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This paper presents a method to obtain lower and upper bounds for the minimum distance between points 𝑎 and 𝑏 of the solution
of the second order linear differential equation 𝑦󸀠󸀠 + 𝑞(𝑥)𝑦 = 0 satisfying general separated boundary conditions of the type
𝑎
11
𝑦(𝑎) + 𝑎

12
𝑦
󸀠
(𝑎) = 0 and 𝑎

21
𝑦(𝑏) + 𝑎

22
𝑦
󸀠
(𝑏) = 0. The method is based on the recursive application of a linear operator to certain

functions, a recursive application that makes these bounds converge to the exact distance between 𝑎 and 𝑏 as the recursivity index
grows. The method covers conjugacy and disfocality as particular cases.

1. Introduction

In a recent paper of the authors (see [1]) it was shown that the
recursive application of the operator 𝑃 : 𝐶[𝑎, 𝑏] → 𝐶

2
[𝑎, 𝑏]

defined by

𝑃𝑓 = ∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞 (𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡, (1)

where 𝑞(𝑥) is continuous on [𝑎, 𝑏] and strictly positive almost
everywhere on that same interval, provided a method to
determine if the second order linear differential equation

𝑦
󸀠󸀠
+ 𝑞 (𝑥) 𝑦 = 0 (2)

was either left disfocal or left nondisfocal in the interval [𝑎, 𝑏],
the concept of left disfocal alluding to the nonexistence of
a nontrivial solution 𝑦(𝑥) of (2) with zeroes in [𝑎, 𝑏] such that
𝑦
󸀠
(𝑏) = 0 (a similar definition exists for right disfocal). The

method was based on two features of the operator 𝑃, namely,

(i) the fact that 𝑃 is positive and monotonic, so that for
𝑓 > 𝑦 > 𝑔 > 0 on ]𝑎, 𝑏[ one has 𝑃𝑘𝑓(𝑥) > 𝑃𝑘𝑦(𝑥) >
𝑃
𝑘
𝑔(𝑥) on ]𝑎, 𝑏];

(ii) the fact that lim
𝑘→∞

𝑃
𝑘
𝑓(𝑏) = ∞ if (2) is left

nondisfocal in an interval interior to [𝑎, 𝑏] and
lim
𝑘→∞

𝑃
𝑘
𝑓(𝑥) = 0 for any value of 𝑥 ∈ [𝑎, 𝑏] as long

as (2) is left disfocal in [𝑎, 𝑏].

The purpose of this paper is to extend the results of [1]
to (2) with the more general boundary conditions:

𝑎
11
𝑦 (𝑎) + 𝑎

12
𝑦
󸀠

(𝑎) = 0, 𝑎
21
𝑦 (𝑏) + 𝑎

22
𝑦
󸀠

(𝑏) = 0,

(3)

which contain conjugacy (𝑦(𝑎) = 𝑦(𝑏) = 0) and nondisfocal-
ity as particular cases, by means of the recursive application
of the operator 𝐿 : 𝐶[𝑎, 𝑏] → 𝐶

2
[𝑎, 𝑏] defined by

𝐿𝑓 = ∫

𝑏

𝑎

𝐺 (𝑥, 𝑡) 𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡, (4)

where 𝐺(𝑥, 𝑡) (or 𝐺
𝑎𝑏
(𝑥, 𝑡), as we will name it in some sec-

tions) is the Green function of the problem

𝑦
󸀠󸀠
= −𝑔 (𝑥) , 𝑎

11
𝑦 (𝑎) + 𝑎

12
𝑦
󸀠

(𝑎) = 0,

𝑎
21
𝑦 (𝑏) + 𝑎

22
𝑦
󸀠

(𝑏) = 0.

(5)
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In consequence this paper will yield criteria (in fact infinitely
many) to obtain lower and upper bounds for the minimum
distance between points 𝑎 and 𝑏 satisfying (3) when 𝑦(𝑥) is
a solution of (2), bounds of which will be shown to converge
to the exact values of such a minimum distance as the index
𝑘 grows. Besides extending the results of [1] to the problem
(2)-(3), other results based on the same strategies will also be
introduced and it will be shown that they improve the results
of [1] in many cases.

Operators of the type (4) have often been used in the
determination of Lyapunov inequalities for different types
of equations and boundary conditions since Nehari [2] first
noted that a solution 𝑦 of (2) such that 𝑦(𝑎) = 𝑦(𝑏) = 0

satisfied

𝑦 (𝑥) = ∫

𝑏

𝑎

𝐺 (𝑥, 𝑡) 𝑞 (𝑡) 𝑦 (𝑡) 𝑑𝑡, (6)

with

𝐺 (𝑥, 𝑡) =

min (𝑥 − 𝑎, 𝑡 − 𝑎)min (𝑏 − 𝑥, 𝑏 − 𝑡)
𝑏 − 𝑎

, (7)

which implied

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ∫

𝑏

𝑎

|𝐺 (𝑥, 𝑡)| 𝑞 (𝑡)
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

<
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞

∫

𝑏

𝑎

|𝐺 (𝑡, 𝑡)| 𝑞 (𝑡) 𝑑𝑡;

(8)

that is,

1 < ∫

𝑏

𝑎

|𝐺 (𝑡, 𝑡)| 𝑞 (𝑡) 𝑑𝑡. (9)

Beesack [3], Hinton [4], Levin [5, 6], and Reid [7–9] are other
remarkable examples of such a use, as the excellent monog-
raphy on Lyapunov inequalities of [10, Chapter 1] shows.
Although formulae like (6) can be applied recursively if
𝑞(𝑥) ≥ 0 and 𝐺(𝑥, 𝑡) ≥ 0 to obtain more complex versions of
(9), the fact is that the iterative application of𝐿 has rarely been
proposed in any papers, with the exception of Harris [11],
who suggested its application for the disfocal case—𝑦(𝑎) =
𝑦
󸀠
(𝑏) = 0 or 𝑦󸀠(𝑎) = 𝑦(𝑏) = 0—without getting to prove

that it guaranteed any improvement. We will show in this
paper that under certain conditions (3) the function𝐺(𝑥, 𝑡) is
positive and the recursive application is possible and provides
lower and upper bounds which improve all existing results as
of today. We will also show that even in the case that 𝐺(𝑥, 𝑡)
gets to be negative it is still sometimes possible to obtain
upper and lower bounds for the distance between 𝑎 and 𝑏,
which are as close to the real distance between 𝑎 and 𝑏 as
desired.

It is also worth remarking the significant interest that
the calculation of lower bounds (i.e., Lyapunov kind-of
inequalities) has enjoyed in comparison with the problem of
the determination of upper bounds, regardless of the type
of boundary conditions (3). This fact was already noted by
Došlý in [12] for the conjugate case (𝑦(𝑎) = 𝑦(𝑏) = 0) and by
the authors in [1, 13, 14] for the nondisfocal case. References
[12, 15–20] are notable exceptions to this trend.

As indicated in the first paragraph, throughout the paper
we will assume that 𝑞(𝑥) is continuous on an interval 𝐼 ⊂ 𝑅
such that [𝑎, 𝑏] ⊂ 𝐼 and that 𝑞(𝑥) is strictly positive almost
everywhere on [𝑎, 𝑏]. This allows defining the internal prod-
uct

⟨𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑞 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥, (10)

for 𝑓, 𝑔 continuous on [𝑎, 𝑏] (it is easy to prove that (10) sat-
isfies all the conditions required by an internal product) and
the associated norm ‖ ⋅ ‖

2
defined by

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2
= (∫

𝑏

𝑎

𝑞 (𝑥) 𝑓
2

(𝑥) 𝑑𝑥)

1/2

. (11)

Likewise, we will use the notation 𝐿 to name the operator
defined in (4), 𝐿𝑓 or 𝐿{𝑓} to name the function with domain
[𝑎, 𝑏] resulting from the application of 𝐿 to 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏],
and 𝐿𝑓(𝑥) or 𝐿{𝑓}(𝑥) to name the value of the function 𝐿𝑓
at the point 𝑥 and 𝐿

𝛼,𝛽
when other extremes of integration 𝛼,

𝛽 potentially different from 𝑎, 𝑏 are used in (4). In that latter
case, any ‖ ⋅ ‖

2
norm appearing in the same formula will be

assumed to be calculatedwith𝛼 and𝛽 as integration extremes
in (11).

We will say that the points 𝑎󸀠, 𝑏󸀠 are interior to an interval
[𝑎, 𝑏] if 𝑎󸀠, 𝑏󸀠 ∈ [𝑎, 𝑏] and [𝑎󸀠, 𝑏󸀠] ̸= [𝑎, 𝑏].

The organization of the paper is as follows. Section 2 will
present the main properties of the operator 𝐿. Sections 3 and
4 will apply these properties in different ways to find upper
and lower bounds for the minimum distance between points
𝑎 and 𝑏 satisfying (3). Section 5 will introduce some for-
mulae which simplify the calculations required in Section 3.
Section 6 will apply the method to several examples. Finally
Section 7 will draw several conclusions.

2. The Operator 𝐿𝑓=∫
𝑏

𝑎
𝐺(𝑥,𝑡)𝑞(𝑡)𝑓(𝑡)𝑑𝑡

The purpose of this section will be to present the main pro-
perties of the operator 𝐿 defined in (4) for 𝑞(𝑥) as specified in
the Introduction. As was done in [1], for the sake of clarity
such properties will be presented in several lemmas which
will lead toTheorem 5,which can be regarded as the key result
of this section.

Lemma 1. The operator 𝐿𝑓 is linear. In addition, if 𝐺(𝑥, 𝑡) is
positive almost everywhere for 𝑡 ∈ [𝑎, 𝑏], then 𝐿 is positive and
monotonic.

Proof. The linearity of 𝐿 is quite evident. If 𝐺(𝑥, 𝑡) is positive
almost everywhere for 𝑡 ∈ [𝑎, 𝑏], the positiveness (and in
consequence monotonicity) of 𝐿 is a consequence of 𝑞(𝑥)
being positive almost everywhere on [𝑎, 𝑏] by hypothesis.

Lemma 2. The operator 𝐿𝑓 is compact.

Proof. From [21, Theorem 7.2.6] and the fact that 𝐺(𝑥, 𝑡) is
continuous on [𝑎, 𝑏] × [𝑎, 𝑏] it is straightforward to show that
𝐿 is compact with the ‖ ⋅ ‖

∞
norm and therefore with the ‖ ⋅ ‖

2

norm defined in (11).
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Lemma 3. If any of the following conditions

𝑎
11
= 0, 𝑎

21
= 0,

𝑎
11
= 0,

𝑎
22

𝑎
21

(𝑏 − 𝑎) + 1 ̸= 0,

−𝑎
12

𝑎
11

(𝑏 − 𝑎) + 1 ̸= 0, 𝑎
21
= 0,

𝑎
12

𝑎
11

(

𝑎
22

𝑎
21

(𝑏 − 𝑎) + 1) −

𝑎
22

𝑎
21

̸= 0

(12)

are met, then the operator 𝐿𝑓 is self-adjoint.

Proof. Let us define 𝑦
1
(𝑥) as the solution of

𝑦
󸀠󸀠
= 0, 𝑎

11
𝑦 (𝑎) + 𝑎

12
𝑦
󸀠

(𝑎) = 0, (13)

and 𝑦
2
(𝑥) as the solution of

𝑦
󸀠󸀠
= 0, 𝑎

21
𝑦 (𝑏) + 𝑎

22
𝑦
󸀠

(𝑏) = 0. (14)

A straightforward calculation shows that if any of the condi-
tions (12) are met, then the Wronskian of 𝑦

1
and 𝑦

2
, namely,

𝑊 = 𝑦
1
(𝑥) 𝑦
󸀠

2
(𝑥) − 𝑦

󸀠

1
(𝑥) 𝑦
2
(𝑥) , (15)

is not zero, which implies that 𝑦
1
and 𝑦

2
are not linearly

dependent and therefore no nontrivial solutions of (2)-(3)
exist. In consequence from [22, Theorem IX.3] one has

𝐺 (𝑥, 𝑡) =

{
{
{
{

{
{
{
{

{

−𝑦
1
(𝑥) 𝑦
2
(𝑡)

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

, 𝑥 < 𝑡,

−𝑦
1
(𝑡) 𝑦
2
(𝑥)

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

, 𝑥 ≥ 𝑡.

(16)

Now, in order to prove self-adjointness, we need to prove that,
given 𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏], ⟨𝐿𝑓, 𝑔⟩ = ⟨𝑓, 𝐿𝑔⟩. Thus, from (10) we
have

⟨𝐿𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑞 (𝑥) 𝐿𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

= ∫

𝑏

𝑎

𝑞 (𝑥) 𝑔 (𝑥) ∫

𝑏

𝑎

𝐺 (𝑥, 𝑡) 𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑥.

(17)

Combining (17) and (16) one gets to

⟨𝐿𝑓, 𝑔⟩ =

−1

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

× ∫

𝑏

𝑎

𝑞 (𝑥) 𝑔 (𝑥) 𝑦
2
(𝑥) ∫

𝑥

𝑎

𝑞 (𝑡) 𝑦
1
(𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑥

+

−1

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

× ∫

𝑏

𝑎

𝑞 (𝑥) 𝑔 (𝑥) 𝑦
1
(𝑥) ∫

𝑏

𝑥

𝑞 (𝑡) 𝑦
2
(𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑥.

(18)

And integrating by parts the right-hand side of (18) one
finally has

⟨𝐿𝑓, 𝑔⟩ =

−1

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

× ∫

𝑏

𝑎

∫

𝑏

𝑥

𝑞 (𝑡) 𝑔 (𝑡) 𝑦
2
(𝑡) 𝑑𝑡𝑞 (𝑥) 𝑦

1
(𝑥) 𝑓 (𝑥) 𝑑𝑥

+

−1

𝑦
1
(𝑎) 𝑦
󸀠

2
(𝑎) − 𝑦

󸀠

1
(𝑎) 𝑦
2
(𝑎)

× ∫

𝑏

𝑎

∫

𝑥

𝑎

𝑞 (𝑡) 𝑔 (𝑡) 𝑦
1
(𝑡) 𝑑𝑡𝑞 (𝑥) 𝑦

2
(𝑥) 𝑓 (𝑥) 𝑑𝑥

= ∬

𝑏

𝑎

𝑞 (𝑡) 𝑔 (𝑡) 𝐺 (𝑥, 𝑡) 𝑑𝑡𝑞 (𝑥) 𝑓 (𝑥) 𝑑𝑥

= ⟨𝑓, 𝐿𝑔⟩ .

(19)

Lemma 4. The operator 𝐿𝑓 is bounded with the ‖ ⋅ ‖
∞

norm
and verifies

𝐿𝑓 (𝑥) ≤ max {𝐺 (𝑥, 𝑡) , 𝑡 ∈ [𝑎, 𝑏]} 󵄩󵄩󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

∫

𝑏

𝑎

𝑞 (𝑡) 𝑑𝑡,

𝑥 ∈ [𝑎, 𝑏] ,

(20)

𝐿𝑓 (𝑥) ≤ max {𝐺 (𝑥, 𝑡) , 𝑡 ∈ [𝑎, 𝑏]} 󵄩󵄩󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2
√∫

𝑏

𝑎

𝑞 (𝑡) 𝑑𝑡,

𝑥 ∈ [𝑎, 𝑏] ,

(21)

where the ‖ ⋅ ‖
2
norm is defined as in (11).

Proof. Equation (20) is an obvious consequence of (4), and
(21) follows from (4) by application of Cauchy-Schwarz
inequality.

Theorem5. If any of conditions (12) aremet, then the operator
𝐿𝑓 has a countably infinite number of eigenvalues 1/𝜆

𝑛
and

associated orthonormal eigenfunctions Φ
𝑛
(𝑥), which allow

expressing 𝐿𝑘𝑓, 𝑘 ≥ 1, as

𝐿
𝑘
𝑓 =

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆
𝑘

𝑛

Φ
𝑛
. (22)

Moreover,

(i) if no nontrivial solution of (2) satisfies (3) either at 𝑎,
𝑏 or at any 𝑎󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
<
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

2
, 𝑘 ≥ 1; (23)

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= 0, lim

𝑘→∞

𝐿
𝑘
𝑓 (𝑥) = 0,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑜𝑟 𝑥 ∈ [𝑎, 𝑏] .

(24)
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(ii) if there is a nontrivial solution of (2) that satisfies (3)
at some 𝑎󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
> ⟨𝑓,Φ

1
⟩
2

+

∞

∑

𝑛=2

⟨𝑓,Φ
𝑛
⟩
2

𝜆
2𝑘

𝑛

, 𝑘 ≥ 1. (25)

In addition, if ⟨𝑓,Φ
1
⟩ ̸= 0 and 𝑐 ∈ [𝑎, 𝑏] is such that

Φ
1
(𝑐) ̸= 0, then

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= ∞, (26)

lim
𝑘→∞

𝐿
𝑘
𝑓 (𝑐) = ±∞, (27)

the sign corresponding to that of ⟨𝑓,Φ
1
⟩ Φ
1
(𝑐).

Proof. Let us consider the eigenvalue problem

𝑦
󸀠󸀠
+ 𝜆𝑞 (𝑥) 𝑦 = 0, 𝑥 ∈] 𝑎, 𝑏 [,

𝑎
11
𝑦 (𝑎) + 𝑎

12
𝑦
󸀠

(𝑎) = 0, 𝑎
21
𝑦 (𝑏) + 𝑎

22
𝑦
󸀠

(𝑏) = 0.

(28)

From the theory of ordinary differential equations (see [22,
Theorems V.8 and V.9]) it is known that there exist a
countably infinite number of eigenvalues 𝜆

𝑛
which form an

increasing sequence with lim
𝑛→∞

𝜆
𝑛
= ∞, each of which

has its corresponding orthonormal (with the norm (11))
eigenfunction Φ

𝑛
(𝑥), and that the set of eigenfunctions Φ

𝑛

forms an orthonormal basis of𝐶[𝑎, 𝑏]. Applying the operator
𝐿 to these eigenfunctions Φ

𝑛
(𝑥) and integrating by parts it is

easy to show that

𝐿Φ
𝑛
=

Φ
𝑛

𝜆
𝑛

, 𝑛 ≥ 1, (29)

which implies that Φ
𝑛
are also the eigenfunctions of the

operator 𝐿 with corresponding eigenvalues 1/𝜆
𝑛
. Since from

Lemmas 1, 2 and 3 𝐿 is linear, compact, and self-adjoint, we
can apply [21,Theorem 7.5.2] and represent 𝐿 in the canonical
form

𝐿𝑓 =

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛
. (30)

Applying 𝐿 again to (30) it yields

𝐿
2
𝑓 =

∞

∑

𝑛=1

⟨𝐿𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨∑
∞

𝑗=1
(⟨𝑓,Φ

𝑗
⟩/𝜆
𝑗
)Φ
𝑗
, Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆
2

𝑛

Φ
𝑛
,

(31)

given that ⟨Φ
𝑖
, Φ
𝑖
⟩ = 1 and ⟨Φ

𝑖
, Φ
𝑗
⟩ = 0 for 𝑖 ̸= 𝑗. Applying 𝐿

recursively to (31) one gets to

𝐿
𝑘
𝑓 =

∞

∑

𝑛=1

⟨𝐿
𝑘−1
𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨∑
∞

𝑗=1
(⟨𝑓,Φ

𝑗
⟩/𝜆
𝑘−1

𝑗
)Φ
𝑗
, Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆
𝑘

𝑛

Φ
𝑛
,

(32)

which is in fact (22). And the application of Parseval’s identity
(see [21, Lemmas 1.5.14]) to (32) leads to

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= √

∞

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
𝑛
⟩
󵄨
󵄨
󵄨
󵄨

2

𝜆
2𝑘

𝑛

. (33)

Since {𝜆
𝑛
} form an increasing sequence, from (33) it is clear

that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
≤ √

∞

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
𝑛
⟩
󵄨
󵄨
󵄨
󵄨

2

𝜆
2𝑘

1

=

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2

𝜆
𝑘

1

. (34)

Now, let us note that if (2) does not have any nontrivial
solution that satisfies (3) either at 𝑎, 𝑏 or at any 𝑎󸀠, 𝑏󸀠 interior
to [𝑎, 𝑏], the first eigenvalue 𝜆

1
(and therefore all the others)

must be strictly greater than 1. In that case, from (34) one has
(23) and

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= 0. (35)

From (35) and Lemma 4 one gets (24).
Likewise, if there is a nontrivial solution of (2) that

satisfies (3) at some 𝑎󸀠, 𝑏󸀠 interior to [𝑎, 𝑏], then 𝜆
1
must be

such that 𝜆
1
< 1. From this and (33) one gets (25). If, in

addition, ⟨𝑓,Φ
1
⟩ ̸= 0, from (33) we get to

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= ∞, (36)

which is (26). On the other hand, we can write

𝐿
𝑘
𝑓 −

⟨𝑓,Φ
1
⟩

𝜆
𝑘

1

Φ
1
=

∞

∑

𝑛=2

⟨𝑓,Φ
𝑛
⟩

𝜆
𝑘

𝑛

Φ
𝑛
. (37)

We can divide both sides of (37) by ⟨𝑓,Φ
1
⟩/𝜆
𝑘

1
to yield

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩/𝜆
𝑘

1
) Φ
1

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

=

∑
∞

𝑛=2
(⟨𝑓,Φ

𝑛
⟩/𝜆
𝑘

𝑛
)Φ
𝑛

⟨𝑓,Φ
1
⟩/𝜆
𝑘

1

.

(38)
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Applying Parseval’s identity to (38) one gets

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩/𝜆
𝑘

1
) Φ
1

⟨𝑓,Φ
1
⟩/𝜆
𝑘

1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩2

= √

∑
∞

𝑛=2
(
󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
𝑛
⟩
󵄨
󵄨
󵄨
󵄨

2

/𝜆
2𝑘

𝑛
)

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
1
⟩
󵄨
󵄨
󵄨
󵄨

2

/𝜆
2𝑘

1

≤

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
1
⟩
󵄨
󵄨
󵄨
󵄨

𝜆
𝑘

1

𝜆
𝑘

2

.

(39)

Since 𝜆
1
< 𝜆
2
, from (39) one yields

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩/𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩/𝜆
𝑘

1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩2

= 0, (40)

which implies that there exists an index 𝑘
0
such that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩/𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩/𝜆
𝑘

1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩2

< 𝜖, 𝑘 > 𝑘
0
. (41)

From Lemma 4 and (41) one has

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐿
𝑘
𝑓 (𝑐) − (⟨𝑓,Φ

1
⟩/𝜆
𝑘

1
)Φ
1
(𝑐)

(⟨𝑓,Φ
1
⟩/𝜆
𝑘

1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜖max {𝐺 (𝑐, 𝑡) , 𝑡 ∈ [𝑎, 𝑏]}√∫
𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥,

(42)

for 𝑘 > 𝑘
0
+ 1; that is,

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
1
⟩
󵄨
󵄨
󵄨
󵄨

𝜆
𝑘

1

× ( sign (⟨𝑓,Φ
1
⟩)Φ
1
(𝑐) − 𝜖max {𝐺 (𝑐, 𝑡) , 𝑡 ∈ [𝑎, 𝑏]}

× √∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥)

< 𝐿
𝑘
𝑓 (𝑐) <

󵄨
󵄨
󵄨
󵄨
⟨𝑓,Φ
1
⟩
󵄨
󵄨
󵄨
󵄨

𝜆
𝑘

1

× ( sign (⟨𝑓,Φ
1
⟩)Φ
1
(𝑐) + 𝜖max {𝐺 (𝑐, 𝑡) , 𝑡 ∈ [𝑎, 𝑏]}

× √∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥) ,

(43)

for 𝑘 > 𝑘
0
+ 1. SinceΦ

1
(𝑐) ̸= 0 by hypothesis and 𝜆

1
< 1, (43)

leads to (27).

Remark 6. Theorem 5 provides two types of methods to
obtain upper and lower bounds for the minimum distance
between points 𝑎, 𝑏 satisfying (3), one based on comparing
the norm of 𝐿𝑘𝑓 with some other constants and another
based on comparing the value of 𝐿𝑘𝑓 at concrete points of
[𝑎, 𝑏] for different functions 𝑓. These will be addressed
separately in the next two sections.

3. Bounds for the Distance between
𝑎 and 𝑏 Based on ‖𝐿𝑘𝑓‖

2

As stated before, Theorem 5 provides methods to get upper
and lower bounds for the minimum distance between points
𝑎, 𝑏 satisfying (3), which are based on the comparison of
‖𝐿
𝑘
𝑓‖
2
with some thresholds for different values of the

extremes of integration 𝑎 and 𝑏 of (4) and (11).
Thus, on the one hand, if 𝑎, 𝑏 are such that there is a

nontrivial solution of (2) which satisfies (3) at some 𝑎󸀠, 𝑏󸀠
interior to [𝑎, 𝑏], from (26) (and as long as ⟨𝑓,Φ

1
⟩ ̸= 0, i.e., 𝑓

is “close” toΦ
1
) it is clear that ‖𝐿𝑘𝑓‖

2
will growwith the index

𝑘 regardless of the choice of 𝑓 and accordingly there will be
an index 𝑘

0
such that (23) is violated. This allows us to define

an algorithm to find progressively better “outer” bounds of
the values satisfying (3) by fixing one of them, say 𝑎, and
calculating theminimumvalues of the extremes 𝑏

𝑘
which give

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

𝑎,𝑏𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
=
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2
, (44)

for different values of 𝑘, as the following theorem shows.

Theorem 7. Assume that there exists a nontrivial solution
𝑦(𝑥) of (2) satisfying (3) at 𝑎, 𝑏. Let the sequence {𝑏

𝑘
} be defined

by (44), where 𝑓 is a continuous function on [𝑎, 𝑏
𝑘
] such that

⟨𝑓,Φ
1
⟩ ̸= 0 and 𝑎, 𝑏󸀠 fulfill any of conditions (12) for each 𝑏󸀠 ∈

[𝑏, 𝑏
𝑘
]. Then 𝑏

𝑘
≥ 𝑏 and {𝑏

𝑘
} tends to 𝑏 as 𝑘 → ∞.

Proof. The fact that 𝑏
𝑘
≥ 𝑏 is obvious from (23). Now, let us

pick a 𝛿 > 0. From (26) lim
𝑘→∞

‖𝐿
𝑘

𝑎,𝑏+𝛿
𝑓‖
2
= ∞, which

means that there exists an index 𝑘
1
such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

𝑎,𝑏+𝛿
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
−
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩2
> 0, 𝑘 > 𝑘

1
. (45)

Given that ‖𝐿𝑘
𝑎,𝑏−𝛿

𝑓‖
2
− ‖𝑓‖
2
< 0 for 𝑘 ≥ 1, from (23) and the

continuity of ‖𝐿𝑘
𝑎,𝑥
𝑓‖
2
− ‖𝑓‖
2
on 𝑥 (continuity guaranteed by

the hypothesis), there must exist a value 𝑏
𝑘
∈ [𝑏, 𝑏 + 𝛿[ such

that ‖𝐿𝑘
𝑎,𝑏𝑘
𝑓‖
2

− ‖𝑓‖
2
= 0 for each 𝑘 > 𝑘

1
. This proves the

second assertion of the theorem.

The application of the method based on Theorem 7 is
quite straightforward given that the right-hand side of (44),
that is, ‖𝑓‖2

2
, is easy to calculate once fixed 𝑓. However, it

is worth remarking that, from (34), the closer the selected
function 𝑓 is to Φ

1
, the smaller the terms ⟨𝑓,Φ

𝑛
⟩ for 𝑛 > 1

will be and the faster the sequence 𝑏
𝑘
will converge to 𝑏.

Therefore, although the method can work with any continu-
ous function 𝑓 such that ⟨𝑓,Φ

1
⟩ ̸= 0, it is desirable to select

one that may be as close as possible to the expected Φ
1

associated to the problem (28).
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On the other hand, if 𝑎, 𝑏 are such that no nontrivial
solution of (2) satisfies (3) either at 𝑎, 𝑏 or at some 𝑎󸀠, 𝑏󸀠
interior to [𝑎, 𝑏], from (24) it is clear that ‖𝐿𝑘𝑓‖

2
will shrink

with the index 𝑘 regardless of the choice of𝑓 and accordingly
there will be an index 𝑘

0
such that (25) is violated. As

happened before, this allows us to define an algorithm to find
progressively better “inner” bounds of the values satisfying
(3) by fixing one of them, say 𝑎, and calculating the values of
the extremes 𝑏

𝑘
which give
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

𝑎,𝑏𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
= 𝐵
𝑎,𝑏𝑘
, 𝑘 ≥ 1, (46)

where 𝐵
𝑎,𝑏𝑘

is any lower bound of the right-hand side of (25),
which has (in turn) a positive lower bound that does not
depend on 𝑘. This is shown in the following theorem.

Theorem 8. Assume that there exists a nontrivial solution
𝑦(𝑥) of (2) satisfying (3) at 𝑎, 𝑏. Let the sequence {𝑏

𝑘
} be defined

by (46), where 𝑓 is a continuous function on [𝑎, 𝑏
𝑘
] and 𝑎, 𝑏󸀠

fulfill any of conditions (12) for each 𝑏󸀠 ∈ [𝑏
𝑘
, 𝑏]. Then 𝑏

𝑘
≤ 𝑏

and {𝑏
𝑘
} tends to 𝑏 as 𝑘 → ∞.

Proof. Again, the fact that 𝑏
𝑘

≤ 𝑏 is obvious from
(25) and (46). Now, let us pick a 𝛿 > 0. From (24),
lim
𝑘→∞

‖𝐿
𝑘

𝑎,𝑏−𝛿
𝑓‖
2
= 0. This and the fact that 𝐵

𝑎,𝑏𝑘
is

bounded below by a positive amount which does not vary
with 𝑘 imply that there exists an index 𝑘

2
such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

𝑎,𝑏−𝛿
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩2
− 𝐵
𝑎,𝑏−𝛿

< 0, 𝑘 > 𝑘
2
. (47)

Given that ‖𝐿𝑘
𝑎,𝑏+𝛿

𝑓‖
2
− 𝐵
𝑎,𝑏+𝛿

> 0 for 𝑘 ≥ 1, from (25) and
the continuity of ‖𝐿𝑘

𝑎,𝑥
𝑓‖
2
−𝐵
𝑎,𝑥

on 𝑥, there must exist a value
𝑏
𝑘
∈ ]𝑏 − 𝛿, 𝑏] such that ‖𝐿𝑘

𝑎,𝑏𝑘
𝑓‖
2

− 𝐵
𝑎,𝑏𝑘

= 0 for each 𝑘 > 𝑘
2
.

This proves the second assertion of the theorem.

Unlike what happens with the method based on
Theorem 7, the method based on Theorem 8 presents some
difficulties in its application due to the fact that neither
⟨𝑓,Φ
𝑛
⟩ nor the eigenvalues 𝜆

𝑛
are known. We can overcome

them partially by discarding, in the right-hand side of (25),
the term of the series of the eigenfunctions beyond the first
one, that is, by converting (25) into

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
≥ ⟨𝑓,Φ

1
⟩
2

, 𝑘 ≥ 1, (48)

given that the discarded terms are positive (in fact ⟨𝑓,Φ
1
⟩
2

may be a possible positive lower bound for some types of
terms 𝐵

𝑎,𝑏𝑘
used in (46), which does not depend on 𝑘). The

resulting method to obtain lower bounds for the distance
between 𝑎 and 𝑏 will work in the same way as the one
described in the previous paragraphs, at the expense of
requiring greater values of the index 𝑘 to violate (48). But even
with such a simplification there is still a need to obtain a lower
bound for ⟨𝑓,Φ

1
⟩ which is not evident at all.

The following lemmas aim at finding cases (fundamen-
tally choices of 𝑓 and boundary conditions (3)) where the
values of ⟨𝑓,Φ

1
⟩, ⟨𝑓,Φ

𝑛
⟩, and 𝜆

𝑛
are bounded in a way that

allows getting a lower bound for the right-hand side of (25)
(or for the right-hand side of (48) if there is no way to do it
with (25)), overcoming the problem.

Lemma 9. Let 𝜆
𝑛
andΦ

𝑛
be defined as inTheorem 5. Assume

that 𝑎, 𝑏 satisfy any of conditions (12) of Lemma 3. Fixed 𝑥 ∈
[𝑎, 𝑏] and choosing 𝑓(𝑡) = 𝐺(𝑥, 𝑡) and 𝑔(𝑡) = (𝛿𝐺(𝑥, 𝑡)/𝛿𝑥)

one has

⟨𝑓,Φ
𝑛
⟩ =

Φ
𝑛
(𝑥)

𝜆
𝑛

, 𝑛 ≥ 1, (49)

⟨𝑔,Φ
𝑛
⟩ =

Φ
󸀠

𝑛
(𝑥)

𝜆
𝑛

, 𝑛 ≥ 1. (50)

Proof. From (10) one has

⟨𝑓,Φ
𝑛
⟩ = ∫

𝑏

𝑎

𝑞 (𝑡) 𝐺 (𝑥, 𝑡) Φ
𝑛
(𝑡) 𝑑𝑡, 𝑛 ≥ 1. (51)

And sinceΦ
𝑛
satisfies (28) one yields

⟨𝑓,Φ
𝑛
⟩ = −∫

𝑏

𝑎

𝐺 (𝑥, 𝑡)

Φ
󸀠󸀠

𝑛
(𝑡)

𝜆
𝑛

𝑑𝑡, 𝑛 ≥ 1. (52)

As 𝐺(𝑥, 𝑡) is the Green function of the problem (5),
−∫

𝑏

𝑎
𝐺(𝑥, 𝑡)(Φ

󸀠󸀠

𝑛
(𝑡)/𝜆
𝑛
)𝑑𝑡 is the value at 𝑥 of the function

satisfying (3) whose second derivative is Φ󸀠󸀠
𝑛
/𝜆
𝑛
, that is,

Φ
𝑛
(𝑥)/𝜆

𝑛
. This proves (49). As for (50), note simply that

⟨𝑔,Φ
𝑛
⟩ = ∫

𝑏

𝑎

𝑞 (𝑡)

𝛿𝐺 (𝑥, 𝑡)

𝛿𝑥

Φ
𝑛
(𝑡) 𝑑𝑡

=

𝛿 ∫

𝑏

𝑎
𝑞 (𝑡) 𝐺 (𝑥, 𝑡) Φ

𝑛
(𝑡) 𝑑𝑡

𝛿𝑥

=

1

𝜆
𝑛

𝛿Φ
𝑛
(𝑥)

𝛿𝑥

, 𝑛 ≥ 1.

(53)

Lemma 10. Assume that either (𝑎
11
/𝑎
12
) ≥ 0 or 𝑎

12
= 0 and

that either −(𝑎
21
/𝑎
22
) ≥ 0 or 𝑎

22
= 0. Let 𝜆

𝑛
andΦ

𝑛
be defined

as in Theorem 5. Let one suppose that 𝑞(𝑥) > 0 on [𝑎, 𝑏] and
that it can be decomposed as 𝑞(𝑥) = 𝑐(𝑥)/𝑑(𝑥) with 𝑐(𝑥) and
𝑑(𝑥) being nondecreasing functions. Depending on the values
of 𝑎
11
, 𝑎
12
, 𝑎
21
, and 𝑎

22
, one has

(i) if 𝑎
12
= 0, then

Φ
󸀠2

𝑛
(𝑎) ≥

2𝜆
𝑛
𝑐 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

, 𝑛 ≥ 1; (54)

(ii) if 𝑎
12

̸= 0, then

Φ
2

𝑛
(𝑎) ≥

2𝑑 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡 (1 + (𝑎

2

11
/𝑎
2

12
𝑞 (𝑎) 𝜆

𝑛
))

, 𝑛 ≥ 1;

(55)

(iii) if 𝑎
22
= 0, then

Φ
󸀠2

𝑛
(𝑏) ≥

2𝜆
𝑛

𝑑 (𝑏) ∫

𝑏

𝑎
(𝑞 (𝑡) /𝑐 (𝑡)) 𝑑𝑡

, 𝑛 ≥ 1; (56)
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(iv) if 𝑎
22

̸= 0, then

Φ
2

𝑛
(𝑏)

≥

2

𝑐 (𝑏) ∫

𝑏

𝑎
(𝑞 (𝑡) /𝑐 (𝑡)) 𝑑𝑡 (1 + (𝑎

2

21
/𝑎
2

22
𝑞 (𝑏) 𝜆

𝑛
))

,

𝑛 ≥ 1.

(57)

Proof. First of all, let us note that 𝑞(𝑥) can always be
decomposed in the mentioned manner, given that 𝑞(𝑥) > 0
and therefore ln 𝑞(𝑥) exists in [𝑎, 𝑏] and can be expressed
as the difference between two increasing functions 𝐴(𝑥) and
𝐵(𝑥); that is,

ln 𝑞 (𝑥) = 𝐴 (𝑥) − 𝐵 (𝑥) . (58)

which, taking exponentials, becomes

𝑞 (𝑥) = exp ln 𝑞 (𝑥) = exp (𝐴 (𝑥) − 𝐵 (𝑥))

=

exp𝐴 (𝑥)
exp𝐵 (𝑥)

=

𝑐 (𝑥)

𝑑 (𝑥)

,

(59)

with 𝑐(𝑥) and 𝑑(𝑥) nondecreasing. Now let us consider the
functional 𝐹 defined by

𝐹 (Φ
𝑛
, 𝑥) = Φ

2

𝑛
(𝑥) +

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛
𝑞 (𝑥)

, 𝑥 ∈ [𝑎, 𝑏] .
(60)

Using integration by parts and the fact thatΦ
𝑛
is orthonormal

with respect to the norm (11) it is easy to prove that

∫

𝑏

𝑎

𝑞 (𝑥) 𝐹 (Φ
𝑛
, 𝑥) 𝑑𝑥

= ∫

𝑏

𝑎

𝑞 (𝑥)Φ
2

𝑛
(𝑥) 𝑑𝑥 + ∫

𝑏

𝑎

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛

𝑑𝑥

= 2∫

𝑏

𝑎

𝑞 (𝑥)Φ
2

𝑛
(𝑥) 𝑑𝑥

+

1

𝜆
𝑛

(Φ
󸀠

𝑛
(𝑏)Φ
𝑛
(𝑏) − Φ

󸀠

𝑛
(𝑎)Φ
𝑛
(𝑎))

= 2 +

1

𝜆
𝑛

(Φ
󸀠

𝑛
(𝑏)Φ
𝑛
(𝑏) − Φ

󸀠

𝑛
(𝑎)Φ
𝑛
(𝑎)) .

(61)

From (3), (61), and the hypothesis one gets

∫

𝑏

𝑎

𝑞 (𝑥) 𝐹 (Φ
𝑛
, 𝑥) 𝑑𝑥 ≥ 2. (62)

And given that 𝑐(𝑥) and 𝑑(𝑥) are increasing on [𝑎, 𝑏] and that
Φ
𝑛
(𝑥) verifies (28) for 𝜆 = 𝜆

𝑛
, one has

(𝑐 (𝑥) 𝐹 (Φ
𝑛
, 𝑥))
󸀠

= (𝑐 (𝑥)Φ
2

𝑛
(𝑥) + 𝑑 (𝑥)

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛

)

󸀠

= 𝑐
󸀠

(𝑥)Φ
2

𝑛
(𝑥) + 𝑑

󸀠

(𝑥)

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛

≥ 0,

𝑥 ∈] 𝑎, 𝑏 [;

(63)

that is, 𝑐(𝑥)𝐹(Φ
𝑛
, 𝑥) is increasing on ]𝑎, 𝑏[, and

(

𝐹 (Φ
𝑛
, 𝑥)

𝑑 (𝑥)

)

󸀠

= (

Φ
2

𝑛
(𝑥)

𝑑 (𝑥)

+

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛
𝑐 (𝑥)

)

󸀠

= −𝑑
󸀠

(𝑥)

Φ
2

𝑛
(𝑥)

𝑑
2
(𝑥)

− 𝑐
󸀠

(𝑥)

(Φ
󸀠

𝑛
(𝑥))

2

𝜆
𝑛
𝑐
2
(𝑥)

≤ 0,

𝑥 ∈ ] 𝑎, 𝑏 [;

(64)

that is, 𝐹(Φ
𝑛
, 𝑥)/𝑑(𝑥) is decreasing on ]𝑎, 𝑏[. The application

of (60), (63), and (64) to (62) leads to

𝐹 (Φ
𝑛
, 𝑥) {𝑐 (𝑥) ∫

𝑥

𝑎

𝑞 (𝑡)

𝑐 (𝑡)

𝑑𝑡 +

1

𝑑 (𝑥)

∫

𝑏

𝑥

𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡}

≥ ∫

𝑥

𝑎

𝑐 (𝑡) 𝐹 (Φ
𝑛
, 𝑡)

𝑞 (𝑡)

𝑐 (𝑡)

𝑑𝑡

+ ∫

𝑏

𝑥

𝐹 (Φ
𝑛
, 𝑡)

𝑑 (𝑡)

𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

≥ ∫

𝑏

𝑎

𝑞 (𝑥) 𝐹 (Φ
𝑛
, 𝑥) 𝑑𝑥 ≥ 2, 𝑛 ≥ 1.

(65)

From (3), (60), and (65) it is straightforward to obtain (54)–
(57).

Lemma 11. Let 𝜆
𝑛
and Φ

𝑛
be defined as in Theorem 5. Then

one has

𝜆
𝑛
≤

(𝑛 + 𝐶)
2
𝜋
2

(∫

𝑏

𝑎
min (1, 𝑞 (𝑥)) 𝑑𝑥)

2
= 𝑀(𝑛 + 𝐶)

2
, 𝑛 ≥ 1, (66)

with

𝐶 =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0, if 𝑎11
𝑎
12

=

𝑎
21

𝑎
22

or 𝑎
22
= 𝑎
12
= 0;

−

1

2

, if 𝑎
12
= 0 , 𝑎

22
̸= 0,

−𝑎
21

𝑎
22

≤ 0;

−

1

2

, if 𝑎
22
= 0, 𝑎

12
̸= 0,

−𝑎
11

𝑎
12

≥ 0;

−1, else.

(67)

Proof. From [23, Theorem 8], if we define the function angle
𝜃
𝑛
(𝑥) by

tan 𝜃
𝑛
(𝑥) =

sin 𝜃
𝑛
(𝑥)

cos 𝜃
𝑛
(𝑥)

=

Φ
󸀠

𝑛
(𝑥)

𝐴Φ
𝑛
(𝑥)

, (68)

where 𝐴 > 0 is a real constant, then 𝜃
𝑛
(𝑥) satisfies the

equation

𝜃
󸀠

𝑛
(𝑥) = −𝐴 sin2𝜃 (𝑥) −

𝜆
𝑛
𝑞 (𝑥)

𝐴

cos2𝜃 (𝑥) , (69)
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being, therefore, a decreasing function. Let us fix ] − (𝜋/2),
(𝜋/2)[as the range of the arctan function. In that case,

(i) if 𝑎
12
= 0 we will set 𝜃

𝑛
(𝑎) = 𝜋/2. Else, we will set

𝜃
𝑛
(𝑎) = arctan(−𝑎

11
/𝑎
12
𝐴);

(ii) if 𝑎
22
= 0 we will define 𝜗

𝑛
(𝑏) = −(𝜋/2). Else,

(a) if −𝑎
11
/𝑎
12

≥ −𝑎
21
/𝑎
22

we will define 𝜗
𝑛
(𝑏) =

arctan(−𝑎
21
/𝑎
22
𝐴);

(b) we will define 𝜗
𝑛
(𝑏) = −𝜋 + arctan(−𝑎

21
/𝑎
22
𝐴).

With this in mind, we will also define

𝐾 (𝐴) =

𝜃
𝑛
(𝑎) − 𝜗

𝑛
(𝑏)

𝜋

− 1. (70)

𝐾(𝐴) is a constant which depends only on 𝐴 and the
boundary conditions (3) and is related to the angle distance
between 𝑎 and 𝑏due to (3). SinceΦ

𝑛
(𝑥) is a function satisfying

(3) with onemore zero in ]𝑎, 𝑏[ thanΦ
𝑛−1
(𝑥), integrating (69)

and taking (70) into account we obtain

(𝑛 + 𝐾 (𝐴)) 𝜋

= −∫

𝑏

𝑎

𝜃
󸀠

𝑛
(𝑥) 𝑑𝑥 = 𝐴∫

𝑏

𝑎

sin2𝜃 (𝑥) 𝑑𝑥

+ ∫

𝑏

𝑎

𝜆
𝑛
𝑞 (𝑥)

𝐴

cos2𝜃 (𝑥) 𝑑𝑥.

(71)

Taking 𝐴 = √𝜆
𝑛
in (71) one has

(𝑛 + 𝐾(√𝜆
𝑛
))𝜋

= √𝜆
𝑛
(∫

𝑏

𝑎

sin2𝜃 (𝑥) 𝑑𝑥 + ∫
𝑏

𝑎

𝑞 (𝑥) cos2𝜃 (𝑥) 𝑑𝑥)

≥ √𝜆
𝑛
∫

𝑏

𝑎

min (1, 𝑞 (𝑥)) 𝑑𝑥.

(72)

The problem for (72) to be used to get upper bounds for 𝜆
𝑛

is the dependence of𝐾(√𝜆
𝑛
) on√𝜆

𝑛
. We can eliminate it by

obtaining an upper bound for 𝐾(√𝜆
𝑛
). Accordingly we will

define

𝐶 =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0, if 𝑎11
𝑎
12

=

𝑎
21

𝑎
22

or 𝑎
22
= 𝑎
12
= 0;

−

1

2

, if 𝑎
12
= 0, 𝑎

22
̸= 0,

−𝑎
21

𝑎
22

≤ 0;

−

1

2

, if 𝑎
22
= 0, 𝑎

12
̸= 0,

−𝑎
11

𝑎
12

≥ 0;

−1, else.

(73)

From (70), (72), and (73) one yields

(𝑛 + 𝐶) 𝜋 ≥ √𝜆
𝑛
∫

𝑏

𝑎

min (1, 𝑞 (𝑥)) 𝑑𝑥. (74)

Taking squares in (74) one finally gets to (66).

Finally, by (25) and Lemmas 9–11 we are in a position
to prove the next theorem, which allows a straightforward
application of the method based onTheorem 8.

Theorem 12. Let 𝜆
𝑛
and Φ

𝑛
be defined as in Theorem 5. Let

𝑐(𝑥) and 𝑑(𝑥) be defined as in Lemma 10. Let 𝑀 and 𝐶 be
defined as in Lemma 11. Assume that there is a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at some 𝑎󸀠, 𝑏󸀠 interior to
[𝑎, 𝑏]. Assume also that 𝑎, 𝑏 satisfy any of conditions (12) of
Lemma 3, that either (𝑎

11
/𝑎
12
) ≥ 0 or 𝑎

12
= 0, and that either

−(𝑎
21
/𝑎
22
) ≥ 0 or 𝑎

22
= 0.Then the following inequalities hold.

(i) If 𝑎
12
= 0 then

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
{

𝛿𝐺 (𝑎, 𝑡)

𝛿𝑥

}

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2𝑐 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

(1 +

1

(4𝑘 + 1)𝑀
2𝑘+1

(2 + 𝐶)
4𝑘+1

) ,

𝑘 ≥ 1.

(75)

Otherwise, if 𝑁
𝑎
is the first integer greater than 1 such

that𝑀(𝑁
𝑎
+ 𝐶)
2
≥ 𝑎
2

11
/𝑎
2

12
𝑞(𝑎), then

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

{𝐺 (𝑎, 𝑡)}

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2𝑑 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

× (

1

1 + (𝑎
2

11
/𝑎
2

12
𝑞 (𝑎))

+

𝑁𝑎−1

∑

𝑛=2

(𝑀
2𝑘+1

(𝑛 + 𝐶)
4𝑘+2

× (𝑀(𝑛 + 𝐶)
2
+ (𝑎
2

11
/𝑎
2

12
𝑞 (𝑎))))

−1

+

1

2𝑀
2𝑘+2

(4𝑘 + 3) (𝑁
𝑎
+ 𝐶)
4𝑘+3

) , 𝑘 ≥ 1.

(76)

(ii) If 𝑎
22
= 0 then

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
{

𝛿𝐺 (𝑏, 𝑡)

𝛿𝑥

}

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2

𝑑 (𝑏) ∫

𝑏

𝑎
(𝑞 (𝑡) /𝑐 (𝑡)) 𝑑𝑡

× (1 +

1

(4𝑘 + 1)𝑀
2𝑘+1

(2 + 𝐶)
4𝑘+1

) ,

𝑘 ≥ 1.

(77)



Abstract and Applied Analysis 9

Otherwise, if 𝑁
𝑏
is the first integer greater than 1 such

that𝑀(𝑁
𝑏
+ 𝐶)
2
≥ 𝑎
2

21
/𝑎
2

22
𝑞(𝑏), then

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

{𝐺 (𝑏, 𝑡)}

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2

𝑐 (𝑏) ∫

𝑏

𝑎
(𝑞 (𝑡) /𝑐 (𝑡)) 𝑑𝑡

× (

1

1 + (𝑎
2

21
/𝑎
2

22
𝑞 (𝑏))

+

𝑁𝑏−1

∑

𝑛=2

(𝑀
2𝑘+1

(𝑛 + 𝐶)
4𝑘+2

× (𝑀(𝑛 + 𝐶)
2
+ (𝑎
2

21
/𝑎
2

22
𝑞 (𝑏))))

−1

+

1

2𝑀
2𝑘+2

(4𝑘 + 3) (𝑁
𝑏
+ 𝐶)
4𝑘+3

) , 𝑘 ≥ 1.

(78)

Proof. Let us focus first on (75). From (25), the fact that𝜆
1
< 1

(from the hypothesis) and Lemmas 9-10 it is straightforward
to show that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝑘
{

𝛿𝐺 (𝑎, 𝑡)

𝛿𝑥

}

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2𝑐 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

(1 +

∞

∑

𝑛=2

1

𝜆
2𝑘+1

𝑛

) , 𝑘 ≥ 1.

(79)

On the other hand, from (66) one has
∞

∑

𝑛=2

1

𝜆
2𝑘+1

𝑛

≥

1

𝑀
2𝑘+1

∞

∑

𝑛=2

1

(𝑛 + 𝐶)
4𝑘+2

, 𝑘 ≥ 1. (80)

But given that
∞

∑

𝑛=2

1

(𝑛 + 𝐶)
4𝑘+2

≥ ∫

∞

2

𝑑𝑥

(𝑥 + 𝐶)
4𝑘+2

=

1

(4𝑘 + 1) (2 + 𝐶)
4𝑘+1

,

(81)

from (79)–(81) one gets (75).
As for (76), again from (25) and Lemmas 9-10 it is

straightforward to show that
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑘

{𝐺 (𝑎, 𝑡)}

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

>

2𝑑 (𝑎)

∫

𝑏

𝑎
𝑑 (𝑡) 𝑞 (𝑡) 𝑑𝑡

× (

1

𝜆
2

1
+ 𝜆
1
(𝑎
2

11
/𝑎
2

12
𝑞 (𝑎))

+

∞

∑

𝑛=2

1

𝜆
2𝑘

𝑛
(𝜆
2

𝑛
+ 𝜆
𝑛
(𝑎
2

11
/𝑎
2

12
𝑞 (𝑎)))

) ,

𝑘 ≥ 1.

(82)

On the other hand, from (66) one has

∞

∑

𝑛=2

1

𝜆
2𝑘

𝑛
(𝜆
2

𝑛
+ 𝜆
𝑛
(𝑎
2

11
/𝑎
2

12
𝑞 (𝑎)))

≥

∞

∑

𝑛=2

(𝑀
2𝑘+1

(𝑛 + 𝐶)
4𝑘+2

× (𝑀(𝑛 + 𝐶)
2
+

𝑎
2

11

𝑎
2

12
𝑞 (𝑎)

))

−1

,

𝑘 ≥ 1.

(83)

From the definition of𝑁
𝑎
, it is clear that

1

𝑀
2𝑘+1

(𝑛 + 𝐶)
4𝑘+2

(𝑀(𝑛 + 𝐶)
2
+ (𝑎
2

11
/𝑎
2

12
𝑞 (𝑎)))

≥

1

2𝑀
2𝑘+2

(𝑛 + 𝐶)
4𝑘+4

, 𝑛 ≥ 𝑁
𝑎
, 𝑘 ≥ 1.

(84)

And given that

∞

∑

𝑁𝑎

1

(𝑛 + 𝐶)
4𝑘+4

≥ ∫

∞

𝑁𝑎

𝑑𝑥

(𝑥 + 𝐶)
4𝑘+4

=

1

(4𝑘 + 3) (𝑁
𝑎
+ 𝐶)
4𝑘+3

,

(85)

from (82)–(85) and the fact that 𝜆
1
< 1 by the hypothesis,

one obtains (76). The proofs of (77) and (78) are very similar
mutatis mutandi.

Remark 13. It is possible to improve the results ofTheorem 12
by using better lower bounds for Φ2

𝑛
(𝑎), Φ2

𝑛
(𝑏), Φ󸀠2

𝑛
(𝑎), and

Φ
󸀠2

𝑛
(𝑏) than the ones displayed in Lemma 10 and better

upper bounds for 𝜆
𝑛
than the one presented in Lemma 11 or

calculating more terms in the sums of (75)–(78) before using
the integrals to get lower bounds for the remainders of the
series.

4. Bounds for the Distance between
𝑎 and 𝑏 Based on Concrete Values of 𝐿𝑘𝑓(𝑥)

This section will elaborate on the results of Section 2 in order
to obtain upper and lower bounds for the distance between
the extremes 𝑎, 𝑏 in a similar way as it was done in [1].
A critical condition for that is the positivity of the Green
function 𝐺(𝑥, 𝑡), which is ensured under certain boundary
conditions by the next lemma.
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Lemma 14. Let 𝑎, 𝑏 be any real numbers such that 𝑎 ̸= 𝑏 and
𝑎, 𝑏 ∈ [𝑎

󸀠
, 𝑏
󸀠
]. If the boundary conditions (3) verify any of the

following hypotheses for 𝑎󸀠, 𝑏󸀠,

𝑎
12
= 𝑎
22
= 0, (86)

𝑎
12
= 0, 1 +

𝑎
21

𝑎
22

(𝑏
󸀠
− 𝑎
󸀠
) > 0, (87)

1 −

𝑎
11

𝑎
12

(𝑏
󸀠
− 𝑎
󸀠
) > 0, 𝑎

22
= 0, (88)

𝑎
21

𝑎
22

>

𝑎
11

𝑎
12

,

𝑎
21

𝑎
22

−

𝑎
11

𝑎
12

−

𝑎
21

𝑎
22

𝑎
11

𝑎
12

(𝑏
󸀠
− 𝑎
󸀠
) > 0,

either 1 + 𝑎21
𝑎
22

(𝑏
󸀠
− 𝑎
󸀠
) > 0 or 1 − 𝑎11

𝑎
12

(𝑏
󸀠
− 𝑎
󸀠
) > 0,

(89)

then𝐺
𝑎𝑏
(𝑥, 𝑡) is positive almost everywhere for 𝑡 ∈ [𝑎, 𝑏] except

if 𝑥 = 𝑎 or 𝑥 = 𝑏 in case (86), 𝑥 = 𝑎 in case (87), and 𝑥 = 𝑏 in
case (88).

Proof. As was mentioned in the proof of Lemma 3, if we
define 𝑦

1
(𝑥) and 𝑦

2
(𝑥) as the solutions of

𝑦
󸀠󸀠
= 0, 𝑎

11
𝑦 (𝑎
󸀠
) + 𝑎
12
𝑦
󸀠
(𝑎
󸀠
) = 0,

𝑦
󸀠󸀠
= 0, 𝑎

21
𝑦 (𝑏
󸀠
) + 𝑎
22
𝑦
󸀠
(𝑏
󸀠
) = 0,

(90)

respectively, then we can represent 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) as follows:

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡) =

{
{
{
{

{
{
{
{

{

−𝑦
1
(𝑥) 𝑦
2
(𝑡)

𝑦
1
(𝑎
󸀠
) 𝑦
󸀠

2
(𝑎
󸀠
) − 𝑦
󸀠

1
(𝑎
󸀠
) 𝑦
2
(𝑎
󸀠
)

, 𝑥 < 𝑡,

−𝑦
1
(𝑡) 𝑦
2
(𝑥)

𝑦
1
(𝑎
󸀠
) 𝑦
󸀠

2
(𝑎
󸀠
) − 𝑦
󸀠

1
(𝑎
󸀠
) 𝑦
2
(𝑎
󸀠
)

, 𝑥 ≥ 𝑡.

(91)

We can divide the analysis of (91) in four cases.

(i) 𝑎
12
= 0 and 𝑎

22
= 0. In this case one has

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡) =

{
{
{
{
{

{
{
{
{
{

{

(𝑥 − 𝑎
󸀠
) (𝑡 − 𝑏

󸀠
)

𝑎
󸀠
− 𝑏
󸀠

, 𝑥 < 𝑡,

(𝑡 − 𝑎
󸀠
) (𝑥 − 𝑏

󸀠
)

𝑎
󸀠
− 𝑏
󸀠

, 𝑥 ≥ 𝑡,

(92)

which is clearly positive almost everywhere for 𝑡 ∈
[𝑎
󸀠
, 𝑏
󸀠
] as long as 𝑥 ̸= 𝑎

󸀠 and 𝑥 ̸= 𝑏
󸀠. This yields condi-

tion (86).
(ii) 𝑎
12
= 0 and 𝑎

22
̸= 0. In this case, one has

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡) =

{
{
{
{
{

{
{
{
{
{

{

(𝑥 − 𝑎
󸀠
) (− (𝑎

21
/𝑎
22
) (𝑡 − 𝑏

󸀠
) + 1)

− (𝑎
21
/𝑎
22
) (𝑎
󸀠
− 𝑏
󸀠
) + 1

, 𝑥 < 𝑡,

(𝑡 − 𝑎
󸀠
) (− (𝑎

21
/𝑎
22
) (𝑥 − 𝑏

󸀠
) + 1)

− (𝑎
21
/𝑎
22
) (𝑎
󸀠
− 𝑏
󸀠
) + 1

, 𝑥 ≥ 𝑡.

(93)

From (93) it is clear that 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) will be positive

almost everywhere for 𝑡 ∈ [𝑎
󸀠
, 𝑏
󸀠
] as long as 𝑥 ̸= 𝑎

󸀠

and

1 +

𝑎
21

𝑎
22

(𝑏
󸀠
− 𝑎
󸀠
) > 0, (94)

which gives condition (87).
(iii) 𝑎

12
̸= 0 and 𝑎

22
= 0. In this case, one has

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡) =

{
{
{
{
{
{

{
{
{
{
{
{

{

−

(𝑡 − 𝑏
󸀠
) (− (𝑎

11
/𝑎
12
) (𝑥 − 𝑎

󸀠
) + 1)

− (𝑎
11
/𝑎
12
) (𝑏
󸀠
− 𝑎
󸀠
) + 1

, 𝑥 < 𝑡,

−

(𝑥 − 𝑏
󸀠
) (− (𝑎

11
/𝑎
12
) (𝑡 − 𝑎

󸀠
) + 1)

− (𝑎
11
/𝑎
12
) (𝑏
󸀠
− 𝑎
󸀠
) + 1

, 𝑥 ≥ 𝑡.

(95)

From (95) it is clear that 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) will be positive

almost everywhere for 𝑡 ∈ [𝑎
󸀠
, 𝑏
󸀠
] as long as 𝑥 ̸= 𝑏

󸀠

and

1 −

𝑎
11

𝑎
12

(𝑏
󸀠
− 𝑎
󸀠
) > 0, (96)

which gives condition (88).
(iv) 𝑎
12

̸= 0 and 𝑎
22

̸= 0. In this case, one has

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡)

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

(− (𝑎
21
/𝑎
22
) (𝑡 − 𝑏

󸀠
) + 1) (− (𝑎

11
/𝑎
12
) (𝑥 − 𝑎

󸀠
) + 1)

(− (𝑎
11
/𝑎
12
) (𝑏
󸀠
− 𝑎
󸀠
) + 1) (𝑎

21
/𝑎
22
) − (𝑎

11
/𝑎
12
)

,

𝑥 < 𝑡,

(− (𝑎
21
/𝑎
22
) (𝑥 − 𝑏

󸀠
) + 1) (− (𝑎

11
/𝑎
12
) (𝑡 − 𝑎

󸀠
) + 1)

(− (𝑎
11
/𝑎
12
) (𝑏
󸀠
− 𝑎
󸀠
) + 1) (𝑎

21
/𝑎
22
) − (𝑎

11
/𝑎
12
)

,

𝑥 ≥ 𝑡.

(97)

From (97) it is clear that 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) will be positive

almost everywhere for 𝑡 ∈ [𝑎󸀠, 𝑏󸀠] if 1 − (𝑎
11
/𝑎
12
)(𝑏
󸀠
−

𝑎
󸀠
) > 0, 1−(𝑎

21
/𝑎
22
)(𝑎
󸀠
−𝑏
󸀠
) > 0, and (−(𝑎

11
/𝑎
12
)(𝑏
󸀠
−

𝑎
󸀠
) + 1)(𝑎

21
/𝑎
22
) − (𝑎

11
/𝑎
12
) > 0. Condition (89) is a

consequence of this and the fact that (−(𝑎
11
/𝑎
12
)(𝑏
󸀠
−

𝑎
󸀠
) + 1)(𝑎

21
/𝑎
22
) − (𝑎
11
/𝑎
12
) > 0 and 1 − (𝑎

11
/𝑎
12
)(𝑏
󸀠
−

𝑎
󸀠
) > 0 imply 1 − (𝑎

21
/𝑎
22
)(𝑎
󸀠
− 𝑏
󸀠
) > 0 and that

(−(𝑎
11
/𝑎
12
)(𝑏
󸀠
− 𝑎
󸀠
) + 1)(𝑎

21
/𝑎
22
) − (𝑎
11
/𝑎
12
) > 0 and

1−(𝑎
21
/𝑎
22
)(𝑎
󸀠
−𝑏
󸀠
) > 0 imply 1−(𝑎

11
/𝑎
12
)(𝑏
󸀠
−𝑎
󸀠
) > 0

(both proofs are straightforward and are left to the
reader).

To complete the theorem it suffices to prove that if (86)–(89)
aremet by 𝑎󸀠, 𝑏󸀠, theywill also bemet by any other extremes 𝑎,
𝑏 such that [𝑎, 𝑏] ⊂ [𝑎󸀠, 𝑏󸀠]. This is straightforward in the case
of conditions 1 − (𝑎

11
/𝑎
12
)(𝑏
󸀠
− 𝑎
󸀠
) > 0 and 1 + (𝑎

21
/𝑎
22
)(𝑏
󸀠
−

𝑎
󸀠
) > 0. In the case of the condition (𝑎

21
/𝑎
22
) − (𝑎

11
/𝑎
12
) −

(𝑎
21
/𝑎
22
)(𝑎
11
/𝑎
12
)(𝑏
󸀠
− 𝑎
󸀠
) > 0 simply note that

ℎ (𝑥) =

𝑎
21

𝑎
22

−

𝑎
11

𝑎
12

−

𝑎
21

𝑎
22

𝑎
11

𝑎
12

𝑥, 𝑥 ∈ [0, 𝑏
󸀠
− 𝑎
󸀠
] , (98)
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is a linear function positive at the extremes 0 and 𝑏󸀠−𝑎󸀠 by the
hypothesis, and therefore it must be positive for any 𝑏 − 𝑎 ∈
[0, 𝑏
󸀠
− 𝑎
󸀠
].

Remark 15. Conditions (86)–(89) imply conditions (12) of
Lemma 3. In consequence they will replace the latter in the
rest of results of this section.

Once the conditions for the positivity of the Green
function have been determined, we can proceed with the key
results of this method.

Lemma 16. Assume that [𝑎󸀠, 𝑏󸀠] ⊂ [𝑎󸀠󸀠, 𝑏󸀠󸀠] are enclosed inter-
vals such that [𝑎󸀠, 𝑏󸀠] ̸= [𝑎

󸀠󸀠
, 𝑏
󸀠󸀠
] and that any of conditions

(86)–(89) are met in [𝑎󸀠󸀠, 𝑏󸀠󸀠]. Assume also that𝑓(𝑥) is positive
almost everywhere on [𝑎󸀠󸀠, 𝑏󸀠󸀠] and that 𝑥 ∈ [𝑎󸀠, 𝑏󸀠] is such that
𝐺(𝑥, 𝑡) is not identically zero. Then the operator 𝐿 satisfies

𝐿
𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) < 𝐿

𝑎
󸀠󸀠
,𝑏
󸀠󸀠𝑓 (𝑥) < max {𝐿

𝑎
󸀠󸀠
,𝑏
󸀠󸀠𝑓 (𝑡) , 𝑡 ∈ [𝑎

󸀠󸀠
, 𝑏
󸀠󸀠
]} .

(99)

Proof. Since 𝑞(𝑥) and𝑓(𝑥) are positive almost everywhere on
[𝑎
󸀠󸀠
, 𝑏
󸀠󸀠
] by hypothesis, and 𝐺

𝑎
󸀠
𝑏
󸀠 and 𝐺

𝑎
󸀠󸀠
𝑏
󸀠󸀠 are also positive

almost everywhere on [𝑎󸀠, 𝑏󸀠] and [𝑎󸀠󸀠, 𝑏󸀠󸀠], respectively, by
the hypothesis and Lemma 14, it suffices to prove that

𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡) ≤ 𝐺

𝑎
󸀠󸀠
𝑏
󸀠󸀠 (𝑥, 𝑡) (100)

for (𝑥, 𝑡) ∈ [𝑎󸀠, 𝑏󸀠] × [𝑎󸀠, 𝑏󸀠]. We will do it only for the case
𝑎
12
, 𝑎
22

̸= 0 (the proof of the rest of cases is very similar), for
which the Green function is given by (97). If we denote by𝑊
the expression (−(𝑎

11
/𝑎
12
)(𝑏
󸀠
− 𝑎
󸀠
) + 1)(𝑎

21
/𝑎
22
) − (𝑎
11
/𝑎
12
), a

routine calculation yields

𝛿𝐺
𝑎
󸀠
𝑏
󸀠 (𝑥, 𝑡)

𝛿𝑎
󸀠

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−(

𝑎
11

𝑎
12
𝑊

)

2

(−

𝑎
21

𝑎
22

(𝑥 − 𝑏
󸀠
) + 1)

×(−

𝑎
21

𝑎
22

(𝑡 − 𝑏
󸀠
) + 1) , 𝑥 ≥ 𝑡,

−(

𝑎
11

𝑎
12
𝑊

)

2

(−

𝑎
21

𝑎
22

(𝑡 − 𝑏
󸀠
) + 1)

×(−

𝑎
21

𝑎
22

(𝑥 − 𝑏
󸀠
) + 1) , 𝑥 < 𝑡.

(101)

From (89), which is the hypothesis applicable if 𝑎
12
, 𝑎
22

̸= 0,
one has 𝛿𝐺

𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡)/𝛿𝑎

󸀠
< 0 if 𝑎

11
̸= 0 and 𝛿𝐺

𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡)/𝛿𝑎

󸀠
≡ 0

if 𝑎
11
= 0. In other words, fixing 𝑥, 𝑡, and 𝑏󸀠, either 𝐺

𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡)

increases (𝑎
11

̸= 0) or 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) stays constant (𝑎

11
= 0) as 𝑎󸀠

decreases.
In a similarmannerwe can show that 𝛿𝐺

𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡)/𝛿𝑏

󸀠
≥ 0;

that is, fixing 𝑥, 𝑡, and 𝑎󸀠, either 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) increases (𝑎

21
̸= 0)

or 𝐺
𝑎
󸀠
𝑏
󸀠(𝑥, 𝑡) stays constant (𝑎

21
= 0) as 𝑏󸀠 increases. This

proves (100) and the lemma.

Lemma 17. Assume that any of conditions (86)–(89) holds in
[𝑎, 𝑏]. If

(i) either 𝑎
12
= 𝑎
22
= 0,

(ii) or 𝑎
12
= 0 and (𝑎

21
/𝑎
22
) > 0,

(iii) or 𝑎
22
= 0 and (𝑎

11
/𝑎
12
) < 0,

(iv) or (𝑎
11
/𝑎
12
) < 0 < (𝑎

21
/𝑎
22
),

then one has

max {𝐺 (𝑥, 𝑡) , 𝑥 ∈ [𝑎, 𝑏]} = 𝐺 (𝑡, 𝑡) , 𝑡 ∈ [𝑎, 𝑏] . (102)

Proof. We will only prove the last case (the proof of the
other cases is very similar). Thus, from (97) it follows that,
fixing 𝑡, 𝐺(𝑥, 𝑡) is a function increasing with 𝑥 for 𝑥 ≤ 𝑡 and
decreasing with 𝑥 for 𝑡 < 𝑥.Therefore it will have amaximum
at 𝑥 = 𝑡, which is exactly (102).

Theorem 18. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at 𝑎, 𝑏. Let 𝑦max be
defined by 𝑦max = max{𝑦(𝑥), 𝑥 ∈ [𝑎, 𝑏]}. Assume that any of
conditions (86)–(89) holds in extremes 𝑎󸀠, 𝑏󸀠 such that [𝑎, 𝑏] ⊂
[𝑎
󸀠
, 𝑏
󸀠
]. Assume also that 𝑓 > 𝑦 almost everywhere on [𝑎, 𝑏]

and 𝑓 > 0 almost everywhere on [𝑎󸀠, 𝑏󸀠]. Then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) > 𝑦 (𝑥) , 𝑘 ≥ 1, 𝑥 ∈ [𝑎, 𝑏] . (103)

Moreover,

(i) if (𝑎
11
/𝑎
12
) ≥ 0 and either 𝑎

22
= 0 or (𝑎

21
/𝑎
22
) > 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑎
󸀠
) > 𝑦max = 𝑦 (𝑎) , 𝑘 ≥ 1; (104)

(ii) if (𝑎
21
/𝑎
22
) ≤ 0 and either 𝑎

12
= 0 or (𝑎

11
/𝑎
12
) < 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑏
󸀠
) > 𝑦max = 𝑦 (𝑏) , 𝑘 ≥ 1; (105)

(iii) if any of the conditions of Lemma 17 are met, then

∫

𝑏
󸀠

𝑎
󸀠

𝑞 (𝑡) 𝐺
𝑎
󸀠
𝑏
󸀠 (𝑡, 𝑡) 𝐿

𝑘−1

𝑎
󸀠
𝑏
󸀠𝑓 (𝑡) 𝑑𝑡 > 𝑦max, 𝑘 ≥ 1. (106)

Proof. From the hypothesis and Lemma 14, 𝐺
𝑎𝑏
(𝑥, 𝑡) is either

positive almost everywhere or identically zero on 𝑡 ∈ [𝑎, 𝑏],
depending on the value of 𝑥. In consequence we can apply
Lemma 1 recursively to yield

𝐿
𝑘

𝑎,𝑏
𝑓 (𝑥) ≥ 𝐿

𝑘

𝑎,𝑏
𝑦 (𝑥) = 𝑦 (𝑥) , 𝑘 ≥ 1. (107)

And given that 𝑓(𝑥) > 0 almost everywhere on [𝑎󸀠, 𝑏󸀠], from
Lemma 16 and (107) one gets (103). Equations (104) and (105)
are consequences of 𝑦 and 𝐿𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 having maxima at 𝑎 and 𝑎󸀠,

in the first case, and 𝑏 and 𝑏󸀠, in the second case, respectively.
As for (106), it results from (103) and Lemma 17.
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Theorem 19. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at 𝑎, 𝑏. Let 𝑦max be defined
by 𝑦max = max{𝑦(𝑥), 𝑥 ∈ [𝑎, 𝑏]}. Assume that any of condi-
tions (86)–(89) holds at 𝑎, 𝑏 and that the extremes 𝑎󸀠, 𝑏󸀠 are
such that [𝑎󸀠, 𝑏󸀠] ⊂ [𝑎, 𝑏]. Assume also that 0 < 𝑓(𝑥) < 𝑦(𝑥)
almost everywhere on [𝑎󸀠, 𝑏󸀠]. Then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) < 𝑦 (𝑥) , 𝑘 ≥ 1, 𝑥 ∈ [𝑎

󸀠
, 𝑏
󸀠
] . (108)

Moreover,

(i) if (𝑎
11
/𝑎
12
) ≥ 0 and either 𝑎

22
= 0 or (𝑎

21
/𝑎
22
) > 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑎
󸀠
) < 𝑦max = 𝑦 (𝑎) , 𝑘 ≥ 1; (109)

(ii) if (𝑎
21
/𝑎
22
) ≤ 0 and either 𝑎

12
= 0 or (𝑎

11
/𝑎
12
) < 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑏
󸀠
) < 𝑦max = 𝑦 (𝑏) , 𝑘 ≥ 1; (110)

(iii) otherwise

max {𝐿𝑘
𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) , 𝑥 ∈ [𝑎

󸀠
, 𝑏
󸀠
]} < 𝑦max, 𝑘 ≥ 1. (111)

Proof. Applying Lemmas 1 and 16 recursively one has

𝑦max ≥ 𝑦 (𝑥) = 𝐿
𝑘

𝑎,𝑏
𝑦 (𝑥) > 𝐿

𝑘

𝑎
󸀠
,𝑏
󸀠𝑦 (𝑥)

≥ 𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) , 𝑘 ≥ 1, 𝑥 ∈ [𝑎

󸀠
, 𝑏
󸀠
] .

(112)

This gives (108) and also (111). As before, (109) and (110) are
consequences of 𝑦 and 𝐿𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 having maxima at 𝑎 and 𝑎󸀠, in

the first case, and 𝑏 and 𝑏󸀠, in the second case, respectively.

Corollary 20. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at 𝑎, 𝑏. Assume that any
of conditions (86)–(89) holds at the extremes 𝑎󸀠, 𝑏󸀠.

(i) If (𝑎
11
/𝑎
12
) ≥ 0 and either 𝑎

22
= 0 or (𝑎

21
/𝑎
22
) > 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {1} (𝑎

󸀠
) > 1, [𝑎, 𝑏] ⊂ [𝑎

󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1, (113)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {

𝑏
󸀠
− 𝑥

𝑏
󸀠
− 𝑎
󸀠
} (𝑎
󸀠
) < 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊂ [𝑎, 𝑏] , 𝑘 ≥ 1.

(114)

(ii) If (𝑎
21
/𝑎
22
) ≤ 0 and either 𝑎

12
= 0 or (𝑎

11
/𝑎
12
) < 0,

then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {1} (𝑏

󸀠
) > 1, [𝑎, 𝑏] ⊂ [𝑎

󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1, (115)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {

𝑥 − 𝑎
󸀠

𝑏
󸀠
− 𝑎
󸀠
} (𝑏
󸀠
) < 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊂ [𝑎, 𝑏] , 𝑘 ≥ 1.

(116)

(iii) If any of the conditions of Lemma 17 are met and 𝑐 is
any real number in ]𝑎󸀠, 𝑏󸀠[, then

∫

𝑏
󸀠

𝑎
󸀠

𝑞 (𝑡) 𝐺
𝑎
󸀠
𝑏
󸀠 (𝑡, 𝑡) 𝐿

𝑘−1

𝑎
󸀠
,𝑏
󸀠 {1} (𝑡) 𝑑𝑡 > 1, [𝑎, 𝑏] ⊂ [𝑎

󸀠
, 𝑏
󸀠
] ,

𝑘 ≥ 1,

(117)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑔 (𝑐) < 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊂ [𝑎, 𝑏] , 𝑘 ≥ 1, (118)

where 𝑔 is defined by

𝑔 (𝑥) =

{
{
{
{

{
{
{
{

{

𝑥 − 𝑎
󸀠

𝑐 − 𝑎
󸀠

𝑥 ∈ [𝑎
󸀠
, 𝑐] ,

𝑏
󸀠
− 𝑥

𝑏
󸀠
− 𝑐

𝑥 ∈ [𝑐, 𝑏
󸀠
] .

(119)

Proof. Equations (113), (115), and (117) can be easily obtained
by setting 𝑓(𝑥) ≡ 𝑦max in (104)–(106). In turn, (114) can
be obtained by setting 𝑓(𝑥) ≡ 𝑦(𝑎

󸀠
)((𝑏
󸀠
− 𝑥)/(𝑏

󸀠
− 𝑎
󸀠
))

(with 𝑦(𝑎󸀠) > 0) in (108) and taking into account that 𝑦 is
concave (its second derivative is negative almost everywhere
on [𝑎, 𝑏] since 𝑞(𝑥) and 𝑦(𝑥) are positive almost everywhere
on [𝑎, 𝑏] due to (86)–(89)). Equations (116) and (118) can also
be obtained in a similar manner.

Remark 21. Corollary 1 of [1] is a particular case (disfocality)
of Corollary 20, (115)-(116).

Theorems 18 and 19 and Corollary 20 provide conditions
to assess if there exists a solution 𝑦(𝑥) satisfying (3) at
extremes inner or outer to [𝑎, 𝑏]. However, at least in the way
they have been presented, they do not allow determining if
there exists a solution satisfying (3) at exactly the extremes 𝑎,
𝑏. That will be the purpose of the next theorems.

Theorem 22. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at 𝑎, 𝑏. Let 𝑦max be
defined by 𝑦max = max{𝑦(𝑥), 𝑥 ∈ [𝑎, 𝑏]}. Assume that any of
conditions (86)–(89) holds at 𝑎, 𝑏. Let𝑓(𝑥) be such that𝑓(𝑥) >
𝑦(𝑥) almost everywhere on [𝑎, 𝑏] and let 𝑏

𝑘
be a sequence of real

valueswhose definition depends on the boundary conditions (3)
as follows:

(i) if (𝑎
11
/𝑎
12
) ≥ 0 and either 𝑎

22
= 0 or (𝑎

21
/𝑎
22
) > 0,

then

𝐿
𝑘

𝑎,𝑏𝑘
𝑓 (𝑎) = 𝑦 (𝑎) , 𝑘 ≥ 1; (120)

(ii) if (𝑎
21
/𝑎
22
) ≤ 0 and either 𝑎

12
= 0 or (𝑎

11
/𝑎
12
) < 0,

then

𝐿
𝑘

𝑎,𝑏𝑘
𝑓 (𝑏
𝑘
) = 𝑦 (𝑏) , 𝑘 ≥ 1; (121)

(iii) if any of the conditions of Lemma 17 are met, then

∫

𝑏𝑘

𝑎

𝑞 (𝑡) 𝐺
𝑎𝑏𝑘
(𝑡, 𝑡) 𝐿

𝑘−1

𝑎,𝑏𝑘
𝑓 (𝑡) 𝑑𝑡 = 𝑦max, 𝑘 ≥ 1; (122)
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with 𝑓 > 0 almost everywhere on [𝑎, 𝑏
𝑘
]. Then 𝑏

𝑘
< 𝑏 for 𝑘 ≥ 1

and {𝑏
𝑘
} tends to 𝑏 as 𝑘 → ∞.

Proof. From the fact that 𝑓(𝑥) > 𝑦(𝑥) almost everywhere on
[𝑎, 𝑏]and 𝑓(𝑥) > 0 almost everywhere on [𝑎, 𝑏

𝑘
] and from

(104)–(106) and (120)–(122), it is clear that [𝑎, 𝑏
𝑘
] ⊆ [𝑎, 𝑏] (i.e.,

𝑎 < 𝑏
𝑘
≤ 𝑏) for 𝑘 ≥ 1. Now, let us assume that {𝑏

𝑘
} does

not have a limit in 𝑏. In that case there exist a 𝛿 > 0 and a
subsequence {𝑏

𝑘𝑗
} of {𝑏

𝑘
} such that 𝑏

𝑘𝑗
< 𝑏− 𝛿. But then, from

Theorem 5 and Lemma 16 one has

lim
𝑘𝑗→∞

𝐿

𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓 (𝑥) ≤ lim
𝑘𝑗→∞

𝐿

𝑘𝑗

𝑎,𝑏−𝛿
𝑓 (𝑥) = 0, 𝑥 ∈ [𝑎, 𝑏 − 𝛿] ,

lim
𝑘𝑗→∞

𝐿

𝑘𝑗−1

𝑎,𝑏𝑘𝑗

𝑓 (𝑥) ≤ lim
𝑘𝑗→∞

𝐿

𝑘𝑗−1

𝑎,𝑏−𝛿
𝑓 (𝑥) = 0, 𝑥 ∈ [𝑎, 𝑏 − 𝛿] .

(123)

In both cases the convergence is uniform for 𝑥 ∈ [𝑎, 𝑏 − 𝛿].
Therefore, for every 𝜖 > 0 there will exist infinitely many 𝑏

𝑘𝑗

such that

𝐿

𝑘𝑗−1

𝑎,𝑏𝑘𝑗

𝑓 (𝑥) , 𝐿

𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓 (𝑥) < 𝜖, 𝑥 ∈ [𝑎, 𝑏
𝑘𝑗
] (124)

which contradicts (120) and (121) and, taking into account
that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑏𝑘𝑗

𝑎

𝑞 (𝑡) 𝐺 (𝑡, 𝑡) 𝐿

𝑘𝑗−1

𝑎,𝑏𝑘𝑗

𝑓 (𝑡) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑏𝑘𝑗

𝑎

𝑞 (𝑡) 𝐺 (𝑡, 𝑡) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(125)

also contradicts (122).

Theorem 23. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) that satisfies (3) at 𝑎, 𝑏. Let 𝑦max be defined
by 𝑦max = max{𝑦(𝑥), 𝑥 ∈ [𝑎, 𝑏]}. Let 𝑏

𝑘
be a sequence of real

valueswhose definition depends on the boundary conditions (3)
as follows:

(i) if (𝑎
11
/𝑎
12
) ≥ 0 and either 𝑎

22
= 0 or (𝑎

21
/𝑎
22
) > 0,

then

𝐿
𝑘

𝑎,𝑏𝑘
𝑓
𝑎,𝑏𝑘
(𝑎) = 𝑦max, 𝑘 ≥ 1; (126)

(ii) if (𝑎
21
/𝑎
22
) ≤ 0 and either 𝑎

12
= 0 or (𝑎

11
/𝑎
12
) < 0,

then

𝐿
𝑘

𝑎,𝑏𝑘
𝑓
𝑎,𝑏𝑘
(𝑏
𝑘
) = 𝑦max, 𝑘 ≥ 1; (127)

(iii) if any of the conditions of Lemma 17 are met, let one
pick any 𝑐 ∈ [𝑎, 𝑏

𝑘
] and set

𝐿
𝑘

𝑎,𝑏𝑘
𝑓
𝑎,𝑏𝑘
(𝑐) = 𝑦max, 𝑘 ≥ 1, (128)

where 𝑓
𝑎,𝑏𝑘

is a family of continuous functions on [𝑎, 𝑏
𝑘
] such

that 0 < 𝑓
𝑎,𝑏𝑘
(𝑥) < 𝑦(𝑥) almost everywhere in [𝑎, 𝑏

𝑘
]. Let one

suppose that there exists a continuous function 𝑓 such that 0 <
𝑓(𝑥) < 𝑓

𝑎,𝑏𝑘
(𝑥) almost everywhere in [𝑎, 𝑏

𝑘
]. Assume that any

of conditions (86)–(89) holds at 𝑎, 𝑏
𝑘
. Then 𝑏

𝑘
> 𝑏 for 𝑘 ≥ 1

and {𝑏
𝑘
} tends to 𝑏 as 𝑘 → ∞.

Proof. From the fact that 𝑦(𝑥) > 𝑓
𝑎,𝑏𝑘
(𝑥) > 0 almost every-

where on [𝑎, 𝑏
𝑘
], (109)–(111), and (126)–(128), it is clear that

[𝑎, 𝑏
𝑘
] ⊇ [𝑎, 𝑏] (i.e., 𝑎 < 𝑏 ≤ 𝑏

𝑘
) for 𝑘 ≥ 1. Now, let us assume

that {𝑏
𝑘
} does not have a limit in 𝑏. In that case there exist a

𝛿 > 0 and a subsequence {𝑏
𝑘𝑗
} of {𝑏

𝑘
} such that 𝑏

𝑘𝑗
> 𝑏 + 𝛿.

But then, from Theorem 5 and Lemmas 1 and 16, for those
𝑥 ∈ [𝑎, 𝑏 + 𝛿] such thatΦ

1
(𝑥) ̸= 0, one has

lim
𝑘𝑗→∞

𝐿

𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓
𝑎,𝑏𝑘𝑗

(𝑥)

≥ lim
𝑘𝑗→∞

𝐿

𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓 (𝑥) ≥ lim
𝑘𝑗→∞

𝐿

𝑘𝑗

𝑎,𝑏+𝛿
𝑓 (𝑥) = ±∞,

(129)

the sign depending on that of ⟨𝑓,Φ
1
⟩Φ
1
(𝑥). Let us suppose

that such a sign is positive (the negative case can be treated in
the same manner). In that case for every𝑀 > 𝑦max > 0 there
will exist infinitely many 𝑏

𝑘𝑗
such that

𝐿

𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓
𝑎,𝑏𝑘𝑗

(𝑥) > 𝑀. (130)

Since the values at the left-hand side of (126)-(127) are upper
bounds of 𝐿𝑘𝑗

𝑎,𝑏𝑘𝑗

𝑓
𝑎,𝑏𝑘𝑗

(𝑥), (130) leads to a contradiction and
proves the assertion.

Remark 24. Theorems 22 and 23 guarantee that, given [𝑎, 𝑏],
one can determine if there exists a nontrivial solution 𝑦(𝑥) of
(2) satisfying (3) at 𝑎, 𝑏 by calculating the sequences defined
by (120)–(122) and (126)–(128) and checking if they converge
to 𝑏.

5. The Calculation of 𝐿𝑘𝑓(𝑥)

A common key point of Sections 3 and 4 is the importance of
the calculation of 𝐿𝑘𝑓(𝑥) for different functions 𝑓. Bearing
this in mind, our aim for this section is to find manners
to facilitate such a calculation. That will be done with the
following theorems, in all of which the internal product ⟨⋅, ⋅⟩
is assumed to be calculated on the variable 𝑡.

Theorem 25. The operator 𝐿 defined in (4) verifies

𝐿𝑓 (𝑥) = ⟨𝐺 (𝑥, 𝑡) , 𝑓 (𝑡)⟩ , 𝑥 ∈ [𝑎, 𝑏] . (131)

Proof. It is straightforward from the definition of 𝐿 given in
(4) and the definition of the internal product (10).

Theorem 26. If 𝑎, 𝑏 satisfy any of conditions (12), then the
operator 𝐿 defined in (4) verifies

𝐿
𝑛+𝑚+1

𝑓 (𝑥) = ⟨𝐿
𝑛
𝐺 (𝑥, 𝑡) , 𝐿

𝑚
𝑓 (𝑡)⟩ ,

𝑥 ∈ [𝑎, 𝑏] , 𝑛, 𝑚 ≥ 0.

(132)

And in particular

𝐿
𝑘+1
𝑓 (𝑥) = ⟨𝐿

𝑘
𝐺 (𝑥, 𝑡) , 𝑓 (𝑡)⟩ , 𝑥 ∈ [𝑎, 𝑏] , 𝑘 ≥ 0.

(133)
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Proof. From (131) one has

𝐿
𝑛+𝑚+1

𝑓 (𝑥) = ⟨𝐺 (𝑥, 𝑡) , 𝐿
𝑛+𝑚

𝑓 (𝑡)⟩ ,

𝑥 ∈ [𝑎, 𝑏] , 𝑛, 𝑚 ≥ 0.

(134)

From the hypothesis and Lemma 3, 𝐿 is self-adjoint. We can
apply that property recursively to (134) to obtain

𝐿
𝑛+𝑚+1

𝑓 (𝑥) = ⟨𝐿𝐺 (𝑥, 𝑡) , 𝐿
𝑛+𝑚−1

𝑓 (𝑡)⟩

= ⟨𝐿
𝑛
𝐺 (𝑥, 𝑡) , 𝐿

𝑚
𝑓 (𝑡)⟩ , 𝑥 ∈ [𝑎, 𝑏] ,

𝑛, 𝑚 ≥ 0.

(135)

Equation (133) is a particular case of (132) for𝑚 = 0.

Remark 27. Theadvantage of (133) is that, given (2) and fixing
the value 𝑘 we want to apply to 𝐿𝑘, it allows testing easily
different functions 𝑓, 𝑔 (as many as we want) in Theorems
7 and 18–23 in a simple way, just leaving the complication of
the method to the calculation of 𝐿𝑘−1𝐺(𝑥, 𝑡).

6. Some Examples

Throughout this section we will introduce examples where
Theorems 7 and 12 andCorollary 20will be used to determine
upper and lower bounds for the distance between extremes
𝑎 and 𝑏 of a solution of (2) for different functions 𝑞(𝑥) and
boundary conditions (3). For the sake of simplicity, the anal-
ysis will fix the value of the starting point 𝑎 (in all cases zero)
and will search for upper and lower bounds of the adjacent
right extreme 𝑏. The boundary conditions addressed will be
disfocality, in the first three examples, and disconjugacy, in
the two last ones, and the examples used to illustrate the
disfocal case will be the same as those that were introduced
in [1], in order to compare the bounds obtained viaTheorems
7 and 12 with those coming from Corollary 20, which was
already obtained in [1] for the disfocal case. A comparison
between these bounds and the bounds obtained via other
existing methods, like Brown and Hinton’s one (see [24]) for
lower bounds, will also be done.

In all examples the calculation of 𝐿𝑘 will be done numer-
ically and the number of iterations will be restricted case by
case.

Example 1. Let us consider the following boundary value
problem

𝑦
󸀠󸀠
+ 𝐴𝑒
𝑥
= 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦

󸀠

(𝑏) = 0,

(136)

for different values of the constant 𝐴.
The application of Theorem 7 to the function 𝑓(𝑥) = 𝑥,

together with Theorem 12 and Corollary 20 (already applied
to this problem in [1] with𝑓(𝑥) = (𝑥/𝑏) and𝑓(𝑥) equal to the
functionΦ(𝑥) of [1, Equation (47)]) gives Table 1.

As can be seen from Table 1, Theorem 7 (i.e., ‖𝐿𝑘{𝑥}‖
2

2
<

‖𝑥‖
2

2
) provides better upper bounds of 𝑏 than Corollary 20

(that is, 𝐿𝑘{𝑥/𝑏}(𝑏) < 1) with a lesser number of iterations for
all values of the constant 𝐴. On the other hand, Theorem 12

Table 1: Comparison of bounds for 𝑏 in Example 1.
Value of 𝐴 Used formula Bound

𝐴 = 1

𝐿
10
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 1.072

𝐿
15
{Φ} (𝑏) > 1 𝑏 > 1.0635

𝐿
17
{Φ} (𝑏) > 1 𝑏 > 1.0637

Brown and Hinton 𝑏 > 1.0635

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 1.067

Theorem 12 with 𝑘 = 25 𝑏 > 1.0627

𝐴 = 3

𝐿
6
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 0.712

𝐿
9
{Φ} (𝑏) > 1 𝑏 > 0.7020

𝐿
12
{Φ} (𝑏) > 1 𝑏 > 0.7025

Brown and Hinton 𝑏 > 0.7020

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.705

Theorem 12 with 𝑘 = 24 𝑏 > 0.7023

𝐴 = 5

𝐿
6
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 0.580

𝐿
8
{Φ} (𝑏) > 1 𝑏 > 0.5707

𝐿
12
{Φ} (𝑏) > 1 𝑏 > 0.5712

Brown and Hinton 𝑏 > 0.5707

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.573

Theorem 12 with 𝑘 = 17 𝑏 > 0.5707

yields lower bounds of 𝑏 which are either worse than
Corollary 20 and Brown and Hinton’s method [24] or, when
equal, require a higher number of iterations than [1]. And as
wasmentioned in [1], it is worth remarking the good accuracy
that Brown and Hinton’s method gives for lower bounds with
relatively low calculation effort.

Example 2. Let us consider the following boundary value
problem:

𝑦
󸀠󸀠
+ 𝐵𝑥𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦

󸀠

(𝑏) = 0,

(137)

for different values of the constant 𝐵.
The application of Theorem 7 to the function 𝑓(𝑥) = 𝑥,

together with Theorem 12 and Corollary 20 (already applied
to this problem in [1]), gives Table 2, where one can observe
results and trends similar to those commented in the previous
example.

Example 3. Let us consider the following boundary value
problem:
𝑦
󸀠󸀠
+ 𝐶𝑒
−𝑥
𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦

󸀠

(𝑏) = 0,

(138)

for different values of the constant 𝐶.
The application of Theorem 7 to the function 𝑓(𝑥) = 𝑥,

together with Theorem 12 and Corollary 20 (already applied
to this problem in [1]), gives Table 3.

In this third example one can observe that Theorem 12
finally gets to yield greater (i.e., better) lower bounds of 𝑏
than those provided by Corollary 20 and Brown and Hinton’s
method [24] with a lesser number of iterations 𝑘.
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Table 2: Comparison of bounds for 𝑏 in Example 2.

Value of 𝐵 Used formula Bound

𝐵 = 1

𝐿
5
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 1.530

𝐿
22
{Φ} (𝑏) > 1 𝑏 > 1.513

Brown and Hinton 𝑏 > 1.513

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 1.516

Theorem 12 with 𝑘 = 24 𝑏 > 1.5106

𝐵 = 3

𝐿
5
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 1.062

𝐿
23
{Φ} (𝑏) > 1 𝑏 > 1.049

Brown and Hinton 𝑏 > 1.049

󵄩
󵄩
󵄩
󵄩
𝐿
3
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 1.0508

Theorem 12 with 𝑘 = 23 𝑏 > 1.0473

𝐵 = 5

𝐿
5
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 0.894

𝐿
23
{Φ} (𝑏) > 1 𝑏 > 0.884

Brown and Hinton 𝑏 > 0.884

󵄩
󵄩
󵄩
󵄩
𝐿
6
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.886

Theorem 12 with 𝑘 = 25 𝑏 > 0.8835

Table 3: Comparison of bounds for 𝑏 in Example 3.

Value of 𝐶 Used formula Bound

𝐶 = 5

𝐿
7
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 1.007

𝐿
10
{Φ} (𝑏) > 1 𝑏 > 0.969

𝐿
16
{Φ} (𝑏) > 1 𝑏 > 0.972

Brown and Hinton 𝑏 > 0.969

󵄩
󵄩
󵄩
󵄩
𝐿
3
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.98

Theorem 12 with 𝑘 = 7 𝑏 > 0.970

Theorem 12 with 𝑘 = 19 𝑏 > 0.974

𝐶 = 10

𝐿
5
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 0.633

𝐿
8
{Φ} (𝑏) > 1 𝑏 > 0.609

𝐿
15
{Φ} (𝑏) > 1 𝑏 > 0.611

Brown and Hinton 𝑏 > 0.609

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.6161

Theorem 12 with 𝑘 = 4 𝑏 > 0.609

Theorem 12 with 𝑘 = 24 𝑏 > 0.6119

𝐶 = 20

𝐿
5
{

𝑥

𝑏

} (𝑏) < 1 𝑏 < 0.415

𝐿
5
{Φ} (𝑏) > 1 𝑏 > 0.401

𝐿
14
{Φ} (𝑏) > 1 𝑏 > 0.403

Brown and Hinton 𝑏 > 0.401

󵄩
󵄩
󵄩
󵄩
𝐿
2
{𝑥}
󵄩
󵄩
󵄩
󵄩

2

2
< ‖𝑥‖

2

2
𝑏 < 0.405

Theorem 12 with 𝑘 = 11 𝑏 > 0.403

Theorem 12 with 𝑘 = 21 𝑏 > 0.4033

Example 4. Let us consider the following boundary value
problem:

𝑦
󸀠󸀠
+ 𝐴𝑒
𝑥
= 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0, (139)

for different values of the constant 𝐴.

Table 4: Comparison of bounds for 𝑏 in Example 4.

Value of 𝐴 Used formula Bound

𝐴 = 3

∫

𝑏

𝑎

𝑞(𝑡)𝐺(𝑡, 𝑡)𝐿
11

{1}(𝑡)𝑑𝑡 > 1 𝑏 > 1.266

Theorem 12 with 𝑘 = 11 𝑏 > 1.279

󵄩
󵄩
󵄩
󵄩
𝐿
5
{V}󵄩󵄩󵄩
󵄩

2

2
< ‖V‖2

2
𝑏 < 1.287

𝐿
10
{V} (

𝑎 + 𝑏

2

) < 1 𝑏 < 1.298

𝐴 = 5

∫

𝑏

𝑎

𝑞 (𝑡) 𝐺 (𝑡, 𝑡) 𝐿
11

{1} (𝑡) 𝑑𝑡 > 1 𝑏 > 1.044

Theorem 12 with 𝑘 = 11 𝑏 > 1.056

󵄩
󵄩
󵄩
󵄩
𝐿
5
{V}󵄩󵄩󵄩
󵄩

2

2
< ‖V‖2

2
𝑏 < 1.062

𝐿
10
{V} (

𝑎 + 𝑏

2

) < 1 𝑏 < 1.071

The application of Theorem 7 and Corollary 20—(118)—
to the function 𝑓(𝑥) defined by

𝑓 (𝑥) = V (𝑥) =
{
{
{

{
{
{

{

2𝑥

𝑏

𝑥 ∈ [0,

𝑏

2

] ,

2 (𝑏 − 𝑥)

𝑏

𝑥 ∈ [

𝑏

2

, 𝑏] ;

(140)

together with Theorem 12 and Corollary 20—(117)—gives
Table 4.

In this example the methods based on comparison of
norms yield better results than those based on comparison
of values of 𝐿𝑘. The reason for this may be that the boundary
conditions of this case do not allow knowing in advance the
value of the maximum of 𝐿𝑘 to be used in the comparison
(note that in the three previous examples the maximum was
always placed at 𝑏), causing the selection of ((𝑎 + 𝑏)/2) as
comparison value in the case of Corollary 20—(118)—and the
use of 𝐺(𝑡, 𝑡) in the integral in the case of Corollary 20 —
(117)—both of which require further iterations to surpass the
threshold value 1.

Example 5. Let us consider the following boundary value
problem

𝑦
󸀠󸀠
+ 𝐵𝑥𝑦 = 0, 𝑥 ≥ 0, 𝑦 (0) = 0, 𝑦 (𝑏) = 0,

(141)

for different values of the constant 𝐵.
The application of Theorem 7 and Corollary 20—(118)—

to the function V(𝑥) defined by (140) together with Theorem
12 and Corollary 20—(117)—gives Table 5, where one can
observe results and trends similar to those commented in the
previous example.

7. Conclusions

Throughout this paper two different types of methods have
been provided to assess whether there are nontrivial solutions
of (2) satisfying the boundary conditions (3) at extremes 𝑎󸀠,
𝑏
󸀠 inner, equal, or outer to other fixed extremes 𝑎, 𝑏. Both
rely on an iterative application of the operator 𝐿 defined in
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Table 5: Comparison of bounds for 𝑏 in Example 5.

Value of 𝐵 Used formula Bound

𝐵 = 3

∫

𝑏

𝑎

𝑞 (𝑡) 𝐺 (𝑡, 𝑡) 𝐿
11

{1} (𝑡) 𝑑𝑡 > 1 𝑏 > 1.825

Theorem 12 with 𝑘 = 12 𝑏 > 1.838

󵄩
󵄩
󵄩
󵄩
𝐿
7
{V}󵄩󵄩󵄩
󵄩

2

2
< ‖V‖2

2
𝑏 < 1.85

𝐿
10
{V} (

𝑎 + 𝑏

2

) < 1 𝑏 < 1.866

𝐵 = 5

∫

𝑏

𝑎

𝑞(𝑡)𝐺(𝑡, 𝑡)𝐿
11

{1}(𝑡)𝑑𝑡 > 1 𝑏 > 1.539

Theorem 12 with 𝑘 = 12 𝑏 > 1.55

󵄩
󵄩
󵄩
󵄩
𝐿
9
{V}󵄩󵄩󵄩
󵄩

2

2
< ‖V‖2

2
𝑏 < 1.56

𝐿
10
{V} (

𝑎 + 𝑏

2

) < 1 𝑏 < 1.574

(4) and allow obtaining sequences of extremes 𝑎
𝑘
, 𝑏
𝑘
that

converge to the exact values 𝑎, 𝑏 for which 𝑦(𝑥) satisfies
(3). The second characteristic is by far the most relevant one
when one compares them with other methods present in the
literature, since these latter only provide bounds (in fact very
often only lower bounds or Lyapunov inequalities since the
number of methods dealing with upper bounds is quite low)
which cannot be improved following the same approach.

In addition it is worth remarking that the set of methods
presented over almost all possible boundary conditions (3),
despite the fact that some of them (namely, the method based
onTheorem 12 and those based onTheorems 18 and 19) only
apply under a limited subset of boundary conditions (3). The
reason for this is, on the one hand, that the only conditions
common for all these methods are those of Lemma 3 (which
indeed are relatively easy to satisfy) and, on the other hand,
that Theorem 7 does not require any additional conditions
at all and Theorem 12 requires additional conditions on (3)
which complement those required byTheorems 18 and 19.

As for what method is better in what case, it is difficult
to decide, but the examples show that in the quest for outer
bounds the method based onTheorem 7 converges normally
much faster than the one based onTheorem 18. In the search
of inner bounds, as indicated before, Theorems 12 and 19
cannot be applied simultaneously to most of the boundary
conditions (3), but in the cases where that is possible, the
speed of convergence depends on the concrete boundary
conditions and the concrete function 𝑞(𝑥). In general it
seems that boundary conditions aiming for a maximum in
𝐿
𝑘 different from 𝑎 or 𝑏 tend to favour the method based

on Theorem 12 versus the method based on Theorem 19, the
opposite occurring (with exceptions, as Example 3 shows)
when the boundary conditions force maxima of 𝐿𝑘 at either 𝑎
or 𝑏.

As for the main drawbacks, we can comment on two. On
the one hand, the fact that the speed of convergence of the
method depends vastly on the selected starting function 𝑓
and can be low in some cases,many iterations being necessary
to approximate the values of the extremes 𝑎 and 𝑏 that satisfy
(3). On the other hand, as they have been presented, the
methods cannot deal with functions 𝑞(𝑥) which are zero or

negative in a subset of positive measure. However it can be
shown, aswas done in [1], that thesemethods can be extended
to the case 𝑞(𝑥) zero or negative in a way similar to most of
the criteria published so far for the same problem.

All in all and taking the mentioned constraints into
consideration, we the authors believe that the advantages of
the methods presented in this paper surpass their drawbacks
largely and that they can become a very powerful tool
to assess problems of conjugacy/disconjugacy, nondisfocal-
ity/disfocality, and so forth, of (2), whether directly or by
means of other methods based on them which in turn
improve them.
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