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A fundamental challenge for insurance companies (insurers) is to strike the best balance between optimal investment and risk
management of paying insurance liabilities, especially in a low interest rate environment. The stochastic interest rate becomes
a critical factor in this asset-liability management (ALM) problem. This paper derives the closed-form solution to the optimal
investment problem for an insurer subject to the insurance liability of compound Poisson process and the stochastic interest rate
following the extended CIR model. Therefore, the insurer’s wealth follows a jump-diffusion model with stochastic interest rate
when she invests in stocks and bonds. Our problem involves maximizing the expected constant relative risk averse (CRRA) utility
function subject to stochastic interest rate and Poisson shocks. After solving the stochastic optimal control problem with the HJB
framework, we offer a verification theorem by proving the uniform integrability of a tight upper bound for the objective function.

1. Introduction

The random movement of interest rates generates challenges
to the asset-liability management practice for insurance com-
panies (insurers). For instance,Thind [1] reports the potential
problems recently faced by Nordic insurers associated with
the interest rate movement. Actually, similar problems occur
in other markets as well and the insurance industry has
increasing demand in quantitative methods for managing
interest rate risk in their investment portfolios.

Two major distinguished features of insurers’ portfolios
are the long-term investment horizon and the risk of paying
out insurance claims. As life insurance contracts and pension
plans are often long-term commitments, insurers have to
plan their investment with a long-term horizon in mind.
As such, the stochastic interest rate model adopted should
stay positive throughout the long-term investment horizon
and possibly gets close to zero, which is exactly the current
economic situation. The interest model proposed by Cox et
al. [2] (CIR) is constructed for this purpose. An even more
realistic consideration allows parameters in the CIR model
to be time-varying and this constitutes the extended CIR

model. The positivity of CIR model also makes it a model
for describing stochastic volatility. Wong and Chiu [3] offer
a review and recent advances on the use of CIR model in
stochastic volatility. However, Deelstra et al. [4, 5] are the
pioneers who investigated the optimal investment problems
with and without a minimum guarantee under the extended
CIR model. Ferland and Watier [6] further analyzed the
mean-variance efficiency of utility maximization problem
under the extended CIR model. It is recently extended to
incorporate stochastic volatility in [7].

While the literature has already investigated long-term
optimal investment problems with the extended CIR model,
the incorporation of insurance claim payment is yet to be
considered in the present paper. The insurance claims are
used to be modeled by a compound Poisson process in actu-
arial science. Taking insurance claims into account makes
the insurer’s wealth become a jump-diffusion model with an
extended CIR stochastic interest rate. This kind of stochastic
model is not considered in the utility maximization problem
nor in the insurance literature, to the best of our knowledge.
It is shown in [8–10] that optimal investment associated with
jump-diffusion models could be challenging mathematical
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problems. The problem considered in the present paper even
adds the stochastic interest rate.

This paper contributes to the literature by deriving the
closed-form solution to the optimal insurer’s investment
problem with the extended CIR interest rate model and
offering a verification theorem to the corresponding HJB
equation. The mathematical difficulty arises from the jump-
diffusionmodel and the stochastic interest rate in the insurer’s
wealth process that makes the HJB equation a nonlinear
partial integral differential equation (PIDE). While solving
the PIDE is the first challenge, proving the verification
theorem for the solution of the PIDE being the eligible
optimal value function is another.The verification theorem is
deduced using the recent framework of Chiu and Wong [10]
when there is a mean-reverting stochastic variable, which is
the interest rate in our case.

The remaining part of the paper is organized as follows.
Section 2 presents the problem formulation and defines the
problem of interest. Section 3 solves the optimal control
problem and proves the verification theorem. Concluding
remarks are made in Section 4.

2. Problem Formulation

2.1. The Financial Market. Consider a financial market in
which 𝑛 + 2 assets are traded continuously within the time
horizon [0, 𝑇]. These assets are labeled by 𝑆

𝑖
, stock 𝑖, for 𝑖 =

0, 1, 2, . . . , 𝑛 and a zero-coupon bond 𝐵. Here, 𝑆
0
denotes a

risk-free asset.
The risk-free asset satisfies the differential equation:

𝑑𝑆
0 (

𝑡) = 𝑟 (𝑡) 𝑆0 (
𝑡) 𝑑𝑡,

𝑆
0 (

0) = 𝑠
0
> 0,

(1)

where the stochastic short rate follows the CIR model [2]:

𝑑𝑟 (𝑡) = (𝑎 (𝑡) − 𝑏 (𝑡) 𝑟 (𝑡)) 𝑑𝑡 − 𝜎
𝑟 (
𝑡) √𝑟 (𝑡)𝑑𝑊

𝑟

𝑡
,

𝑟 (0) = 𝑟
0
> 0,

(2)

in which 𝑊
𝑟
(𝑡) is a Wiener process and 𝑎(𝑡), 𝑏(𝑡), and 𝜎

𝑟
(𝑡)

are time-deterministic functions.
The risky assets, 𝑆

1
(𝑡), . . . , 𝑆

𝑛
(𝑡), satisfy the stochastic

differential equation (SDE):

𝑑𝑆
𝑖 (
𝑡)

= 𝑆
𝑖 (
𝑡)

{

{

{

𝑟 (𝑡) 𝑑𝑡 +
[

[

𝑛

∑

𝑗=1

(Σ
𝑠 (
𝑡))

𝑖𝑗
((Λ (𝑡))𝑗

𝑑𝑡 + 𝑑𝑊

𝑆𝑗

𝑡
)
]

]

+ (Σ
𝑟 (
𝑡))

𝑖
√𝑟 (𝑡) (𝜆𝑟 (

𝑡) √𝑟 (𝑡)𝑑𝑡 + 𝑑𝑊
𝑟

𝑡
)

}

}

}

,

𝑡 ∈ [0, 𝑇] ;

𝑆
𝑖 (
0) = 𝑆

𝑖

0
,

(3)

where 𝑊
𝑠

𝑡
= (𝑊

𝑆1

𝑡
, . . . ,𝑊

𝑆𝑛

𝑡
)

󸀠

is a standard F
𝑡≥0

-adapted
𝑛-dimensional Wiener process on a fixed filtered complete
probability space (Ω,F,P,F

𝑡≥0
) with 𝑛 > 𝑚, 𝑊𝑆𝑖

𝑡
and 𝑊

𝑆𝑗

𝑡

are mutually independent for all 𝑖 ̸= 𝑗, and 𝑊
𝑆𝑖

𝑡
and 𝑊

𝑟

𝑡
are

mutually independent for all 𝑖 ∈ {1, . . . , 𝑛}. Denote 𝑊
𝑡

=

(𝑊
𝑆1

𝑡
, . . . ,𝑊

𝑆𝑛

𝑡
,𝑊

𝑟

𝑡
)

󸀠

. F := {F
𝑡
}
𝑡≥0

is the filtration generated
by 𝑊

𝑡
augmented by the null sets of P, Σ

𝑠
(𝑡) is the volatility

matrix of stocks defined in the Banach space of R𝑛×𝑛-valued
continuous function on [0, 𝑇] such that the nondegeneracy
condition of Σ

𝑠
(𝑡)Σ

𝑠
(𝑡) ≥ 𝛿𝐼

𝑚
holds for all 𝑡 ∈ [0, 𝑇] and

for some 𝛿 > 0. The term Σ
𝑟
(𝑡)√𝑟(𝑡) is the volatility factor

of stock prices contributed by the interest rate while (Λ(𝑡))
𝑗

and 𝜆
𝑟
(𝑡)√𝑟(𝑡) are the market price of risk of the risky asset

𝑗 and the market price of interest rate risk, respectively. This
financial market setting is also considered in [4–6].

Under theCIRmodel, the zero-coupon bondprice at time
𝑡 with maturity 𝑇 evolves as

𝑑𝐵 (𝑡, 𝑇)

= 𝐵 (𝑡, 𝑇) [𝑟𝑑𝑡 + 𝜎
𝐵 (

𝑡) (𝜆𝑟 (
𝑡) √𝑟 (𝑡)𝑑𝑡 + 𝑑𝑊

𝑟

𝑡
)] ,

𝐵 (𝑇, 𝑇) = 1,

(4)

where 𝜎
𝐵
(𝑡) = 𝜎

𝑟
(𝑡)ℎ(𝑡, 𝑇)√𝑟(𝑡) and ℎ(𝑡, 𝑇) solves the ordi-

nary differential equation (ODE):

𝑑ℎ (𝑡, 𝑇)

𝑑𝑡

=

1

2

𝜎
𝑟(
𝑡)
2
ℎ(𝑡, 𝑇)

2
+ (𝑏 (𝑡) − 𝜆

𝑟 (
𝑡) 𝜎𝑟 (

𝑡))

× ℎ (𝑡, 𝑇) − 1, ℎ (𝑇, 𝑇) = 0.

(5)

The interest model in (2) is known as the extended CIR
model; see [6]. The technical conditions below ensure a
positive interest rate process from (2).

Assumption 1. (H
0
) 𝑎(𝑡), 𝑏(𝑡), 𝜎

𝑟
(𝑡), 𝜆

𝑟
(𝑡), andΛ(𝑡) are locally

bounded for 𝑡 ∈ [0, 𝑇].
(H

1
) 2𝑎(𝑡) ≥ 𝜎

2

𝑟
(𝑡) for any 𝑡 ∈ [0, 𝑇].

(H
2
) 𝑎(𝑡), 𝑏(𝑡) ≥ 0, inf

0≤𝑡≤𝑇
𝜎
𝑟
(𝑡) > 0 for any 𝑇 > 0, and

𝜎
𝑟
(𝑡) is continuously differentiable.

2.2. Insurer’s Wealth. The classical risk process assumes that
an insurer’s wealth evolves as

𝑌 (𝑡) = 𝑌
0
+ 𝐶 (𝑡) − 𝐿 (𝑡) , (6)

where 𝑌
0
is the initial wealth, the nonnegative deterministic

function 𝐶(𝑡) is the accumulated insurance premium, and
𝐿(𝑡) represents accumulated random payments for insurance
claims.

Assumption 2. The accumulated random payments (insur-
ance liabilities) follow a compound Poisson process,

𝐿 (𝑡) = ∫

𝑡

0

𝑌 (𝑠) (1 − 𝑒
−𝑧
) 𝑑N

𝑠
, 𝐿 (0) = 0, (7)

where {N
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is the Poisson process with intensity

𝜇(𝑡), where the moment generating function of ∫

𝜏2

𝜏1

𝜇(𝑡)𝑑𝑡
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exists for 0 ≤ 𝜏
1
≤ 𝜏

2
≤ 𝑇, (1 − 𝑒

−𝑧
) is an insurance claim

portion at time 𝑡, and 𝑧 is a nonnegative random variable
independent of N

𝑡
and 𝑊

𝑡
and has a well-defined moment

generating function.

The risk model (6) ignores the fact that insurance compa-
nies usually participate in the financial market by investing
in stocks and bonds; see comments in [11]. Hence, our model
allows insurers to do so. Assume for the moment that the
insurance premium 𝐶(𝑡) ≡ 0 to simplify the mathematical
setup, but the situation in which the premium is positive can
be fully addressed using arguments similar to [9, 10].

Let 𝑢
𝑖
(𝑡) and 𝑢

𝐵
(𝑡) be the cash amount invested in stock

𝑖 and the zero-coupon bond, respectively, and let 𝑁
𝑖
(𝑡) and

𝑁
𝐵
(𝑡) be the numbers of holding units in stock 𝑖 and the zero-

coupon bond in the portfolio of the insurer, respectively. The
insurer’s wealth level at time 𝑡 is

𝑌 (𝑡) =

𝑛

∑

𝑖=0

𝑢
𝑖 (
𝑡) + 𝑢

𝐵 (
𝑡)

=

𝑛

∑

𝑖=0

𝑁
𝑖 (
𝑡) 𝑆𝑖 (

𝑡) + 𝑁
𝐵 (

𝑡) 𝐵 (𝑡, 𝑇) , 𝑌 (0) = 𝑌
0
.

(8)

The ALM strategy 𝑢(𝑡) = (𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡), 𝑢

𝐵
(𝑡))

󸀠
:=

(𝑢
𝑠
(𝑡), 𝑢

𝐵
(𝑡))

󸀠 is said to be admissible if 𝑢(𝑡) is a nonantici-
pating process such that E[∫𝑇

0
‖𝑢(𝜏)‖

2
𝑑𝜏] < ∞.

Definition 3. Define Π as the space collecting all admissible
trading strategies.

Unlike traditional portfolio selection problems, we do not
require 𝑢(𝑡) to be self-financing because there are interim
random insurance payments 𝑑𝐿(𝑡). Specifically, the budget
equation of the insurer’s wealth is [8, 11]

𝑑𝑌 (𝑡) =

𝑛

∑

𝑖=0

𝑁
𝑖 (
𝑡) 𝑑𝑆𝑖 (

𝑡) + 𝑁
𝐵 (

𝑡) 𝑑𝐵 (𝑡, 𝑇)

+

𝑛

∑

𝑖=0

𝑆
𝑖 (
𝑡) 𝑑𝑁𝑖 (

𝑡) + 𝐵 (𝑡, 𝑇) 𝑑𝑁𝐵 (
𝑡)

=

𝑛

∑

𝑖=0

𝑁
𝑖 (
𝑡) 𝑑𝑆𝑖 (

𝑡) + 𝑁
𝐵 (

𝑡) 𝑑𝐵 (𝑡, 𝑇) − 𝑑𝐿 (𝑡) .

(9)

Thus, the insurer draws an amount of ∑
𝑛

𝑖=0
𝑆
𝑖
(𝑡)𝑑𝑁

𝑖
(𝑡) +

𝐵(𝑡, 𝑇)𝑑𝑁
𝐵
(𝑡) from the portfolio to finance an insurance

claim 𝑑𝐿. Assumption 2 implies that

𝑑𝑌 (𝑡) =

𝑛

∑

𝑖=0

𝑢
𝑖 (
𝑡)

𝑑𝑆
𝑖 (
𝑡)

𝑆
𝑖 (
𝑡)

+ 𝑢
𝐵 (

𝑡)

𝑑𝐵 (𝑡, 𝑇)

𝐵 (𝑡, 𝑇)

− 𝑌 (1 − 𝑒
−𝑧
) 𝑑N

𝑡
.

(10)

Applying Itô’s lemma, SDEs (2), (3), and (4), the wealth
process is given by

𝑑𝑌 (𝑡) = [𝑟 (𝑡) 𝑌 (𝑡) + 𝑢
𝑠(
𝑡)
󸀠

× (Σ
𝑠 (
𝑡) Λ (𝑡) + Σ

𝑟 (
𝑡) 𝜆𝑟 (

𝑡) 𝑟 (𝑡))

+ 𝑢
𝐵 (

𝑡) 𝜎𝐵 (
𝑡) 𝜆𝑟 (

𝑡) √𝑟 (𝑡)] 𝑑𝑡

+ 𝑢
𝑠(
𝑡)
󸀠
Σ
𝑠 (
𝑡) (𝑡) 𝑑𝑊

𝑠

𝑡

+ (𝑢
𝑠(
𝑡)
󸀠
Σ
𝑟 (
𝑡) √𝑟 (𝑡) + 𝑢

𝐵 (
𝑡) 𝜎𝐵 (

𝑡)) 𝑑𝑊
𝑟

𝑡

− 𝑌 (1 − 𝑒
−𝑧
) 𝑑N

𝑡
, 𝑌 (0) = 𝑌

0
,

(11)

in which N
𝑡
is a doubly stochastic Poisson process with

F-predictable nonnegative intensity 𝜇(𝑡); the parameters
(Σ

𝑠
(𝑡))

𝑖𝑗
, (Σ

𝑟
(𝑡))

𝑖
, 𝑧, and 𝜇(𝑡) are uniformly bounded and F-

predictable on [0, 𝑇], for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛. Define
H := {H

𝑡
}
𝑡≥0

the filtration generated by N(𝑡) augmented by
the P-null sets. Let G be the filtration {G

𝑡
}
𝑡≥0

where G
𝑡
:=

F
𝑡
∨ H

𝑡
, the smallest filtration containing F and H. Note

that G
𝑡
can be regarded as the information available to the

investor at time 𝑡. Define the compensated Poisson process
M

𝑡
:= N

𝑡
− ∫

𝑡

0
𝜇(𝑠)𝑑𝑠, which is a G-martingale.

2.3. Optimal Investment for Insurer. In economics, one school
of thought on optimal investment decisions suggests max-
imizing the expected utility of an investor’s future wealth,
E[𝑈(𝑌

𝑇
)]. The standard approach assumes the utility to be

strictly increasing and concave. If the utility function is twice
differentiable, then 𝑈

󸀠
(𝑦) > 0 and 𝑈

󸀠󸀠
(𝑦) < 0 for all 𝑦. A

popular choice of utility is the CRRA utility function which
takes the following form:

𝑈 (𝑦) =

𝑦
1−𝛾

− 1

1 − 𝛾

for 𝛾 ∈ (0, 1) ,

𝑈 (𝑦) = ln𝑦 for 𝛾 = 1.

(12)

Therefore, we consider the following research problem:

Research Problem max
𝑢(⋅)

E [𝑈 (𝑌 (𝑇))]

s.t. (2) , (11) , 𝑢 (⋅) ∈ Π,

(13)

where 𝑈(𝑦) is defined in (12).
If 𝑟(𝑡) is a time-deterministic function and the Poisson

process is absent in (11), then the corresponding utility
portfolio problem is reduced to the standard utility portfolio
optimization problem or theMerton problem. Unfortunately,
𝑟(𝑡) is stochastic and the insurance liability follows a com-
pound Poisson process within our consideration. Therefore,
the wealth process (11) resembles a jump-diffusion model
with a random drift.

3. The Optimal Solution

We divide our derivation into two cases. In the first case,
𝛾 < 1 so that the utility function is proportional to a power
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function. It refers to a power utility. In the second case, we
take the limit of 𝛾 → 1 on the CRRA utility. As the limit is
the logarithmic function, it refers to the logarithmic utility or
Bernoulli’s utility function.

3.1. Power Utility. In our research problem, the optimal
decision is not affected by adding a real constant to the
objective function. The power utility maximization problem
can then be reduced to

max E[

𝑌(𝑇)
1−𝛾

1 − 𝛾

] , (14)

where the insurer’s wealth follows the SDE in (11).

Theorem 4. Under Assumptions 1 and 2, the research problem
(13) with the power utility (14) has the optimal solution
(investment policy),

𝑢
∗

𝑠
(𝑡, 𝑌 (𝑡) , 𝑟 (𝑡)) =

1

𝛾

(Σ
󸀠

𝑠
(𝑡))

−1

Λ (𝑡) 𝑌 (𝑡) ;

𝑢
∗

𝐵
(𝑡, 𝑌 (𝑡) , 𝑟 (𝑡)) =

√𝑟 (𝑡)

𝛾𝜎
𝐵 (

𝑡)

(𝜆
𝑟 (
𝑡) − Λ

󸀠
(𝑡) Σ𝑠(

𝑡)
−1
Σ
𝑟 (
𝑡)

−𝐾 (𝑡, 𝑇) 𝜎𝑟 (
𝑡)) 𝑌 (𝑡) ,

(15)

and the optimal value of the objective function

E[ 𝑌(𝑇)
1−𝛾

1 − 𝛾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

G
0
]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢=𝑢
∗

=

𝑌
1−𝛾

0

1 − 𝛾

exp [𝐾 (0, 𝑇) 𝑟 (0) + 𝑀
󸀠
(0, 𝑇)] ,

(16)

where 𝐾(𝑡, 𝑇) and 𝑀(𝑡, 𝑇) satisfy the system of ordinary
differential equations (ODE):

𝐾̇ (𝑡, 𝑇) − (𝑏 (𝑡) +

1 − 𝛾

𝛾

𝜎
𝑟 (
𝑡) 𝜆𝑟 (

𝑡))𝐾 (𝑡, 𝑇)

+

𝜎
𝑟(
𝑡)
2

2𝛾

𝐾(𝑡, 𝑇)
2
+ (1 − 𝛾 +

1 − 𝛾

2𝛾

𝜆
𝑟(
𝑡)
2
) = 0,

𝐾 (𝑇, 𝑇) = 0;

(17)

𝑀̇ (𝑡, 𝑇) + 𝑎 (𝑡) 𝐾 (𝑡, 𝑇) +E[(𝑒−𝑧(1−𝛾) − 1) 𝜇 (𝑡)]

−

1 − 𝛾

2𝛾

‖Λ (𝑡)‖
2
= 0,

𝑀 (𝑇, 𝑇) = 0.

(18)

Proof. The proof is based on the classic HJB framework. Let

𝑉 (𝑡, 𝑦, 𝑟) = sup
𝑢∈Π

E [𝑈 (𝑌
𝑢
(𝑇)) | G𝑡

] . (19)

For a fixed terminal time 𝑇, the corresponding HJB equation
is

𝑉
𝑡
+ 𝑉

󸀠

𝑟
(𝑎 − 𝑏𝑟) +

1

2

tr (𝑉
𝑟𝑟
𝜎
2

𝑟
𝑟)

+ E [(𝑉 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝑉 (𝑡, 𝑦, 𝑟)) 𝜇]

+ sup
𝑢

{𝑉
𝑦
(𝑟𝑦 + 𝑢

󸀠

𝑠
(Σ

𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟) + 𝑢

𝐵
𝜎
𝐵
𝜆
𝑟
√𝑟)

− 𝑉
𝑟𝑦
𝜎
𝑟
√𝑟 (𝑢

󸀠

𝑠
Σ
𝑟
√𝑟 + 𝑢

𝐵
𝜎
𝐵
)

+

1

2

𝑉
𝑦𝑦

(𝑢
󸀠

𝑠
Σ
𝑠
Σ
󸀠

𝑠
𝑢
𝑠
+ 𝑢

󸀠

𝑠
Σ
𝑟
Σ
󸀠

𝑟
𝑢
𝑠
𝑟

+ 𝑢
2

𝐵
𝜎
2

𝐵
+ 2𝑢

󸀠

𝑠
Σ
𝑟
√𝑟𝑢

𝐵
𝜎
𝐵
) } = 0,

(20)

with 𝑉(𝑇, 𝑦, 𝑟) = 𝑦
1−𝛾

/(1 − 𝛾). Thus, the optimal feedback
control, 𝑢∗, maximizes

𝑉
𝑦
𝑢
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

) − 𝑉
𝑟𝑦
𝜎
𝑟
√𝑟𝑢

󸀠
(

Σ
𝑟
√𝑟

𝜎
𝐵

)

+

1

2

𝑉
𝑦𝑦
𝑢
󸀠
(

Σ
𝑠
Σ
󸀠

𝑠
+ Σ

𝑠
Σ
󸀠

𝑠
𝑟 Σ

𝑟
𝜎
𝐵
√𝑟

Σ
󸀠

𝑟
𝜎
𝐵
√𝑟 𝜎

2

𝐵

)𝑢,

(21)

where 𝑢 = (𝑢
𝑠
𝑢
𝐵
)
󸀠. If𝑉

𝑦𝑦
< 0, differentiating (21) with respect

to 𝑢 and setting the differential to zero results in

𝑢
∗
= Σ

−1
(

𝑉
𝑟𝑦

𝑉
𝑦𝑦

𝜎
𝑟
√𝑟(

Σ
𝑟
√𝑟

𝜎
𝐵

) −

𝑉
𝑦

𝑉
𝑦𝑦

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)) ,

(22)

where Σ = (
Σ𝑠Σ
󸀠
𝑠+Σ𝑠Σ

󸀠
𝑠𝑟 Σ𝑟𝜎𝐵√𝑟

Σ
󸀠
𝑟𝜎𝐵√𝑟 𝜎

2
𝐵

). Otherwise, if𝑉
𝑦𝑦

≥ 0, then the
optimization has no solution.

Note that Σ
−1 can be simplified by matrix inversion

lemma (or called Sherman-Morrison-Woodbury formula).
Hence, we have

Σ
−1

= (

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

−

√𝑟

𝜎
𝐵

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

−

√𝑟

𝜎
𝐵

Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1 1 + 𝑟Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

𝜎
2

𝐵

). (23)

Therefore, (22) becomes

𝑢
∗
= (

𝑢
∗

𝑠

𝑢
∗

𝐵

) = (

−

𝑉
𝑦

𝑉
𝑦𝑦

(Σ
󸀠

𝑠
)

−1

Λ

√𝑟

𝜎
𝐵

[

𝑉
𝑟𝑦

𝑉
𝑦𝑦

𝜎
𝑟
−

𝑉
𝑦

𝑉
𝑦𝑦

(𝜆
𝑟
− Λ

󸀠
Σ
−1

𝑠
Σ
𝑟
)]

) .

(24)
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Substituting the 𝑢
∗ into the HJB equation (20), the PIDE of

𝑉 becomes

𝑉
𝑡
+ 𝑉

𝑟 (
𝑎 − 𝑏𝑟) +

1

2

𝑉
𝑟𝑟
𝜎
2

𝑟
𝑟 + 𝑉

𝑦
𝑟𝑦

+ E [(𝑉 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝑉) 𝜇]

−

1

2

𝑉
𝑦𝑦
[

𝑉
𝑟𝑦

𝑉
𝑦𝑦

𝜎
𝑟
√𝑟(

Σ
𝑟
√𝑟

𝜎
𝐵

) −

𝑉
𝑦

𝑉
𝑦𝑦

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]

󸀠

× Σ
−1

[

𝑉
𝑟𝑦

𝑉
𝑦𝑦

𝜎
𝑟
√𝑟(

Σ
𝑟
√𝑟

𝜎
𝐵

) −

𝑉
𝑦

𝑉
𝑦𝑦

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]

= 0,

(25)

with terminal condition 𝑉(𝑇, 𝑦, 𝑟) = 𝑈(𝑦). As 𝑈(𝑦) =

𝑦
1−𝛾

/(1 − 𝛾), consider an exponential affine form for 𝑉:

𝑉 (𝑡, 𝑦, 𝑟) =

𝑦
1−𝛾

1 − 𝛾

exp [𝐾 (𝑡, 𝑇) 𝑟 + 𝑀 (𝑡, 𝑇)] , (26)

where 𝐾 and 𝑀 are deterministic functions of 𝑡 and satisfy
the ODEs (17) and (18), respectively. Note that the ODEs (17)
can be regarded as a Riccati equation. Clearly, the terminal
value of the function in (26) satisfies the terminal condition
in (25) and 𝑉

𝑦𝑦
< 0. Taking partial derivatives to the affine

form 𝑉 with respect to 𝑡, 𝑦, and 𝑟, we have

𝑉
𝑡
= (𝐾̇𝑟 + 𝑀̇)𝑉; 𝑉

𝑟
= 𝐾𝑉;

𝑉
𝑦
=

1 − 𝛾

𝑦

𝑉; 𝑉
𝑟𝑟

= 𝐾
2
𝑉;

𝑉
𝑦𝑦

= −

𝛾 (1 − 𝛾)

𝑦
2

𝑉; 𝑉
𝑟𝑦

=

1 − 𝛾

𝑦

𝐾𝑉;

E [(𝑉 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝑉) 𝜇]

= E [(𝑒
−𝑧(1−𝛾)

− 1) 𝜇]𝑉.

(27)

After substituting these expressions into the left-hand side
of (25), simple but tedious calculations easily verify that the
proposed solution form satisfies the PIDE in (25). Thus, the
solution form in (26) is actually a solution of the PDE in (25).
As the value function is twice continuously differentiable and
all of the parameters are uniformly bounded and predictable,
the classical verification theorems of [12] (III, Theorem 8.1)
confirm that the proposed affine form of value function in
(26) and the control in (15) are the optimal value function
and optimal feedback control, respectively.

Theorem 4 asserts that if we are able to solve the system
of ODEs (17) and (18), then both optimal investment policy
𝑢
∗ and the optimal function value are efficiently computed.

In fact, the solution to (18) is simple given the solution of
(17) because (18) is linear ODE. However, ODE (17) is a
Riccati differential equation (RDE). Using Radon’s lemma
(c.f. Theorem 3.1.1 of the book [13]), the matrix RDE (17) can
be solved systematically.

Proposition 5. If 𝐾(𝑡, 𝑇) satisfies the matrix RDE (17) and
𝑀(𝑡, 𝑇) satisfies the linear ODE in (18), then the solution is
explicitly obtained as follows.

(1) 𝐾(𝜏) := 𝐾(𝑡, 𝑇) = 𝑅
2
(𝜏)𝑅

−1

1
(𝜏), where 𝜏 = 𝑇 − 𝑡, and

𝑅 = (𝑅
1
(𝜏)

󸀠
𝑅
2
(𝜏)

󸀠
)

󸀠

is the solution of the linear system of
ODEs in the interval [0, 𝑇]:

𝑑𝑅

𝑑𝜏

= (

1

2

(𝑏 (𝑡) +

1 − 𝛾

𝛾

𝜎
𝑟 (
𝑡) 𝜆𝑟 (

𝑡)) −

𝜎
𝑟(
𝑡)
2

2𝛾

1 − 𝛾 +

1 − 𝛾

2𝛾

𝜆
𝑟(
𝑡)
2

−

1

2

(𝑏 (𝑡) +

1 − 𝛾

𝛾

𝜎
𝑟 (
𝑡) 𝜆𝑟 (

𝑡))

)𝑅,

𝑅 (0) = (

𝐼
𝑚

0
𝑚×𝑚

) .

(28)

In particular, if 𝑏(𝑡), 𝜎
𝑟
(𝑡), and 𝜆

𝑟
(𝑡) are constants, then

𝑅 (𝜏) = exp
[

[

[

[

[

[

[

(

1

2

(𝑏 +

1 − 𝛾

𝛾

𝜎
𝑟
𝜆
𝑟
) −

𝜎
2

𝑟

2𝛾

1 − 𝛾 +

1 − 𝛾

2𝛾

𝜆
2

𝑟
−

1

2

(𝑏 +

1 − 𝛾

𝛾

𝜎
𝑟
𝜆
𝑟
)

)𝜏

]

]

]

]

]

]

]

(

𝐼
𝑚

0
𝑚×𝑚

) . (29)
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And, (2)

𝑀 (𝑡, 𝑇) = ∫

𝑇

𝑡

[𝑎 (𝑠)𝐾 (𝑠, 𝑇) +E[(𝑒−𝑧(1−𝛾) − 1) 𝜇 (𝑠)]

−

1 − 𝛾

2𝛾

‖Λ(𝑠)‖
2
] 𝑑𝑠,

(30)

whereE[𝑒−𝑧(1−𝛾)] is the moment generating function of 𝑧.

Proof. The solution of thematrix Riccati differential equation
(17) can be solved by the Radon lemma, a proof of which
can be found in Theorem 3.1.1 of [13]. The Radon lemma
immediately gives the explicit expression for𝐾(𝑡, 𝑇).𝑀(𝑡, 𝑇)

is obtained by a simple and direct integration. Hence, the
results follow.

3.2. Logarithmic Utility. When 𝛾 approaches 1, the power
utility function tends to a logarithmic function. The corre-
sponding investment policy and objective value require a
separated analysis. We now concentrate on the maximization
of the expected logarithmic utility function: E[𝑈(𝑌(𝑇))] =

E[ln𝑌(𝑇)]. Applying Itô’s lemma to the log-wealth process
with respect to (11),

𝑑 (ln𝑌) = (𝑟 + 𝜋
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

) −

1

2

𝜋Σ𝜋)𝑑𝑡

+ 𝜋
󸀠
(

Σ
𝑠

Σ
𝑟
√𝑟

0
1×𝑛

𝜎
𝐵

)𝑑𝑊
𝑡

+ (ln (𝑌 − 𝑌 (1 − 𝑒
−𝑧
)) − ln𝑌) 𝑑N

𝑡

= [𝑟 + 𝜋
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

) −

1

2

𝜋Σ𝜋 − 𝜇𝑧] 𝑑𝑡

+ 𝜋
󸀠
(

Σ
𝑠

Σ
𝑟
√𝑟

0
1×𝑛

𝜎
𝐵

)𝑑𝑊
𝑡
− 𝑧𝑑M

𝑡

= {𝑟 − 𝜇𝑧 +

1

2

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

󸀠

Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

−

1

2

[𝜋 − Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]

󸀠

× Σ[𝜋 − Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]}𝑑𝑡

+ 𝜋
󸀠
(

Σ
𝑠

Σ
𝑟
√𝑟

0
1×𝑛

𝜎
𝐵

)𝑑𝑊
𝑡
− 𝑧𝑑M

𝑡
,

(31)

where 𝜋(𝑡) = 𝑢(𝑡)/𝑌(𝑡) = (1/𝑌(𝑡)) (
𝑢𝑠(𝑡)

𝑢𝐵(𝑡)
) := (

𝜋𝑠(𝑡)

𝜋𝐵(𝑡)
)

is wealth portion invested in risky assets at time 𝑡; Σ =

(
Σ𝑠Σ
󸀠
𝑠+Σ𝑠Σ

󸀠
𝑠𝑟 Σ𝑟𝜎𝐵√𝑟

Σ
󸀠
𝑟𝜎𝐵√𝑟 𝜎

2
𝐵

);M
𝑡
:= N

𝑡
− ∫

𝑇

0
𝜇(𝑠)𝑑𝑠 is a G-martingale.

Hence, we have

max
𝜋(⋅)

E [ln𝑌 (𝑇)]

= ln𝑌 (0)

+max
𝜋(⋅)

E[∫

𝑇

0

{𝑟 − 𝜇𝑧 +

1

2

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

󸀠

× Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

−

1

2

[𝜋 − Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]

󸀠

× Σ[𝜋 − Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)]}𝑑𝑡] .

(32)

It is thus clear that the expected final utility attains its
maximum value at

𝜋
∗
= (

𝜋
∗

𝑠

𝜋
∗

𝐵

)

= Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

= (

(Σ
󸀠

𝑠
)

−1

Λ

√𝑟

𝜎
𝐵

(𝜆
𝑟
− Λ

󸀠
Σ
−1

𝑠
Σ
𝑟
)

) ,

(33)

and the maximum objective value is

ln𝑌 (0) + ∫

𝑇

0

𝑟 (𝑡) 𝑑𝑡 − E [𝑧] ∫

𝑇

0

E [𝜇 (𝑡)] 𝑑𝑡

+

1

2

E[∫

𝑇

0

(

Σ
𝑠 (
𝑡) Λ (𝑡) + Σ

𝑟 (
𝑡) 𝜆𝑟 (

𝑡) 𝑟 (𝑡)

𝜎
𝐵 (

𝑡) 𝜆𝑟 (
𝑡) √𝑟 (𝑡)

)

󸀠

× Σ
−1
(𝑡) (

Σ
𝑠 (
𝑡) Λ (𝑡) + Σ

𝑟 (
𝑡) 𝜆𝑟 (

𝑡) 𝑟 (𝑡)

𝜎
𝐵 (

𝑡) 𝜆𝑟 (
𝑡) √𝑟 (𝑡)

) 𝑑𝑡].

(34)

Theorem 6. Under Assumptions 1 and 2, the research problem
(13)with the logarithmic utility (14) has the optimal investment
policy:

𝑢
∗
(𝑡, 𝑌 (𝑡) , 𝑟 (𝑡)) = (

𝑢
∗

𝑠

𝑢
∗

𝐵

)

= (

(Σ
󸀠

𝑠
)

−1

Λ

√𝑟

𝜎
𝐵

(𝜆
𝑟
− Λ

󸀠
Σ
−1

𝑠
Σ
𝑟
)

)𝑌 (𝑡) ,

(35)

and the optimal value function,E[ln𝑌(𝑇)]|
𝑢=𝑢
∗ , equals

ln𝑌
0
+ ∫

𝑇

0

‖Λ(𝑠)‖
2

2

𝑑𝑠 −E[𝑧] ∫
𝑇

0

E[𝜇 (𝑠)] 𝑑𝑠

+ ∫

𝑇

0

(𝑒
−∫
𝑠

0
𝑏(𝜏)𝑑𝜏

𝑟 (0) + ∫

𝑠

0

𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑎 (𝜏) 𝑑𝜏)

× (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠.

(36)
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Proof. From the analysis prior to this theorem, we have
already shown (33), which is equivalent to (35). It remains for
us to simplify

E[∫

𝑇

0

𝑟 (𝑡) +

1

2

(

Σ
𝑠 (
𝑡) Λ (𝑡) + Σ

𝑟 (
𝑡) 𝜆𝑟 (

𝑡) 𝑟 (𝑡)

𝜎
𝐵 (

𝑡) 𝜆𝑟 (
𝑡) √𝑟 (𝑡)

)

󸀠

× Σ
−1

(𝑡) (

Σ
𝑠 (
𝑡) Λ (𝑡) + Σ

𝑟 (
𝑡) 𝜆𝑟 (

𝑡) 𝑟 (𝑡)

𝜎
𝐵 (

𝑡) 𝜆𝑟 (
𝑡) √𝑟 (𝑡)

) 𝑑𝑡] .

(37)

According to (23),

Σ
−1

= (

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

−

√𝑟

𝜎
𝐵

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

−

√𝑟

𝜎
𝐵

Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1 1 + 𝑟Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

𝜎
2

𝐵

). (38)

Hence,

𝑟 +

1

2

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

󸀠

Σ
−1

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

= 𝑟 +

1

2

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

󸀠

× (

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

−

√𝑟

𝜎
𝐵

(Σ
𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

−

√𝑟

𝜎
𝐵

Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1 1 + 𝑟Σ
󸀠

𝑟
(Σ

𝑠
Σ
󸀠

𝑠
)

−1

Σ
𝑟

𝜎
2

𝐵

)

× (

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

= 𝑟 +

1

2

(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜎
𝐵
𝜆
𝑟
√𝑟

)

󸀠

× (

(Σ
󸀠

𝑠
)

−1

Λ

−

√𝑟

𝜎
𝐵

Λ
󸀠
Σ
−1

𝑠
Σ
𝑟
−

1

𝜎
𝐵

𝜆
𝑟
√𝑟

)

= 𝑟 +

‖Λ‖
2

2

−

𝑟𝜆
2

𝑟

2

=

‖Λ‖
2

2

+ 𝑟(1 −

𝜆
2

𝑟

2

) .

(39)

According to the interest rate dynamic (2), it is easy to derive
that

E [𝑟 (𝑠)] = 𝑒
−∫
𝑠

0
𝑏(𝜏)𝑑𝜏

𝑟 (0) + ∫

𝑠

0

𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑎 (𝜏) 𝑑𝜏. (40)

Substituting (39) and (40) into (34) verifies that the optimal
value function equals (36).

3.3. Verification Theorem. The following two propositions
together serve as a verification theorem for the solution of the
HJB equation in (20).The results and proofs are classical. We

adopt the framework of [10]. For smoothening the proofs of
the propositions, a notation is introduced as follows:

L
𝑢
𝐽 =

𝜕𝐽

𝜕𝑡

+

𝜕𝐽

𝜕𝑟

(𝑎 − 𝑏𝑟) +

𝜕𝐽

𝜕𝑦

(𝑟𝑦 + 𝑢
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜆
𝑟
√𝑟

))

+

1

2

𝜕
2
𝐽

𝜕𝑟
2
𝜎
2

𝑟
𝑟 +

1

2

𝜕
2
𝐽

𝜕𝑦
2
𝑢
󸀠
(

Σ
𝑠
Σ
󸀠

𝑠
+ Σ

𝑠
Σ
󸀠

𝑠
𝑟 Σ

𝑟
𝜎
𝐵
√𝑟

Σ
󸀠

𝑟
𝜎
𝐵
√𝑟 𝜎

2

𝐵

)𝑢

−

𝜕
2
𝐽

𝜕𝑟𝜕𝑦

𝜎
𝑟
√𝑟𝑢

󸀠
(

Σ
𝑟
√𝑟

𝜎
𝐵

)

+ E [(𝐽 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝐽 (𝑡, 𝑦, 𝑟)) 𝜇] .

(41)

Clearly, the HJB equation in (20) can be rewritten as
sup

𝑢
L𝑢

𝑉 = 0.

Proposition 7. It is assumed that 𝐽 ∈ 𝐶
2
([0, 𝑇] × R2

+
) is a

nonnegative function such that L𝑢
𝐽 ≤ 0, 𝐽(𝑇, 𝑦, 𝑟) = 𝑈(𝑦),

and 𝐽(𝑡, 0, 𝑟) = 0 for every admissible control 𝑢. Then

𝐽 (𝑡, 𝑦, 𝑟) ≥ E [𝑈 (𝑌
𝑢
(𝑇)) | G𝑡

] . (42)

Proof. It is assumed that 𝑢 is an admissible control, and let
{𝜏
𝑛
}
𝑛
be a localizing sequence of stopping times for the local

semimartingale (𝑌
𝑢
(𝑠), 𝑟(𝑠)) starting with (𝑦, 𝑟) at time 𝑡.

Applying Itô’s lemma to 𝐽 with respect to (11), we have

𝑑𝐽 = {

𝜕𝐽

𝜕𝑡

+

𝜕𝐽

𝜕𝑟

(𝑎 − 𝑏𝑟)

+

𝜕𝐽

𝜕𝑦

(𝑟𝑦 + 𝑢
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜆
𝑟
√𝑟

)) +

1

2

𝜕
2
𝐽

𝜕𝑟
2
𝜎
2

𝑟
𝑟

+

1

2

𝜕
2
𝐽

𝜕𝑦
2
𝑢
󸀠
(

Σ
𝑠
Σ
󸀠

𝑠
+ Σ

𝑠
Σ
󸀠

𝑠
𝑟 Σ

𝑟
𝜎
𝐵
√𝑟

Σ
󸀠

𝑟
𝜎
𝐵
√𝑟 𝜎

2

𝐵

)𝑢

−

𝜕
2
𝐽

𝜕𝑟𝜕𝑦

𝜎
𝑟
√𝑟𝑢

󸀠
(

Σ
𝑟
√𝑟

𝜎
𝐵

)}𝑑𝑡

+ {

𝜕𝐽

𝜕𝑦

𝑢
󸀠
(

Σ
𝑠

Σ
𝑟
√𝑟

0
1×𝑛

𝜎
𝐵

) −

𝜕𝐽

𝜕𝑟

(01×𝑛 𝜎
𝑟
√𝑟)} 𝑑𝑊

𝑡

+ (𝐽 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝐽 (𝑡, 𝑦, 𝑟)) 𝑑N

𝑡

= {

𝜕𝐽

𝜕𝑡

+

𝜕𝐽

𝜕𝑟

(𝑎 − 𝑏𝑟)

+

𝜕𝐽

𝜕𝑦

(𝑟𝑦 + 𝑢
󸀠
(

Σ
𝑠
Λ + Σ

𝑟
𝜆
𝑟
𝑟

𝜆
𝑟
√𝑟

)) +

1

2

𝜕
2
𝐽

𝜕𝑟
2
𝜎
2

𝑟
𝑟

+

1

2

𝜕
2
𝐽

𝜕𝑦
2
𝑢
󸀠
(

Σ
𝑠
Σ
󸀠

𝑠
+ Σ

𝑠
Σ
󸀠

𝑠
𝑟 Σ

𝑟
𝜎
𝐵
√𝑟

Σ
󸀠

𝑟
𝜎
𝐵
√𝑟 𝜎

2

𝐵

)𝑢

−

𝜕
2
𝐽

𝜕𝑟𝜕𝑦

𝜎
𝑟
√𝑟𝑢

󸀠
(

Σ
𝑟
√𝑟

𝜎
𝐵

)}𝑑𝑡
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+ (𝐽 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝐽 (𝑡, 𝑦, 𝑟)) 𝜇 (𝑡) 𝑑𝑡

+ {

𝜕𝐽

𝜕𝑦

𝑢
󸀠
(

Σ
𝑠

Σ
𝑟
√𝑟

0
1×𝑛

𝜎
𝐵

) −

𝜕𝐽

𝜕𝑟

(01×𝑛 𝜎
𝑟
√𝑟)} 𝑑𝑊

𝑡

+ (𝐽 (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − 𝐽 (𝑡, 𝑦, 𝑟)) 𝑑M

𝑡
.

(43)

Hence, we have

E [𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
(𝑇 ∧ 𝜏

𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
)) | G

𝑡
]

= 𝐽 (𝑡, 𝑦, 𝑟) + ∫

𝑇∧𝜏𝑛

𝑡

L
𝑢
𝐽 (𝑠, 𝑌

𝑢
(𝑠) , 𝑟 (𝑠)) 𝑑𝑠

≤ 𝐽 (𝑡, 𝑦, 𝑟) .

(44)

Because of the nonnegativity of 𝐽, {𝐽(𝑇∧ 𝜏
𝑛
, 𝑌

𝑢
(𝑇∧ 𝜏

𝑛
), 𝑟(𝑇∧

𝜏
𝑛
))}

𝑛
is a sequence of nonnegative measurable functions.

Since

lim
𝑛→∞

𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
(𝑇 ∧ 𝜏

𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
))

= 𝐽 (𝑇, 𝑌
𝑢
(𝑇) , 𝑟 (𝑇)) = 𝑈 (𝑌

𝑢
(𝑇)) , a.s.,

(45)

Fatou’s lemma yields

E [𝑈 (𝑌
𝑢
(𝑇)) | G𝑡

]

= E [lim inf
𝑛→∞

𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
(𝑇 ∧ 𝜏

𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
)) | G

𝑡
]

≤ lim inf
𝑛→∞

E [𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
(𝑇 ∧ 𝜏

𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
)) | G

𝑡
]

≤ 𝐽 (𝑡, 𝑦, 𝑟) .

(46)

Proposition 8. Let 𝐽 ∈ 𝐶
2
([0, 𝑇] × R2

+
) be a nonneg-

ative function such that the family of random variables
{𝐽(𝜏, 𝑌

𝑢
∗

(𝜏), 𝑟(𝜏))}
𝜏
is uniformly integrable, where 𝑢

∗ is an
admissible control with the propertyL𝑢

∗

𝐽 = 0 and 𝜏 ∈ [𝑡, 𝑇] is
a stopping time for the process (𝑌𝑢

∗

(𝑠), 𝑟(𝑠)) starting with (𝑦, 𝑟)

at time 𝑡. If, furthermore, 𝐽(𝑇, 𝑦, 𝑟) = 𝑈(𝑦), 𝐽(𝑡, 0, 𝑟) = 0, and
L𝑢

𝐽 ≤ 0 for all admissible controls 𝑢, then

𝐽 (𝑡, 𝑦, 𝑟) = 𝑉 (𝑡, 𝑦, 𝑟) ∀ (𝑡, 𝑦, 𝑟) ∈ [0, 𝑇] ×R
2

+
. (47)

Proof. Thanks to the uniform integrability of the family
{𝐽𝜏, (𝑌

𝑢
∗

(𝜏), 𝑟(𝜏))}
𝜏
, we have

E [𝑈 (𝑌
𝑢
∗

(𝑇)) | G
𝑡
]

= E [ lim
𝑛→∞

𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
∗

(𝑇 ∧ 𝜏
𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
)) | G

𝑡
]

= lim
𝑛→∞

E [𝐽 (𝑇 ∧ 𝜏
𝑛
, 𝑌

𝑢
∗

(𝑇 ∧ 𝜏
𝑛
) , 𝑟 (𝑇 ∧ 𝜏

𝑛
)) | G

𝑡
]

≤ 𝐽 (𝑡, 𝑦, 𝑟) .

(48)

Furthermore, L𝑢
∗

𝐽 = 0 induce that E[𝑈(𝑌
𝑢
∗

(𝑇)) | G
𝑡
] =

𝐽(𝑡, 𝑦, 𝑟). Hence, by Proposition 7, 𝐽(𝑡, 𝑦, 𝑟) = 𝑉(𝑡, 𝑦, 𝑟) for all
(𝑡, 𝑦, 𝑟) ∈ [0, 𝑇] ×R2

+
.

The above propositions are classical and valid for a class of
positive utility functions including theCRRAutility. To verify
the uniform integrability of {𝐽(𝜏, 𝑌𝑢

∗

(𝜏), 𝑟(𝜏))}
𝜏
, we need to

calculate E[𝐽(𝜏, 𝑌𝑢
∗

(𝜏), 𝑟(𝜏)) | G
𝑡
], where

𝐽 (𝜏, 𝑌 (𝜏) , 𝑟 (𝜏))

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑉 (𝜏, 𝑌 (𝜏) , 𝑟 (𝜏)) when 𝑈(𝑦) =

𝑦
1−𝛾

1 − 𝛾

;

ln𝑌 (𝜏) + ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠

−E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+∫

𝑇

𝜏

(𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑟 (𝜏)

+∫

𝑠

𝜏

𝑒
−∫
𝑠

𝜂
𝑏(𝜃)𝑑𝜃

𝑎 (𝜂) 𝑑𝜂)

×(1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 when 𝑈(𝑦) = ln𝑦;

(49)

𝑉(𝑡, 𝑌(𝑡), 𝑟(𝜏)) is given in (26). The determination of the
positivity of 𝐾 (the solution of the Riccati differential equa-
tion (17)) will be discussed. The following proposition is a
comparison theorem for the solutions of standard Riccati
differential equations. The details can be found in [14].

Proposition 9. For 𝑖 = 1, 2, let 𝐾
𝑖
be the solution of

𝐾̇
𝑖
= −𝐴

󸀠

𝑖
(𝑡) 𝐾𝑖

− 𝐾
𝑖
𝐴
𝑖 (
𝑡) − 𝑄

𝑖 (
𝑡) + 𝐾

𝑖
𝑆
𝑖 (
𝑡) 𝐾𝑖

(50)

on some intervalI. If for some 𝑡
𝑓
∈ I, 𝐾

1
(𝑡
𝑓
) ≤ 𝐾

2
(𝑡
𝑓
) and

if

(
𝑄
2

𝐴
󸀠

2

𝐴
2

−𝑆
2

) (𝑡) − (
𝑄
1

𝐴
󸀠

1

𝐴
1

−𝑆
1

) (𝑡) ≥ 0 for 𝑡 ∈ I, (51)

where 0 is amatrixwith zero valued entries, then𝐾
1
(𝑡) ≤ 𝐾

2
(𝑡)

for all 𝑡 ∈ I ∩ (−∞, 𝑡
𝑓
].

Lemma 10. The solution of ODE (17),𝐾(𝑡, 𝑇), is a nonnegative
function of time 𝑡 for all 𝑡 ∈ [0, 𝑇].

Proof. Consider𝐴
1
= 𝐴

2
= −(1/2)(𝑏 + ((1 − 𝛾)/𝛾)𝜎

𝑟
𝜆
𝑟
), 𝑆

1
=

𝑆
2
= −𝜎

2

𝑟
/2𝛾 < 0,𝑄

1
= 0, and𝑄

2
= (1−𝛾+((1−𝛾)/2𝛾)𝜆

2

𝑟
) > 0.

It is obvious that 0
𝑚×𝑚

is the solution of

𝐾̇
1
= −𝐴

󸀠

1
(𝑡) 𝐾1

− 𝐾
1
𝐴
1 (

𝑡)

− 𝑄
1 (

𝑡) + 𝐾
1
𝑆
1 (

𝑡) 𝐾1
, 𝐾

1 (
𝑇) = 0;

(52)

and the solution of the ODE (17),𝐾(𝑡, 𝑇), is the solution of

𝐾̇
2
= −𝐴

󸀠

2
(𝑡) 𝐾2

− 𝐾
2
𝐴
2 (

𝑡)

− 𝑄
2 (

𝑡) + 𝐾
2
𝑆
2 (

𝑡) 𝐾2
, 𝐾

2 (
𝑇) = 0.

(53)
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Therefore, we have

(
𝑄
2

𝐴
󸀠

2

𝐴
2

−𝑆
2

) (𝑡) − (
𝑄
1

𝐴
󸀠

1

𝐴
1

−𝑆
1

) (𝑡)

= (

1 − 𝛾 +

1 − 𝛾

2𝛾

𝜆
2

𝑟
0

0 0

) (𝑡) ≥ 0
2×2

(54)

and 𝐾
2
(𝑇) ≥ 𝐾

1
(𝑇). Applying Proposition 9, 𝐾(𝑡, 𝑇) =

𝐾
2
(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑇], which means that the solution of

the matrix RDE (17),𝐾(𝑡, 𝑇), is a semipositive definite matrix
for all 𝑡 ∈ [0, 𝑇].

Next step is a calculation of the expected value of
𝐽(𝜏, 𝑌

𝑢
∗

(𝜏), 𝑟(𝜏)) at filtrationG
𝑡
, where 0 ≤ 𝑡 ≤ 𝜏.

Lemma 11. Given 0 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇 and using the notations in
Theorem 4,

E[𝑉 (𝜏, 𝑌
𝑢
∗

(𝜏) , 𝑟 (𝜏)) | G
𝑡
]

= E[

[

(𝑌
𝑢
∗

(𝜏))

1−𝛾

1 − 𝛾

𝑒
𝐾(𝜏,𝑇)𝑟(𝜏)+𝑀(𝜏,𝑇)

| G
𝑡
]

]

=

(𝑌 (𝑡))
1−𝛾

𝜓
𝜇
∗
(𝑡,𝜏)

(𝜓
𝑧
(1 − 𝛾) − 1)

1 − 𝛾

𝑒
𝐾̃(𝑡,𝜏)𝑟(𝑡)+𝑀̃(𝑡,𝜏)

,

(55)

where 𝐾̃(𝑡, 𝜏) and 𝑀̃(𝑡, 𝜏) satisfy the system of ordinary
differential equations (ODEs):

̇
𝐾̃ − (𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
))

+

𝜎
2

𝑟

2

𝐾̃
2
+ 1 − 𝛾 +

1 − 𝛾

2𝛾

(𝜆
2

𝑟
− 𝐾

2
𝜎
2

𝑟
) = 0,

𝐾̃ (𝜏, 𝜏) = 𝐾 (𝜏, 𝑇) ;

(56)

̇
𝑀̃ + 𝐾̃𝑎 +

1 − 𝛾

2𝛾

‖Λ‖
2
= 0,

𝑀̃ (𝜏, 𝜏) = 𝑀 (𝜏, 𝑇) ,

(57)

𝜓Z(𝑡) is a moment generating function of random variableZ
and 𝜇

∗
(𝑡, 𝜏) = ∫

𝜏

𝑡
𝜇(𝑠)𝑑𝑠.

Proof. Let

Ṽ (𝑡, 𝑌, 𝑟)

=

𝑌
1−𝛾

𝜓
𝜇
∗
(𝑡,𝜏)

(𝜓
𝑧
(1 − 𝛾) − 1)

1 − 𝛾

𝑒
𝐾̃(𝑡,𝜏)𝑟+𝑀̃(𝑡,𝜏)

,

(58)

where 𝐾̃ and 𝑀̃ are the solution of the system of ODEs (56)
and (57), respectively; 𝑟 follows the dynamic:

𝑑𝑟 (𝑡) = (𝑎 − 𝑏𝑟) 𝑑𝑡 − 𝜎
𝑟
√𝑟𝑑𝑊

𝑟

𝑡
(59)

and 𝑌
∗ follows the dynamic:

𝑑𝑌

𝑌

= 𝑟
∗
𝑑𝑡 + 𝜎

∗
𝑑𝑊

𝑡
− (1 − 𝑒

−𝑧
) 𝑑N

𝑡
,

𝑟
∗
= 𝑟(1 +

1 + 𝜆
2

𝑟
− 𝜆

𝑟
𝐾𝜎

𝑟

𝛾

) +

‖Λ‖
2

𝛾

,

𝜎
∗
=

1

𝛾

(Λ
󸀠

√𝑟 (𝜆
𝑟
− 𝐾𝜎

𝑟
)) ;

(60)

𝜓Z(𝑡) is amoment generating function of random variableZ
and 𝜇

∗
(𝑡, 𝜏) = ∫

𝜏

𝑡
𝜇(𝑠)𝑑𝑠. Clearly,

Ṽ (𝜏, 𝑌, 𝑟) =
𝑌
1−𝛾

1 − 𝛾

𝑒
𝐾(𝜏,𝑇)𝑟+𝑀(𝜏,𝑇)

= E[

𝑌(𝜏)
1−𝛾

1 − 𝛾

𝑒
𝐾(𝜏,𝑇)𝑟(𝜏)+𝑀(𝜏,𝑇)

| G
𝜏
]

= E [𝑉 (𝜏, 𝑌
𝑢
∗

(𝜏) , 𝑟 (𝜏)) | G
𝜏
] .

(61)

Next,

Ṽ
𝑡
+ Ṽ

𝑟 (
𝑎 − 𝑏𝑟) +

1

2

Ṽ
𝑟𝑟
𝜎
2

𝑟
𝑟

+ E [(Ṽ (𝑡, 𝑌 − 𝑌 (1 − 𝑒
−𝑧
) , 𝑟) − Ṽ (𝑡, 𝑌, 𝑟)) 𝜇]

+ Ṽ
𝑌
(𝑟
∗
𝑌) +

1

2

Ṽ
𝑌𝑌

𝜎
∗
𝜎
∗󸀠
𝑌
2

− Ṽ
𝑟𝑌

(

𝑟

𝛾

𝜎
𝑟
(𝜆

𝑟
− 𝐾𝜎

𝑟
))𝑌

(62)

would be calculated. Taking partial derivatives to Ṽ with
respect to 𝑡, 𝑌, and 𝑟, we have

Ṽ
𝑡
= (−𝜇 (𝜓

𝑧
(1 − 𝛾) − 1) +

̇
𝐾̃𝑟 +

̇
𝑀̃) Ṽ

= (−E [𝜇 (𝑒
−(1−𝛾)𝑧

− 1)] +
̇

𝐾̃

󸀠

𝑟 + 𝑀̇) Ṽ;

Ṽ
𝑟
= 𝐾̃Ṽ; Ṽ

𝑟𝑟
= 𝐾̃

2Ṽ;

Ṽ
𝑦
=

1 − 𝛾

𝑦

Ṽ; Ṽ
𝑦𝑦

= −

𝛾 (1 − 𝛾)

𝑦
2

Ṽ;

Ṽ
𝑟𝑦

=

1 − 𝛾

𝑦

𝐾̃Ṽ;

E [(Ṽ (𝑡, 𝑦 − 𝑦 (1 − 𝑒
−𝑧
) , 𝑟) − Ṽ) 𝜇]

= E [(𝑒
−𝑧(1−𝛾)

− 1) 𝜇] Ṽ.

(63)
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Substituting these expressions into (62) yields

Ṽ
𝑡
+ Ṽ

𝑟 (
𝑎 − 𝑏𝑟) +

1

2

Ṽ
𝑟𝑟
𝜎
2

𝑟
𝑟

+ E [(Ṽ (𝑡, 𝑌 − 𝑌 (1 − 𝑒
−𝑧
) , 𝑟) − Ṽ (𝑡, 𝑌, 𝑟)) 𝜇]

+ Ṽ
𝑌
(𝑟
∗
𝑌) +

1

2

Ṽ
𝑌𝑌

𝜎
∗
𝜎
∗󸀠
𝑌
2

− Ṽ
𝑟𝑌

(

𝑟

𝛾

𝜎
𝑟
(𝜆

𝑟
− 𝐾𝜎

𝑟
))𝑌

= Ṽ{[ ̇
𝐾̃ − (𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
))

+

𝜎
2

𝑟

2

𝐾̃
2
+ 1 − 𝛾 +

1 − 𝛾

2𝛾

(𝜆
2

𝑟
− 𝐾

2
𝜎
2

𝑟
)] 𝑟

+
̇

𝑀̃ + 𝐾̃𝑎 +

1 − 𝛾

2𝛾

‖Λ‖
2
} = 0.

(64)

Combining the equalities (61) and (64), Ṽ(𝑡, 𝑌, 𝑟) =

E[𝑉(𝜏, 𝑌
𝑢
∗

(𝜏), 𝑟(𝜏)) | G
𝑡
] is proved.

To show the uniform integrability of {𝑉(𝜏, 𝑌
𝑢
∗

(𝜏), 𝑟(𝜏))}
𝜏

is equivalent to showing the boundedness of the function
value Ṽ(𝑡, 𝑌, 𝑟) by Lemma 11. Hence, the boundedness of the
solution of ODE in (56), 𝐾̃(𝑡, 𝜏), induces the boundedness
of function value Ṽ(𝑡, 𝑌, 𝑟). The following proposition (c.f.
Theorem 4.3 of [15]) is useful for showing the boundedness
of 𝐾̃(𝑡, 𝜏).

Lemma 12. Given 0 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇 and using the notations in
Theorem 4 and Lemma 11,

𝐾̃ (𝑡, 𝜏) ≤ 𝐾 (𝑡, 𝑇) , (65)

for any stopping times 𝜏 ∈ [0, 𝑇] and 𝑡 ∈ [0, 𝜏].

Proof. Consider a stopping time 𝜏 such that 𝜏 ∈ [0, 𝑇] and
𝑡 ∈ [0, 𝜏]. By choosing

𝐴
1
= −

1

2

(𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
)) ;

𝐴
2
= −

1

2

(𝑏 +

1 − 𝛾

𝛾

𝜎
𝑟
𝜆
𝑟
) ;

𝑆
1
= −

𝜎
2

𝑟

2

; 𝑆
2
= −

𝜎
2

𝑟

2𝛾

;

𝑄
1
= 1 − 𝛾 +

1 − 𝛾

2𝛾

(𝜆
2

𝑟
− 𝐾

2
𝜎
2

𝑟
) ;

𝑄
2
= 1 − 𝛾 +

1 − 𝛾

2𝛾

𝜆
2

𝑟
,

(66)

it is obvious that 𝐾̃(𝑡, 𝜏) is the solution of

𝐾̇
1
= −𝐴

󸀠

1
(𝑡) 𝐾1

− 𝐾
1
𝐴
1 (

𝑡) − 𝑄
1 (

𝑡) + 𝐾
1
𝑆
1 (

𝑡) 𝐾1
,

𝐾
1 (

𝜏) = 𝐾̃ (𝜏, 𝜏) ;

(67)

and the solution of the matrix RDE (17), 𝐾(𝑡, 𝑇), is the
solution of

𝐾̇
2
= −𝐴

󸀠

2
(𝑡) 𝐾2

− 𝐾
2
𝐴
2 (

𝑡) − 𝑄
2 (

𝑡) + 𝐾
2
𝑆
2 (

𝑡) 𝐾2
,

𝐾
2 (

𝜏) = 𝐾 (𝜏, 𝑇) .

(68)

Therefore, we have

(
𝑄
2

𝐴
󸀠

2

𝐴
2

−𝑆
2

) (𝑡) − (
𝑄
1

𝐴
󸀠

1

𝐴
1

−𝑆
1

) (𝑡)

=

1 − 𝛾

2𝛾

(

𝐾
2
𝜎
2

𝑟
−𝐾𝜎

2

𝑟

−𝐾𝜎
2

𝑟
𝜎
2

𝑟

) (𝑡) .

(69)

Clearly, 𝐾2
𝜎
2

𝑟
and (1 − 𝛾)/2𝛾 are greater than zero; and

det(
𝐾
2
𝜎
2

𝑟
−𝐾𝜎

2

𝑟

−𝐾𝜎
2

𝑟
𝜎
2

𝑟

) = 0. (70)

Hence, the matrix in (69), ((1 − 𝛾)/2𝛾) (
𝐾
2
𝜎
2
𝑟 −𝐾𝜎

2
𝑟

−𝐾𝜎
2
𝑟 𝜎
2
𝑟

) (𝑡), is
semipositive definite. Combining the fact that 𝐾(𝜏, 𝑇) =

𝐾
2
(𝜏) ≥ 𝐾

1
(𝜏) = 𝐾̃(𝜏, 𝜏) and applying Proposition 9,

𝐾̃(𝑡, 𝜏) ≥ 𝐾(𝑡, 𝑇) for all 𝑡 ∈ [0, 𝜏].

Lemma 13. Given 0 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇 and using the notations in
Theorem 4 and Lemma 11,

𝑘 (𝑡, 𝜏) ≤ 𝐾̃ (𝑡, 𝜏) , (71)

for any stopping times 𝜏 ∈ [0, 𝑇] and 𝑡 ∈ [0, 𝜏], where 𝑘(𝑡, 𝜏) is
the non-blow-up solution of the following RDE:

̇
𝑘 − (𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
))

+

𝜎
2

𝑟

2

𝑘
2
−

1 − 𝛾

2𝛾

𝐾
2
𝜎
2

𝑟
= 0,

𝑘 (𝜏, 𝜏) = 𝐾 (𝜏, 𝑇) .

(72)

Proof. Consider a stopping time 𝜏 such that 𝜏 ∈ [0, 𝑇] and
𝑡 ∈ [0, 𝜏]. By choosing

𝐴
1
= −

1

2

(𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
)) ;

𝐴
2
= −

1

2

(𝑏 +

1 − 𝛾

𝛾

(𝜆
𝑟
𝜎
𝑟
− 𝐾𝜎

2

𝑟
)) ;

𝑆
1
= −

𝜎
2

𝑟

2

; 𝑆
2
= −

𝜎
2

𝑟

2

;

𝑄
1
= −

1 − 𝛾

2𝛾

𝐾
2
𝜎
2

𝑟
;

𝑄
2
= 1 − 𝛾 +

1 − 𝛾

2𝛾

(𝜆
2

𝑟
− 𝐾

2
𝜎
2

𝑟
) ,

(73)
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it is obvious that 𝑘(𝑡, 𝜏) is the solution of

𝐾̇
1
= −𝐴

󸀠

1
(𝑡) 𝐾1

− 𝐾
1
𝐴
1 (

𝑡) − 𝑄
1 (

𝑡) + 𝐾
1
𝑆
1 (

𝑡) 𝐾1
,

𝐾
1 (

𝜏) = 𝑘 (𝜏, 𝜏) ;

(74)

and 𝐾̃(𝑡, 𝜏) is the solution of

𝐾̇
2
= −𝐴

󸀠

2
(𝑡) 𝐾2

− 𝐾
2
𝐴
2 (

𝑡) − 𝑄
2 (

𝑡) + 𝐾
2
𝑆
2 (

𝑡) 𝐾2
,

𝐾
2 (

𝜏) = 𝐾̃ (𝜏, 𝜏) .

(75)

Therefore, we have

(
𝑄
2

𝐴
󸀠

2

𝐴
2

−𝑆
2

) (𝑡) − (
𝑄
1

𝐴
󸀠

1

𝐴
1

−𝑆
1

) (𝑡)

= (

1 − 𝛾

2𝛾

𝐾
2
𝜎
2

𝑟
0

0 0

) ≥ 0
2×2

,

(76)

and 𝐾
2
(𝜏) ≥ 𝐾

1
(𝜏). Applying Proposition 9, 𝑘(𝑡, 𝜏) ≤ 𝐾̃(𝑡, 𝜏)

for all 𝑡 ∈ [0, 𝜏]. It is because 𝜎
2

𝑟
/2 ≥ 0 and −((1 −

𝛾)/2𝛾)𝐾
2
𝜎
2

𝑟
≤ 0 in ODE (72), and 𝑘(𝜏, 𝜏) = 𝐾(𝜏, 𝑇) ≥ 0,

which is proved in Lemma 10, that 𝑘(𝑡, 𝜏) exists for all 𝑡 ∈

[0, 𝜏] byTheorem 4.1 in [16].

Theorem 14. The function,

Ṽ (𝑡, 𝑌, 𝑟) =
𝑌
1−𝛾

𝜓
𝜇
∗
(𝑡,𝜏)

(𝜓
𝑧
(1 − 𝛾) − 1)

1 − 𝛾

𝑒
𝐾̃(𝑡,𝜏)𝑟+𝑀̃(𝑡,𝜏)

, (77)

is bounded for all 0 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇 if 𝐾(𝑡, 𝑇) has no finite escape
time on [0, 𝑇].

Proof. Suppose that 𝐾(𝑡, 𝑇) has no finite escape time on
[0, 𝑇]. It implies that 𝐾̃(𝑡, 𝜏) are bounded for 0 ≤ 𝑡 ≤

𝜏 ≤ 𝑇, and so is 𝑀̃(𝑡, 𝜏). Since the moment generating
function of 𝜇∗(𝑡, 𝜏) and 𝑧, 𝜓

𝜇
∗
(𝑡,𝜏)

(⋅) and 𝜓
𝑧
(⋅), then Ṽ(𝑡, 𝑌, 𝛽)

is bounded.

The above theorem shows the uniform integrability of
{𝑉(𝜏, 𝑌

𝑢
∗

(𝜏), 𝛽(𝜏)}
𝜏
. The calculation of

E[ln𝑌 (𝜏) + ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ ∫

𝑇

𝜏

(𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑟 (𝜏) + ∫

𝑠

𝜏

𝑒
−∫
𝑠

𝜂
𝑏(𝜃)𝑑𝜃

𝑎 (𝜂) 𝑑𝜂)

× (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

(78)

will be shown as follows:

E[ ln𝑌 (𝜏) + ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ ∫

𝑇

𝜏

(𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑟 (𝜏) + ∫

𝑠

𝜏

𝑒
−∫
𝑠

𝜂
𝑏(𝜃)𝑑𝜃

𝑎 (𝜂) 𝑑𝜂)

× (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

= ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ E[ ln𝑌
𝑢
∗

(𝜏)

+ ∫

𝑇

𝜏

(𝑒
−∫
𝑠

𝜏
𝑏(𝜂)𝑑𝜂

𝑟 (𝜏) + ∫

𝑠

𝜏

𝑒
−∫
𝑠

𝜂
𝑏(𝜃)𝑑𝜃

𝑎 (𝜂) 𝑑𝜂)

× (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

= ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ E[ ln𝑌
𝑢
∗

(𝜏)

+∫

𝑇

𝜏

E [𝑟 (𝑠) | G𝜏
] (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

= ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ E [ln𝑌
𝑢
∗

(𝜏) | G𝑡
]

+ E[∫

𝑇

𝜏

E [𝑟 (𝑠) | G𝜏
] (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

= ∫

𝑇

𝜏

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝜏

E [𝜇 (𝑠)] 𝑑𝑠

+ ln𝑌 (𝑡) + ∫

𝜏

𝑡

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝜏

𝑡

E [𝜇 (𝑠)] 𝑑𝑠

+ ∫

𝜏

𝑡

E [𝑟 (𝑠) | G𝑡
] (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠

+ E[∫

𝑇

𝜏

E [𝑟 (𝑠) | G𝜏
] (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝑡
]

= ∫

𝑇

𝑡

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝑡

E [𝜇 (𝑠)] 𝑑𝑠 + ln𝑌 (𝑡)

+ E[E[∫

𝑇

𝑡

𝑟 (𝑠) (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 | G
𝜏
] | G

𝑡
]

= ∫

𝑇

𝑡

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝑡

E [𝜇 (𝑠)] 𝑑𝑠
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+ ln𝑌 (𝑡) + ∫

𝑇

𝑡

E [𝑟 (𝑠) | G𝑡
] (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠

= ∫

𝑇

𝑡

‖Λ (𝑠)‖
2

2

𝑑𝑠 − E [𝑧] ∫

𝑇

𝑡

E [𝜇 (𝑠)] 𝑑𝑠 + ln𝑌 (𝑡)

+ ∫

𝑇

𝑡

(𝑒
−∫
𝑠

𝑡
𝑏(𝜂)𝑑𝜂

𝑟 (𝑡) + ∫

𝑠

𝑡

𝑒
−∫
𝑠

𝜂
𝑏(𝜃)𝑑𝜃

𝑎 (𝜂) 𝑑𝜂)

× (1 −

𝜆
𝑟(
𝑠)
2

2

)𝑑𝑠 < +∞.

(79)

Hence, {𝐽(𝜏, 𝑌𝑢
∗

(𝜏), 𝛽(𝜏)}
𝜏
is uniformly integrable.

4. Conclusion

We investigate the optimal investment of insurers with the
extended CIR stochastic interest rate model by maximizing
the expected utility on the insurer’s terminal wealth. Using
the HJB framework, the problem is converted into a PIDE
for which we derive a closed-form explicit solution. A
verification theorem is provided to offer conditions under
which the solution of the PIDE is indeed the optimal value
of the expected utility. Hence, the derived optimal control
is indeed the optimal control for the original optimization
problem. Future potential researches include incorporating
longevity risk [17] into the ALM problemwith CIR stochastic
interest rate and extending the result to multivariate CIR or
Wishart process as discussed in [18]. Techniques reported
here are useful for establishing the verification theorem.
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