑢
3
(0) = 𝑢

3
(1) .

(29)

The exact solutions are 𝑢
1
(𝑥) = ln(𝑥(𝑥 − 1) + 1), 𝑢

2
(𝑥) =

𝑒
𝑥(1−𝑥), and 𝑢

3
(𝑥) = 𝑥(𝑥 − 1) + cosh(𝑥(𝑥 − 1)).

Using RKHS method, take 𝑥
𝑖

= (𝑖 − 1)/(𝑀 − 1), 𝑖 =

1, 2, . . . ,𝑀, on [0, 1]. The numerical results at some selected
grid points for 𝑀 = 101 and 𝑚 = 3 are given in Tables 6,
7, and 8 for the dependent variables 𝑢

1
(𝑥), 𝑢

2
(𝑥), and 𝑢

3
(𝑥),

respectively.
From the previous tables, it can be seen that the RKHS

method provides us with the accurate approximate solutions.
On the other aspect as well, it is clear that the accuracy
obtained using the mentioned method is advanced by using
only a few tens of iterations.

6. Conclusions

Here, we use the RKHS method to solve systems of first-
order periodic BVPs. The solutions were calculated in the
form of a convergent series in the space 𝑊

2

2
[0, 1] with

easily computable components. In the proposed method,
the 𝑚-term approximations are obtained and proved to
converge to the exact solutions. Meanwhile, the error of the
approximate solutions is monotone decreasing in the sense
of the norm of 𝑊

2

2
[0, 1]. It is worthy to note that, in our

work, the approximate solutions and their derivatives con-
verge uniformly to the exact solutions and their derivatives,
respectively. On the other aspect as well, the present method
enables us to approximate the solutions and their derivatives
at every point of the range of integration. The results show
that the present method is an accurate and reliable analytical
technique for solving systems of first-order periodic BVPs.
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