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This paper investigates the stabilization problem for impulsive switched systemswith time delays. First, exponential stability criteria
of the delayed impulsive switched systems are established by use of the Lyapunov-Krasovskii functional method. Based on these
results, sufficient conditions for the existence of a guaranteed cost control are also given. Subject to these sufficient conditions, the
closed-loop impulsive switched system under the guaranteed cost control law will be exponentially stable with a guaranteed cost
value.

1. Introduction

During the evolution process of a variety of disciplines such
as engineering, economics, and biology, there often exists
an impressive characteristic that the system state changes
rapidly due to state jumping and the coexistence of contin-
uous dynamics and discrete events. These jumping effects
and switching phenomena can be modeled as an impulsive
switched system.The system stability problem is one of main
problems for such impulsive switched systems.

Recently, there are many results on stability analysis of
impulsive switched systems. For instance, the robust stabiliza-
tion problem for a class of impulsive switched systems under
the LQ guaranteed cost control is studied in [1]. In addition,
sufficient conditions for the existence of a guaranteed cost
control law are given as well. In [2], sufficient conditions,
independent of time delays and impulsive switching intervals,
are derived by using a Lyapunov-Krasovskii’s technique,
ensuring asymptotical stability of impulsive switched systems
with time invariant delays. Moreover, stability criteria prob-
lems for uncertain impulsive switched systems with input
delay are studied by using the receding horizon method
in [3]. Appropriate switching controllers are designed and
linear matrix inequality conditions are derived to guarantee

the closed-loop uncertain impulsive switched systems under
a designed delayed controller. Other relevant references can
be found in [4–9].

On the other hand, time delay has become a common
phenomenon frequently occurred in science and engineer-
ing. Stability of time delay systems has received increas-
ing attention among the applied mathematics and control
community; for example, see [10–12] and the references
therein. Most of these results are derived by use of either the
Razumikhin method or the Lyapunov-Krasovskii method.

Since both impulses and time delays are ubiquitous in the
real world, it is necessary to analyze their stability perfor-
mance of dynamical systems involving impulses, time delays,
and switchings. There already existed some effective results
for the stability analysis of either impulsive switched systems
or time delay systems mentioned above. However, there are
few results on impulsive switched systems with time delays.
This motivates our research in this paper. Our aim is to
apply a set of improved Lyapunov functions to analyze the
exponential stability performance of the impulsive switched
systems with time delays, to derive sufficient conditions to
ensure the exponential stability, and to design guaranteed cost
controllers based on the linear matrix inequality approach.
The designed guaranteed cost controller can ensure not only
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exponential stability of the closed-loop system but also the
guaranteed cost performance.

The remaining sections of the paper proceed as follows.
Section 2 provides necessary propositions and definitions. In
Section 3, sufficient conditions for ensuring the closed-loop
system exponentially stable are presented, and the designed
guaranteed cost controller for impulsive switched systems
with time delays are presented. Finally, conclusion remarks
are presented in Section 4.

2. Problem Statement

Consider the following impulsive switched system with time
delay:

𝑥̇ (𝑡) =

̂

𝐴

𝑖𝑘
𝑥 (𝑡) +

̂

𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ (𝑡)) + 𝐶

𝑖𝑘
𝑢 (𝑡) 𝑡 ̸= 𝑡

𝑘
,

(1a)

Δ𝑥 (𝑡) = 𝐷

𝑘
𝑥 (𝑡) 𝑡 = 𝑡

𝑘
, (1b)

𝑥 (𝑡) = 𝜑 (𝑡) − 1 ≤ 𝑡 ≤ 0, (1c)

̂

𝐴

𝑖𝑘
= 𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
,

̂

𝐵

𝑖𝑘
= 𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
, (1d)

where 𝑥(𝑡) ∈ 𝑅

𝑛 is the state, 𝑢(𝑡) ∈ 𝑅

𝑃 is the control input,
𝑛, 𝑝 ∈ 𝑁. 𝐴

𝑖𝑘
, 𝐵
𝑖𝑘
, 𝐶
𝑖𝑘
, and𝐷

𝑘
are constant real matrices with

appropriate dimensions. The delay function ℎ(𝑡) satisfies the
condition

0 ≤ ℎ

1
≤ ℎ (𝑡) ≤ ℎ

2
. (2)

Δ𝑥(𝑡) = 𝑥(𝑡

+
) −𝑥(𝑡

−
), 𝑥(𝑡+) = limV→0+𝑥(𝑡 + V), limV→0+𝑥(𝑡 −

V) = 𝑥(𝑡

−

𝑘
) = 𝑥(𝑡

𝑘
), where 𝑖

𝑘
∈ {1, 2, 3, . . . , 𝑚}, 𝑘 ∈ 𝑁,

𝑚 ∈ 𝑁. 𝑡
𝑘
is an impulsive switching point, 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ <

𝑡

𝑘
< ⋅ ⋅ ⋅ < 𝑡

∞
. Δ𝐴
𝑖𝑘
(⋅) and Δ𝐵

𝑖𝑘
(⋅) are unknown real norm-

bounded matrix valued functions, representing time-varying
parameter uncertainties. The admissible uncertainties are
assumed to be of the form

[Δ𝐴

𝑖𝑘
(𝑡) Δ𝐵

𝑖𝑘
(𝑡)] = 𝐸

𝑖𝑘
Ψ

𝑖𝑘
(𝑡) [𝐻𝑖𝑘

𝐽

𝑖𝑘
] . (3)

𝐸

𝑖𝑘
, 𝐻
𝑖𝑘
, 𝐽
𝑖𝑘
are known real constant matrices, Ψ

𝑖𝑘
(𝑡) is an

unknown real time-varyingmatrix satisfyingΨ𝑇
𝑖𝑘
(𝑡)Ψ

𝑖𝑘
(𝑡) < 𝐼,

and 𝐼 is the identity matrix with appropriate dimension.
Consider the following cost function:

𝐽 =

∞

∑

𝑘=0

∫

𝑡𝑘+1

𝑡𝑘

[𝑥

𝑇
(𝑡) 𝑅𝑖𝑘

𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑄𝑖𝑘

𝑢 (𝑡)] 𝑑𝑡, (4)

where 𝑅

𝑖𝑘
> 0 and 𝑄

𝑖𝑘
> 0 are positive definite symmetric

matrices.

Definition 1. Suppose that there exist a control law 𝑢(𝑡) =

𝐹

𝑖𝑘
𝑥(𝑡) and a positive constant 𝐽∗ such that, for all admissible

uncertainties, the closed-loop system ((1a), (1b), (1c), and
(1d)) is exponentially stable and the cost function (4) satisfies
𝐽 ≤ 𝐽

∗, and then 𝑢(𝑡) is the exponential guaranteed cost
control law for the impulsive switched systemwith time delay.
Here, 𝐽∗ is the guaranteed cost value.

In addition, the following lemmas are necessary to pro-
ceed.

Lemma 2 (see [13, Proposition 2.2]). Let 𝐴, 𝐷, 𝐸, and 𝐹 be
real matrices of appropriate dimensions with ‖𝐹‖ ≤ 1. Then,
for any matrix 𝑃 = 𝑃

𝑇
> 0 and scalar 𝜀 > 0,

𝜀𝐼 − 𝐸𝑃𝐸

𝑇
> 0,

(𝐴 + 𝐷𝐹𝐸) 𝑃(𝐴 + 𝐷𝐹𝐸)

𝑇

≤ 𝐴𝑃𝐴

𝑇
+ 𝐴𝑃𝐸

𝑇
(𝜀𝐼 − 𝐸𝑃𝐸

𝑇
)

−1

𝐸𝑃𝐴

𝑇
+ 𝜀𝐷𝐷

𝑇
.

(5)

Lemma 3 (Schur complement lemma (see [14])). Given
constant matrices 𝑋, 𝑌, and 𝑍 with appropriate dimensions
satisfying 𝑋 = 𝑋

𝑇 and 𝑌 = 𝑌

𝑇
> 0. then 𝑋 + 𝑍

𝑇
𝑌

−1
𝑍 < 0 if

and only if

(

𝑋 𝑍

𝑇

𝑍 −𝑌

) < 0. (6)

Lemma 4 (integral inequality [15]). For any constant matrix
𝑍 = 𝑍

𝑇
> 0 and a scalar b such that the following integrations

are well defined,

𝑏∫

𝑡

𝑡−𝑏

𝑥 (𝑠)

𝑇
𝑍𝑥 (𝑠) 𝑑𝑠 ≥ (∫

𝑡

𝑡−𝑏

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑍(∫

𝑡

𝑡−𝑏

𝑥 (𝑠) 𝑑𝑠) .

(7)

3. Main Results

First, we will present sufficient conditions for exponential
stability of the impulsive switched system ((1a), (1b), (1c), and
(1d)) without control input.

Theorem 5. Consider the time-delayed impulsive switched
system ((1a), (1b), (1c), and (1d)) with the cost function (4).
Suppose there exist 𝛼 > 0, 𝜀

1
> 0, 𝑃

𝑖𝑘
= 𝑃

𝑇

𝑖𝑘
> 0, such that the

following conditions are satisfied:

(i)

[

[

[

[

[

[

[

[

𝑘

11
0 𝜆

2
𝑆

1
𝜆

3
𝑆

2
0

∗ 𝑘

22
𝜆

3
𝑆

3
𝜆

3
𝑆

3
0

∗ ∗ 𝑘

33
0 0

∗ ∗ ∗ 𝑘

44
0

∗ ∗ ∗ ∗ 𝑘

55

]

]

]

]

]

]

]

]

< 0, (8)

(ii)

[

𝑃

𝑖𝑘−1
(𝐼 + 𝐷

𝑘
)

𝑇
𝑃

𝑖𝑘

𝑃

𝑖𝑘
(𝐼 + 𝐷

𝑘
) 𝑃

𝑖𝑘

] > 0, (9)
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where,

𝑘

11
=

̂

𝐴

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘

̂

𝐴

𝑖𝑘
+ 𝑈

1
+ 𝑈

2
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+ 2𝛼𝑃

𝑖𝑘
+ 𝑅

𝑖𝑘
,

𝑘

22
=

̂

𝐵

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘

̂

𝐵

𝑖𝑘
− 2𝜆

3
𝑆

3
,

𝑘

33
= − 𝜆

2
𝑈

1
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

3
,

𝑘

44
= − 𝜆

3
𝑈

2
− 𝜆

3
𝑆

2
− 𝜆

3
𝑆

3
,

𝑘

55
= ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
+ (ℎ

2
− ℎ

1
)

2
𝑆

3
.

(10)

Then, the impulsive switched system ((1a), (1b), (1c), and (1d))
is exponentially stable.

Proof. When 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], consider the Lyapunov-Krasovskii

function candidate

𝑉 (𝑡, 𝑥

𝑡
) =

4

∑

𝑖=1

𝑉

𝑖
(𝑡, 𝑥

𝑡
) , (11)

where

𝑉

1
(𝑡, 𝑥

𝑡
) = 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

𝑥 (𝑡) ,

𝑉

2
(𝑡, 𝑥

𝑡
) = ∫

𝑡

𝑡−ℎ1

𝑒

2𝛼(𝑠−𝑡)
𝑥

𝑇
(𝑠) 𝑈1

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ2

𝑒

2𝛼(𝑠−𝑡)
𝑥

𝑇
(𝑠) 𝑈2

𝑥 (𝑠) 𝑑𝑠,

𝑉

3
(𝑡, 𝑥

𝑡
) = ℎ

1
∫

0

−ℎ1

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆1

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠

+ ℎ

2
∫

0

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆2

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠,

𝑉

4
(𝑡, 𝑥

𝑡
) = (ℎ

2
− ℎ

1
)

× ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆3

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠.

(12)

Let

Ω = 𝜆max (𝑃𝑖𝑘) + ℎ

1
𝜆max (𝑈1) + ℎ

2
𝜆max (𝑈2)

+ 0.5ℎ

3

1
𝜆max (𝑆1) + 0.5ℎ

3

2
𝜆max (𝑆2)

+ (ℎ

2

2
− ℎ

2

1
) (ℎ

2
− ℎ

1
) 𝜆max (𝑆3) ;

(13)

then, we can easily check that

𝜆‖𝑥(𝑡)‖

2
≤ 𝑉 (𝑡, 𝑥

𝑡
) ≤ Ω‖𝑥 (𝑡)‖

2
, 𝑡 ∈ 𝑅

+
. (14)

Taking the derivative of 𝑉

𝑖
(𝑡, 𝑥

𝑡
), 𝑖 = 1, 2, 3, 4, along the

trajectory of the closed-loop system, we obtain

̇

𝑉

1
(𝑡, 𝑥

𝑡
)

= [

̂

𝐴

𝑖𝑘
𝑥 (𝑡) +

̂

𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ (𝑡))]

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

[

̂

𝐴

𝑖𝑘
𝑥 (𝑡) +

̂

𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ (𝑡))]

= 𝑥

𝑇
(𝑡) [

̂

𝐴

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘

̂

𝐴

𝑖𝑘
] 𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡 − ℎ (𝑡))

̂

𝐵

𝑇

𝑖𝑘
𝑃

𝑖𝑘
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

̂

𝐵

𝑇

𝑖𝑘
𝑥 (𝑡 − ℎ (𝑡)) ,

(15)

̇

𝑉

2
(𝑡, 𝑥

𝑡
)

= −2𝛼𝑒

−2𝛼𝑡
[∫

𝑡

𝑡−ℎ1

𝑒

2𝛼𝑠
𝑥

𝑇
(𝑠) 𝑈1

𝑥 (𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ2

𝑒

2𝛼𝑠
𝑥

𝑇
(𝑠) 𝑈2

𝑥 (𝑠) 𝑑𝑠]

+ 𝑒

−2𝛼𝑡
[𝑒

2𝛼𝑡
𝑥

𝑇
(𝑡) 𝑈1

𝑥 (𝑡) − 𝑒

2𝛼(𝑡−ℎ1)
𝑥

𝑇
(𝑡 − ℎ

1
)

× 𝑈

1
𝑥 (𝑡 − ℎ

1
) + 𝑒

2𝛼𝑡
𝑥

𝑇
(𝑡) 𝑈2

𝑥 (𝑡)

− 𝑒

2𝛼(𝑡−ℎ2)
𝑥

𝑇
(𝑡 − ℎ

2
) 𝑈

1
𝑥 (𝑡 − ℎ

2
)]

= −2𝛼𝑉

2
+ 𝑥

𝑇
(𝑡) (𝑈1

+ 𝑈

2
) 𝑥 (𝑡)

− 𝜆

2
𝑥

𝑇
(𝑡 − ℎ

1
) 𝑈

1
𝑥 (𝑡 − ℎ

1
)

− 𝜆

3
𝑥

𝑇
(𝑡 − ℎ

2
) 𝑈

1
𝑥 (𝑡 − ℎ

2
) ,

(16)

̇

𝑉

3
(𝑡, 𝑥

𝑡
)

= −2𝛼𝑉

3

+ 𝑒

−2𝛼𝑡 𝑑

𝑑𝑡

[ℎ

1
∫

0

−ℎ1

∫

𝑡

𝑡+𝑠

𝑒

2𝛼𝜏
𝑥̇

𝑇
(𝜏) 𝑆1

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠

+ ℎ

2
∫

0

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒

2𝛼𝜏
𝑥̇

𝑇
(𝜏) 𝑆2

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠]

= −2𝛼𝑉

3
+ 𝑥̇

𝑇
(𝑡) (ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
) 𝑥̇ (𝑡)

− ℎ

1
∫

0

−ℎ1

𝑒

2𝛼𝑠
𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆1

𝑥̇ (𝑡 + 𝑠) 𝑑𝑠

− ℎ

2
∫

0

−ℎ2

𝑒

2𝛼𝑠
𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆2

𝑥̇ (𝑡 + 𝑠) 𝑑𝑠.

(17)
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From Lemma 4, we have

̇

𝑉

3
(𝑡, 𝑥

𝑡
)

≤ −2𝛼𝑉

3
+ 𝑥̇

𝑇
(𝑡) (ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
) 𝑥̇ (𝑡)

− 𝑥

𝑇
(𝑡) (𝜆2

𝑆

1
+ 𝜆

3
𝑆

2
) 𝑥 (𝑡) + 2𝜆

2
𝑥

𝑇
(𝑡) 𝑆1

𝑥 (𝑡 − ℎ

1
)

− 𝜆

2
𝑥

𝑇
(𝑡 − ℎ

1
) 𝑆

1
𝑥 (𝑡 − ℎ

1
) + 2𝜆

3
𝑥

𝑇
(𝑡) 𝑆2

𝑥 (𝑡 − ℎ

2
)

− 𝜆

3
𝑥

𝑇
(𝑡 − ℎ

2
) 𝑆

2
𝑥 (𝑡 − ℎ

2
) ,

(18)
̇

𝑉

4
(𝑡, 𝑥

𝑡
)

= −2𝛼𝑉

4
+ 𝑒

−2𝛼𝑡
(ℎ

2
− ℎ

1
)

× ∫

−ℎ1

−ℎ2

[𝑒

2𝛼𝑡
𝑥̇

𝑇
(𝑡) 𝑆3

𝑥̇ (𝑡)

− 𝑒

2𝛼(𝑡+𝑠)
𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆3

𝑥̇ (𝑡 + 𝑠)] 𝑑𝑠

= −2𝛼𝑉

4
+ (ℎ

2
− ℎ

1
)

2
𝑥̇

𝑇
(𝑡) 𝑆3

𝑥̇ (𝑡)

− (ℎ

2
− ℎ

1
) ∫

−ℎ1

−ℎ2

𝑒

2𝛼𝑠
𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆3

𝑥̇ (𝑡 + 𝑠) 𝑑𝑠

≤ −2𝛼𝑉

4
+ (ℎ

2
− ℎ

1
)

2
𝑥̇

𝑇
(𝑡) 𝑆3

𝑥̇ (𝑡)

− (ℎ

2
− ℎ

1
) 𝑒

−2𝛼ℎ2
[∫

−ℎ

−ℎ2

𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆3

𝑥̇ (𝑡 + 𝑠) 𝑑𝑠

+∫

−ℎ1

−ℎ

𝑥̇

𝑇
(𝑡 + 𝑠) 𝑆3

𝑥̇ (𝑡 + 𝑠) 𝑑𝑠]

≤ −2𝛼𝑉

4
+ (ℎ

2
− ℎ

1
)

2
𝑥̇

𝑇
(𝑡) 𝑆3

𝑥̇ (𝑡)

− 𝜆

3
[2𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ (𝑡))

− 2𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

2
)

+ 𝑥

𝑇
(𝑡 − ℎ

2
) 𝑆

3
𝑥 (𝑡 − ℎ

2
)

+ 𝑥

𝑇
(𝑡 − ℎ

1
) 𝑆

3
𝑥 (𝑡 − ℎ

1
)

−2𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

1
)] .

(19)

Then, we add (15) to (19) together to yield

̇

𝑉 (𝑡, 𝑥

𝑡
) + 2𝛼𝑉 (𝑡, 𝑥

𝑡
)

≤ 𝑥

𝑇
(𝑡) [

̂

𝐴

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘

̂

𝐴

𝑖𝑘
+ 𝑈

1
+ 𝑈

2

+2𝛼𝑃

𝑖𝑘
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+𝑅

𝑖𝑘
] 𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡 − ℎ (𝑡)) [

̂

𝐵

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘

̂

𝐵

𝑇

𝑖𝑘
− 2𝜆

3
𝑆

3
]

× 𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥

𝑇
(𝑡 − ℎ

1
) [−𝜆

2
𝑈

1
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

3
] 𝑥 (𝑡 − ℎ

1
)

+ 𝑥

𝑇
(𝑡 − ℎ

2
) [−𝜆

3
𝑈

2
− 𝜆

3
𝑆

2
− 𝜆

3
𝑆

3
] 𝑥 (𝑡 − ℎ

2
)

+ 2𝜆

3
𝑥

𝑇
(𝑡) 𝑆2

𝑥 (𝑡 − ℎ

2
) + 2𝜆

2
𝑥

𝑇
(𝑡) 𝑆1

𝑥 (𝑡 − ℎ

1
)

+ 2𝜆

3
𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

2
)

+ 2𝜆

3
𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

1
)

+ 𝑥̇

𝑇
(𝑡) [ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
+ (ℎ

2
− ℎ

1
)

2
𝑆

3
] 𝑥̇ (𝑡)

− 𝑥

𝑇
(𝑡) 𝑅𝑖𝑘

𝑥 (𝑡) .

(20)

Let 𝜉𝑇(𝑡) = [𝑥

𝑇
(𝑡), 𝑥

𝑇
(𝑡 − ℎ(𝑡)), 𝑥

𝑇
(𝑡 − ℎ

1
), 𝑥

𝑇
(𝑡 − ℎ

2
), 𝑥̇

𝑇
(𝑡)],

𝑘 =

[

[

[

[

[

[

𝑘

11
0 𝜆

2
𝑆

1
𝜆

3
𝑆

2
0

∗ 𝑘

22
𝜆

3
𝑆

3
𝜆

3
𝑆

3
0

∗ ∗ 𝑘

33
0 0

∗ ∗ ∗ 𝑘

44
0

∗ ∗ ∗ ∗ 𝑘
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]

]

]

]

]

]

. (21)

We have

̇

𝑉 (𝑡, 𝑥

𝑡
) + 2𝛼𝑉 (𝑡, 𝑥

𝑡
) ≤ 𝜉

𝑇
(𝑡) 𝑘𝜉 (𝑡) − 𝑥

𝑇
(𝑡) 𝑅𝑖𝑘

𝑥 (𝑡) .

(22)

Since 𝑘 < 0 from ((1a), (1b), (1c), and (1d)), it is clear
that ̇

𝑉(𝑡, 𝑥

𝑡
) + 2𝛼𝑉(𝑡, 𝑥

𝑡
) < 0 or, equivalently, 𝑉(𝑡, 𝑥

𝑡
) ≤

𝑉(0, 𝑥

0
)𝑒

−2𝛼𝑡, ∀𝑡 ∈ 𝑅

+.
Taking (14) into account, we have

𝜆‖𝑥(𝑡)‖

2
≤ 𝑉 (𝑡, 𝑥

𝑡
) ≤ 𝑉 (0, 𝑥

0
) 𝑒

−2𝛼𝑡
≤ Ω𝑒

−2𝛼𝑡
‖𝑥 (0)‖

2
,

(23)

and hence

‖𝑥 (𝑡)‖ ≤

√

Ω

𝜆

‖𝑥 (0)‖ 𝑒

−𝛼𝑡
,

(24)

which shows that the impulsive switched system ((1a), (1b),
(1c), and (1d)) is exponentially stable when 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
].

Next, let us consider the case at the impulsive and
switching time point 𝑡

𝑘
, 𝑡

𝑘
= 1, 2, 3, . . .,

𝑉 (𝑡

+

𝑘
) − 𝑉 (𝑡

−

𝑘
) = 𝑥 (𝑡

+

𝑘
)

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
)

𝑇

𝑃

𝑖𝑘−1
𝑥 (𝑡

−

𝑘
) .

(25)

Noting that Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡−
𝑘
) = 𝑥(𝑡

𝑘
), we have

𝑉 (𝑡

+

𝑘
) − 𝑉 (𝑡

−

𝑘
)

= 𝑥 (𝑡

+

𝑘
)

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

𝑘
)

𝑇
𝑃

𝑖𝑘−1
𝑥 (𝑡

𝑘
)

= 𝑥 (𝑡

𝑘
)

𝑇
[(𝐼 + 𝐷

𝑘
)

𝑇
𝑃

𝑖𝑘
(𝐼 + 𝐷

𝑘
) − 𝑃

𝑖𝑘−1
] 𝑥 (𝑡

𝑘
) .

(26)

From (ii), we know that [ 𝑃𝑖𝑘−1 (𝐼+𝐷𝑘)
𝑇
𝑃𝑖𝑘

𝑃𝑖𝑘
(𝐼+𝐷𝑘) 𝑃𝑖𝑘

] > 0, which is

equivalent to (𝐼 + 𝐷

𝑘
)

𝑇
𝑃

𝑖𝑘
(𝐼 + 𝐷

𝑘
) − 𝑃

𝑖𝑘−1
< 0.
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So, 𝑉(𝑡

+

𝑘
) − 𝑉(𝑡

−

𝑘
) < 0. Therefore, we can conclude that

the impulsive switched system ((1a), (1b), (1c), and (1d)) is
exponentially stable.

Theorem 5 develops sufficient conditions for exponential
stability of the impulsive switched system ((1a), (1b), (1c), and
(1d)) under the case that 𝑢(𝑡) = 0. In the next theorem,
we will design the guaranteed cost controller in the form of
𝑢(𝑡) = 𝐹

𝑖𝑘
𝑥(𝑡) and sufficient conditions for the existence of a

guaranteed cost control are also presented as well.

Theorem6. Consider the impulsive switched systemwith time
delay ((1a), (1b), (1c), and (1d)) with the cost function (4) and
suppose there exist 𝛼 > 0, 𝜀

1
> 0, 𝑃

𝑖𝑘
= 𝑃

𝑇

𝑖𝑘
> 0. If there exist

symmetric positive definite matrices 𝑈
1
, 𝑈
2
, 𝑆
1
, 𝑆
2
, 𝑆
3
, and 𝐾

such that the following conditions are satisfied:

(i)

[

𝜀

1
𝐼 𝐸

𝑇

𝑖𝑘
𝑃

𝑖𝑘

𝑃

𝑖𝑘
𝐸

𝑖𝑘
𝑃

𝑖𝑘

] > 0, (27)

(ii)

[

Π

1
Π

2

∗ Π

3

] < 0, (28)

(iii)

[

𝑃

𝑖𝑘−1
(𝐼 + 𝐷

𝑘
)

𝑇
𝑃

𝑖𝑘

𝑃

𝑖𝑘
(𝐼 + 𝐷

𝑘
) 𝑃

𝑖𝑘

] > 0, (29)

where

Π

1
=

[

[

[

[

[

[

[

[

[

𝑤

11
0 𝜆

2
𝑆

1
𝜆

3
𝑆

2
0

∗ 𝑤

22
𝜆

3
𝑆

3
𝜆

3
𝑆

3
0

∗ ∗ 𝑤

33
0 0

∗ ∗ ∗ 𝑤

44
0

∗ ∗ ∗ ∗ 𝑤
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]

]

]

]

]

]

]

]

]

,

Π

2
=

[

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
𝐾 𝐾(𝐶

−1

𝑖𝑘
)

𝑇

𝐻

𝑇

𝑖𝑘
0

0 0 0 0 (𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)

𝑇

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

,

Π

3
= diag(𝐸𝑇

𝑖𝑘
𝐸

𝑖𝑘
− 𝜀

1
𝐼, −𝐼, −𝑄

−1

𝑖𝑘
, −

1

𝜀

1

𝐼, −𝐼) ,

𝑤

11
= 𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 3𝑃

2

𝑖𝑘
+ 𝑈

1
+ 𝑈

2
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+ 2𝛼𝑃

𝑖𝑘
+ 𝑅

𝑖𝑘
,

𝑤

22
= −2𝜆

3
𝑆

3
,

𝑤

33
= −𝜆

2
𝑈

1
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

3
,

𝑤

44
= −𝜆

3
𝑈

2
− 𝜆

3
𝑆

2
− 𝜆

3
𝑆

3
,

𝑤

55
= ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
+ (ℎ

2
− ℎ

1
)

2
𝑆

3
,

𝜆

1
= 𝑒

−2𝛼(ℎ1+ℎ2)
, 𝜆

2
= 𝑒

−2𝛼ℎ1
,

𝜆

3
= 𝑒

−2𝛼ℎ2
, 𝜆 = 𝜆min (𝑃𝑖𝑘) ,

(30)

then the guaranteed cost control law 𝑢(𝑡) = 𝐶

−1

𝑖𝑘
𝐾

𝑇
𝑥(𝑡) can

ensure that the impulsive switched system ((1a), (1b), (1c), and
(1d)) is exponentially stable. Moreover, the guaranteed cost
value is

𝐽

∗
= 𝑉 (0, 𝑥

0
) . (31)

Proof. When 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], choose the Lyapunov-Krasovskii

function candidate to be similar to Theorem 5

𝑉 (𝑡, 𝑥

𝑡
) =

4

∑

𝑖=1

𝑉

𝑖
(𝑡, 𝑥

𝑡
) , (32)

where

𝑉

1
(𝑡, 𝑥

𝑡
) = 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

𝑥 (𝑡) ,

𝑉

2
(𝑡, 𝑥

𝑡
) = ∫

𝑡

𝑡−ℎ1

𝑒

2𝛼(𝑠−𝑡)
𝑥

𝑇
(𝑠) 𝑈1

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ2

𝑒

2𝛼(𝑠−𝑡)
𝑥

𝑇
(𝑠) 𝑈2

𝑥 (𝑠) 𝑑𝑠,

𝑉

3
(𝑡, 𝑥

𝑡
) = ℎ

1
∫

0

−ℎ1

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆1

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠

+ ℎ

2
∫

0

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆2

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠,

𝑉

4
(𝑡, 𝑥

𝑡
) = (ℎ

2
− ℎ

1
)

× ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝑠

𝑒

2𝛼(𝜏−𝑠)
𝑥̇

𝑇
(𝜏) 𝑆3

𝑥̇ (𝜏) 𝑑𝜏 𝑑𝑠.

(33)

Taking the derivative of 𝑉

𝑖
(𝑡, 𝑥

𝑡
), 𝑖 = 1, 2, 3, 4, along the

trajectory of the closed-loop system, we obtain

̇

𝑉

1
(𝑡, 𝑥

𝑡
)

= [

̂

𝐴

𝑖𝑘
𝑥 (𝑡) +

̂

𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ(𝑡)) + 𝐶

𝑖𝑘
𝑢(𝑡)]

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

[

̂

𝐴

𝑖𝑘
𝑥 (𝑡) +

̂

𝐵

𝑖𝑘
𝑥 (𝑡 − ℎ (𝑡)) + 𝐶

𝑖𝑘
𝑢 (𝑡)] .

(34)
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Put (1d) and 𝑢(𝑡) = 𝐹

𝑖𝑘
𝑥(𝑡) into it and then we can get

̇

𝑉

1
(𝑡, 𝑥

𝑡
) = 𝑥

𝑇
(𝑡) [(𝐴 𝑖𝑘

+ Δ𝐴

𝑖𝑘
)

𝑇

𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘
(𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
)

+𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘
𝐶

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡 − ℎ (𝑡)) (𝐵𝑖𝑘

+ Δ𝐵

𝑖𝑘
)

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
) 𝑥 (𝑡 − ℎ (𝑡)) .

(35)

Next, it follows from Lemma 2 that

(𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
)

𝑇

𝑃

𝑖𝑘
+ 𝑃

𝑖𝑘
(𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
)

≤ (𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
)

𝑇

(𝐴

𝑖𝑘
+ Δ𝐴

𝑖𝑘
) + 𝑃

2

𝑖𝑘

≤ 𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
(𝜀

1
𝐼 − 𝐸

𝑇

𝑖𝑘
𝐸

𝑖𝑘
)

−1

𝐸

𝑇

𝑖𝑘
𝐴

𝑖𝑘

+ 𝜀

1
𝐻

𝑇

𝑖𝑘
𝐻

𝑖𝑘
+ 𝑃

2

𝑖𝑘
,

𝑥

𝑇
(𝑡 − ℎ (𝑡)) (𝐵𝑖𝑘

+ Δ𝐵

𝑖𝑘
)

𝑇

𝑃

𝑖𝑘
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑃𝑖𝑘

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
) 𝑥 (𝑡 − ℎ (𝑡))

≤ 𝑥

𝑇
(𝑡) 𝑃

2

𝑖𝑘
𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − ℎ (𝑡))

× (𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)

𝑇

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
) 𝑥 (𝑡 − ℎ (𝑡)) .

(36)

Substituting (36) into (35) yields

̇

𝑉

1
(𝑡, 𝑥

𝑡
) ≤ 𝑥

𝑇
(𝑡) [𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
(𝜀

1
𝐼 − 𝐸

𝑇

𝑖𝑘
𝐸

𝑖𝑘
)

−1

𝐸

𝑇

𝑖𝑘
𝐴

𝑖𝑘

+𝜀

1
𝐻

𝑇

𝑖𝑘
𝐻

𝑖𝑘
+ 3𝑃

2

𝑖𝑘
+ 𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
𝐶

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡 − ℎ (𝑡)) [(𝐵𝑖𝑘

+ Δ𝐵

𝑖𝑘
)

𝑇

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)]

× 𝑥 (𝑡 − ℎ (𝑡)) .

(37)

The derivatives of 𝑉

2
(𝑡, 𝑥

𝑡
), 𝑉
3
(𝑡, 𝑥

𝑡
), and 𝑉

4
(𝑡, 𝑥

𝑡
) are the

same as those inTheorem 5.Then, we can put (37), (16), (18),
and (19) together to obtain

̇

𝑉 (𝑡, 𝑥

𝑡
) + 2𝛼𝑉 (𝑡, 𝑥

𝑡
)

≤ 𝑥

𝑇
(𝑡) [𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
(𝜀

1
𝐼 − 𝐸

𝑇

𝑖𝑘
𝐸

𝑖𝑘
)

−1

𝐸

𝑇

𝑖𝑘
𝐴

𝑖𝑘

+ 𝜀

1
𝐻

𝑇

𝑖𝑘
𝐻

𝑖𝑘
+ 3𝑃

2

𝑖𝑘
+ 𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
𝐶

𝑖𝑘
𝐹

𝑖𝑘
+ 𝑈

1

+ 𝑈

2
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+ 2𝛼𝑃

𝑖𝑘
+ 𝑅

𝑖𝑘

+𝐹

𝑇

𝑖𝑘
𝑄

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡 − ℎ (𝑡)) [(𝐵𝑖𝑘

+ Δ𝐵

𝑖𝑘
)

𝑇

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
) − 2𝜆

3
𝑆

3
]

× 𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥

𝑇
(𝑡 − ℎ

1
) [−𝜆

2
𝑈

1
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

3
] 𝑥 (𝑡 − ℎ

1
)

+ 𝑥

𝑇
(𝑡 − ℎ

2
) [−𝜆

3
𝑈

2
− 𝜆

3
𝑆

2
− 𝜆

3
𝑆

3
] 𝑥 (𝑡 − ℎ

2
)

+ 2𝜆

3
𝑥

𝑇
(𝑡) 𝑆2

𝑥 (𝑡 − ℎ

2
) + 2𝜆

2
𝑥

𝑇
(𝑡) 𝑆1

𝑥 (𝑡 − ℎ

1
)

+ 2𝜆

3
𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

2
)

+ 2𝜆

3
𝑥

𝑇
(𝑡 − ℎ (𝑡)) 𝑆3

𝑥 (𝑡 − ℎ

1
)

+ 𝑥̇

𝑇
(𝑡) [ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
+ (ℎ

2
− ℎ

1
)

2
𝑆

3
] 𝑥̇ (𝑡)

− 𝑥

𝑇
(𝑡) [𝑅𝑖𝑘

+ 𝐹

𝑇

𝑖𝑘
𝑄

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡) .

(38)

Let

𝑤 =

[

[

[

[

[

[

[

[

[

[

𝑤

11
0 𝜆

2
𝑆

1
𝜆

3
𝑆

2
0

∗ 𝑤

22
𝜆

3
𝑆

3
𝜆

3
𝑆

3
0

∗ ∗ 𝑤

33
0 0

∗ ∗ ∗ 𝑤

44
0

∗ ∗ ∗ ∗ 𝑤

55

]

]

]

]

]

]

]

]

]

]

,

𝑤

11
= 𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
(𝜀

1
𝐼 − 𝐸

𝑇

𝑖𝑘
𝐸

𝑖𝑘
)

−1

𝐸

𝑇

𝑖𝑘
𝐴

𝑖𝑘

+ 𝜀

1
𝐻

𝑇

𝑖𝑘
𝐻

𝑖𝑘
+ 3𝑃

2

𝑖𝑘
+ 𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
𝐶

𝑖𝑘
𝐹

𝑖𝑘
+ 𝑈

1

+ 𝑈

2
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+ 2𝛼𝑃

𝑖𝑘
+ 𝑅

𝑖𝑘
+ 𝐹

𝑇

𝑖𝑘
𝑄

𝑖𝑘
𝐹

𝑖𝑘
,

𝑤

22
= (𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)

𝑇

(𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
) − 2𝜆

3
𝑆

3
,

𝑤

33
= −𝜆

2
𝑈

1
− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

3
,

𝑤

44
= −𝜆

3
𝑈

2
− 𝜆

3
𝑆

2
− 𝜆

3
𝑆

3
,

𝑤

55
= ℎ

2

1
𝑆

1
+ ℎ

2

2
𝑆

2
+ (ℎ

2
− ℎ

1
)

2
𝑆

3
.

(39)

Then, we have

̇

𝑉 (𝑡, 𝑥

𝑡
) + 2𝛼𝑉 (𝑡, 𝑥

𝑡
)

≤ 𝜉

𝑇
(𝑡) 𝑤𝜉 (𝑡) − 𝑥

𝑇
(𝑡) [𝑅𝑖𝑘

+ 𝐹

𝑇

𝑖𝑘
𝑄

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡) .

(40)

By Lemma 3, it proves that 𝑤 < 0 holds if

[

𝑤

1
𝑤

2

∗ 𝑤

3

] < 0, (41)
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where

𝑤

1
=

[

[

[

[

[

[

[

[

[

𝑤

11
0 𝜆

2
𝑆

1
𝜆

3
𝑆

2
0

∗ 𝑤

22
𝜆

3
𝑆

3
𝜆

3
𝑆

3
0

∗ ∗ 𝑤

33
0 0

∗ ∗ ∗ 𝑤

44
0

∗ ∗ ∗ ∗ 𝑤

55

]

]

]

]

]

]

]

]

]

,

𝑤

2
=

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
𝐹

𝑇

𝑖𝑘
𝐻

𝑇

𝑖𝑘
0

0 0 0 0 (𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)

𝑇

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]

]

]

]

]

]

]

]

]

,

𝑤

3
= diag(𝐸𝑇

𝑖𝑘
𝐸

𝑖𝑘
− 𝜀

1
𝐼, −𝐼, −𝑄

−1

𝑖𝑘
, −

1

𝜀

1

𝐼, −𝐼) ,

𝑤

11
= 𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
+ 3𝑃

2

𝑖𝑘
+ 𝑈

1
+ 𝑈

2

− 𝜆

2
𝑆

1
− 𝜆

3
𝑆

2
+ 2𝛼𝑃

𝑖𝑘
+ 𝑅

𝑖𝑘
,

𝑤

22
= −2𝜆

3
𝑆

3
.

(42)

Letting 𝐹

𝑇

𝑖𝑘
𝐶

𝑇

𝑖𝑘
= 𝐾, we get 𝐹

𝑖𝑘
= 𝐶

−1

𝑖𝑘
𝐾

𝑇. Then, we have

[

𝑤

1
𝑤

2

∗ 𝑤

3

] = [

Π

1
Π

2

∗ Π

3

] < 0,

Π

1
= 𝑤

1
,

Π

2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖𝑘
𝐸

𝑖𝑘
𝐾 𝐾(𝐶

−1

𝑖𝑘
)

𝑇

𝐻

𝑇

𝑖𝑘
0

0 0 0 0 (𝐵

𝑖𝑘
+ Δ𝐵

𝑖𝑘
)

𝑇

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

Π

3
= 𝑤

3
.

(43)

In addition, since [ Π1 Π2
∗ Π3

] < 0 (seeTheorem 6 (ii)), [ 𝑤1 𝑤2∗ 𝑤3 ] <

0, then we plug it into (40) and obtain

̇

𝑉 (𝑡, 𝑥

𝑡
) + 2𝛼𝑉 (𝑡, 𝑥

𝑡
) < 0. (44)

Now, we can easily conclude that the impulsive switched
system ((1a), (1b), (1c), and (1d)) is exponentially stable.
Looking back to (40), we can get

̇

𝑉 (𝑡, 𝑥

𝑡
) ≤ −𝑥

𝑇
(𝑡) [𝑅𝑖𝑘

+ 𝐹

𝑇

𝑖𝑘
𝑄

𝑖𝑘
𝐹

𝑖𝑘
] 𝑥 (𝑡) , (45)

𝐽 =

∞

∑

𝑘=0

∫

𝑡𝑘+1

𝑡𝑘

[𝑥

𝑇
(𝑡) 𝑅𝑖𝑘

𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑄𝑖𝑘

𝑢 (𝑡)] 𝑑𝑡

≤ − lim
𝑘→∞

𝑘

∑

𝑗=0

∫

𝑡𝑗+1

𝑡𝑗

𝑑𝑉 (𝑡, 𝑥

𝑡
)

𝑑𝑡

𝑑𝑡

= − lim
𝑘→∞

{−𝑉 (0, 𝑥

0
) + 𝑉 (𝑡

−

1
, 𝑥

𝑡
−

1

) − 𝑉 (𝑡

+

1
, 𝑥

𝑡
+

1

)

+ 𝑉 (𝑡

−

2
, 𝑥

𝑡
−

2

) − 𝑉 (𝑡

+

2
, 𝑥

𝑡
+

2

)

+ ⋅ ⋅ ⋅ − 𝑉 (𝑡

−

𝑘
, 𝑥

𝑡
−

𝑘

)

+𝑉 (𝑡

+

𝑘
, 𝑥

𝑡
+

𝑘

) − 𝑉 (𝑡

−

𝑘+1
, 𝑥

𝑡
−

𝑘+1

)}

= lim
𝑘→∞

{

{

{

𝑉(0, 𝑥

0
) +

𝑘

∑

𝑗=1

{𝑉 (𝑡

+

𝑗
, 𝑥

𝑡
+

𝑗

) − 𝑉(𝑡

−

𝑗
, 𝑥

𝑡
−

𝑗

)}

+𝑉 (𝑡

−

𝑘+1
, 𝑥

𝑡
−

𝑘+1

)

}

}

}

= 𝑉 (0, 𝑥

0
)

+ lim
𝑘→∞

𝑘

∑

𝑗=1

𝑥 (𝑡

𝑗
)

𝑇

{(𝐼 + 𝐷

𝑗
)

𝑇

𝑃

𝑖𝑗
(𝐼 + 𝐷

𝑗
) − 𝑃

𝑖𝑗−1
} 𝑥 (𝑡

𝑗
)

+ lim
𝑘→∞

𝑉(𝑡

−

𝑘+1
, 𝑥

𝑡
−

𝑘+1

) .

(46)

We know that

lim
𝑘→∞

𝑉(𝑡

−

𝑘+1
, 𝑥

𝑡
−

𝑘+1

) = 0,

lim
𝑘→∞

𝑘

∑

𝑗=1

𝑥 (𝑡

𝑗
)

𝑇

{(𝐼 + 𝐷

𝑗
)

𝑇

𝑃

𝑖𝑗
(𝐼 + 𝐷

𝑗
) − 𝑃

𝑖𝑗−1
} 𝑥 (𝑡

𝑗
) < 0.

(47)

Thus, we can get

𝐽 < 𝑉 (0, 𝑥

0
) = 𝐽

∗
. (48)

This completes the proof.

4. Conclusion

The exponential stabilization problem for impulsive switched
systemswith time delays is considered in this paper. Sufficient
conditions for exponential stability of the impulsive switched
systems without control input are derived via the Lyapunov-
Krasovskii functional method. Moreover, sufficient condi-
tions for the exponential stability of the impulsive switched
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systems under the designed guaranteed cost control law are
established and the corresponding guaranteed cost value can
be obtained as well.
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