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A nonlinear generalized Degasperis-Procesi equation is investigated. Assuming that the strong solution of the equation is bounded
in the sense of L™ (R)-norm and the initial data belong to the space L' (R) N L*(R), we prove that the solutions are stable in the space

L'(R).

1. Introduction

Coclite and Karlsen [1] investigated the following generalized
Degasperis-Procesi equation:

ty — Uy +Af @ u, = £ ()11
31" W) gty + [ () e v
When f(u) € C* and satisfies
If @] <clul,  |f @) < clul, )
or
If'@]<e  |f@l<clul, (3)

where c is a positive constant, the existence and L' stability of
entropy weak solutions belonging to the class L' (R) () BV (R)
are established for (1) in paper [1].

The objective of this paper is to study the generalized
Degasperis-Procesi equation

! n 3
Up — Upe + g (I/l) u.=9g (u) u,

(4)

+ 3g" (u) uxuxx + g, (u) uxxx’

where m is a positive constant, g(u) is a polynomial of order
n(n > 2),and g(0) = 0. When m = 4 and g(u) = u?/2,

(4) reduces to the classical Degasperis-Procesi model [2-10].
Assuming that there exists a strong solution to (4), which is
bounded in its existence time interval [0, T), and the initial
value of (4) lies in L'(R) N L2(R), we will prove that the strong
solutions of the equation are stable in the space LY(R) (see
Theorem 8 in Section 3). From the authors’ knowledge, this
is a new result for (4).

This paper is organized as follows. Section 2 gives several
lemmas. The main result and its proof are presented in
Section 3.

2. Several Lemmas
We consider the Cauchy problem of (4) in the following form:

n

Up — Upyy T+ mg’ (u) u.,=49g (M) l/li

+3g" W)ttty + g (1) Uy

u (0,x) = ug (x).

(5)

-1

Applying the operator (1 — 32)™' to the first equation of

problem (5), we obtain

u, + g' (uw)u, +0,P, =0,
(6)

u (0,x) = uy (x),
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where P, = ((m-1)/2) IR eileylg(u(t, ¥))dy. Letting ¥, (u) =
0,P,, we get

u, + g' W u, +¥, W) = )
u (0,x) = ugy (x).

Lemma 1. The solution of problem (5) with m > 0 satisfies

1+&8 o 1 +E
dx = d€ = d
e | @l - | S lm @rds

(8)

where y; = u— 02 uand y = (m - 92_) "' u. Moreover, there

exist two constants ¢, > 0 and ¢, > 0 depending only on m such
that

G "”0"L2(R) <qglullpg < Q””O"LZ(R)' )

Proof. Letting y; = u— 0> uand y = (m - 092,)"'uand using
(4), we obtain u = my — y,, and

d oy, ay , oy
7 JRylydx J pn ydx+J 15 —dx = JR P —ydx
mg (u) u, +g (u)u

+3g (u)u Uy, +g (u) uxxx] ydx

=2 g ] +[gw)],,. ] ydx
- j g ()] = 9 (1)
= JR mg w)] y, — g (u) (my, —u,)dx
= | gwudx,
R
- 0.

(10)

Using the Parseval identity and (10), we obtain (8) and (9).
O

Remark 2. When m <
inequality (9).

0, from (8), we cannot obtain

Lemma 3. Ifu, € L*(R) and [l ooy < M, it holds that

”Pu"Lm(&xR)’ ”\Pu (u)||L°°(R+><R) < CoMn_27 (11)

where ¢, is a constant independent of t and n > 2.

Proof. Using the assumption u, € L*(R) and Lemma 1, we
have u € L*(R). Using (7), we get

P, (t,x) = m-1 J e g w)dy,
. (12)

¥, (6 0) = o | sign (y - x) 9 () dy.
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Since the function g(u) is a polynomial of order n and
lullfow < M, combining Lemmal derives that (11)
holds. =

Lemma 4. Assume that ||ullpe@r) < M and [|Vlpor < M

are two solutions of (4) with initial data u,,v, € L3(R),
respectively. Then, for any ¢(t,x) € C;°([0,00) x R), it holds
that

J-_oo [P, () =¥, V)| |¢ &, x)|dx < g J-_OO lu—v|dx, (13)

where ¢, > 0 depends on m,n, M, §, lugll 2 (r)> and vyl 2 (z)-

Proof. We have
[ - w0l lp 0] ax

<(m-1) j |axA‘2 (9 ) - gW)|]¢ (1,0 dx

- 1' e " |sign (x - y)llg(u)
o (14)
A |d)’ |¢(f)x)| dx|
<CoJ It — v] M ZdyU | (2, x)| dx
<q J lu—v|dy,
which completes the proof. O

We define §(0) as a function which is infinitely differ-
entiable on (—o.g, +00) such that §(o) > 0, (o) = 0 for
o] > 1, and I_OO 8(0)do = 1. For any number ¢ > 0, we

let 8.(0) = 8(e'0)/e. Then we know that d,(0) is a function
in C*°(-00, co) and
8,(0)=0, 6,(0)= if |o| > ¢,
. e (15)
8 (o) < =, J 8. (0)=1.
€ -0

Assume that the function v(x) is locally integrable on
(—00, 00). We define an approximation function of v as

l JOO S (x -y
€ J-co
We get v°(x) — v(x) ase — 0 almost everywhere.

We state the concept of a characteristic cone. For any R, >
0, we define N > max;¢o yllull < 0o. Let U represent the
cone {(t,x) : |x| < Ry—Nt,0 <t < T, = min(T, RON_l)}. We
let S, represent the cross section of the cone U by the plane
t = 1,7 € [0,T,]. Set Ky = = {x : |x| < r+ 2p}, where
r > 0,p > 0,and mp = [0, T] x R for an arbitrary T > 0.
The space of all infinitely differentiable functions ¢(%, x) with
compact support in [0, T] x R is denoted by C;° (7r1).

Ve (x) = )v(y) dy, €>0. (16)
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Lemma 5 (see [11]). Let the function v(t, x) be bounded and
measurable in cylinder Qp = [0,T] x K,. If p € (0, min[r, T])
and ¢ € (0, p), then the function

1
Ve = —
82
x ﬂ” lt-vpi<e, |V (6 X) = v (T, y)|dxdtdydr
p<(t+71)/2<T—p,
[(x=y)/2l<e,

|Ge+y)/21<r—p
(17)

satisfies lim, _, ,V, = 0.

Lemma 6 (see [11]). Let |0F(u)/ou| be bounded. Then the
function

H (u,v) = sign (u—v) (F (u) - F (v)) (18)
satisfies the Lipschitz condition in u and v, respectively.

Using the methods presented in [11], we have the follow-
ing result.

Lemma 7. If u is a strong solution of problem (6), ¢(t,x) €
Cy’(rp), and ¢(0, x) = 0, it holds that

|| =g+ sign -l - g ®)o,
" (19)

—sign (u — k) ¥, (t,x) ¢} dxdt = 0,
where k is an arbitrary constant.

Proof. Let ®(u) be a twice differential function on the line
-00 < u < 0o. We multiply the first equation of problem
(6) by the function d)'(u)¢(t, x), where ¢(t,x) € C°(mp).
Integrating over 7y and transferring the derivatives with
respect to t and x to the test function ¢, for any constant k,
we obtain

I Jowe+|[ @@ @z,
(20)
~0' (u)¥, (t, x) ¢>} dxdt =0,

in which we have used _[_OZO[I: CD'(z)g’(z)dzk/)xdx =

— [7 [0' () g' () (t, x)dx.
Integration by parts yields that

L.

_ fo [ ) [g @) - g ()] (21)

Ju o' (2) g' (2) dz] ¢, dx

k

_ Jk“ [9(2) - g (0] @" (2) dz] ¢, dx.

Let ®°(u) be an approximation of the function |u — k| and set
®(u) = O°(u). Using the properties of the sign(u — k), from
(20) and (21), and sending ¢ — 0, we have

| Awrig,+ sign -0 g @) - g W),
g @)

—sign (u—k) ¥, (t,x) ¢} dxdt = 0,

which completes the proof. O

3. Main Result

Generally speaking, we cannot get the boundedness of strong
solutions for problem (6). This is why we assume that the
strong solutions of problem (6) possess boundedness in order
to establish the L' stability for the problem. Now we state our
main result as follows.

Theorem 8. Assume that there exist strong solutions u and v
for problem (5) or (6). Let T be the maximum existence time for
the solutions. If |[ull oy < M, VIl peo(ry < M, and the initial

data u,, v, € LY(R) N L*(R), it holds that

lu(t,-) = v(t, L (ry

0 (23)
<ce® J lug (x) = vy (x)| dx, t€[0,T],

where ¢ depends on IIuOIILz(R), "V()”LZ(R), M, T, and the coeffi-
cients of polynomial g(u).

Proof. For ¢(t,x) € C;°(my), we assume that ¢(t,x) = 0
outside the cylinder

W={(tx)}=[p,T-2p] xK

r2p  0<2p<min(T,r).

(24)

o (B (e ()
=¢ () A (%),

where (-++) = ((t +7)/2,(x + y)/2) and (*) = ((t - 1)/2, (x -
¥)/2). The function 8,(0) is defined in (15). Note that

Wt+1//r=¢t("')le(*)’ Wx+Wy=¢x("')Ae(*)'
(26)

Let

Following Kruzkov’s device of doubling the variables
presented in [11], from Lemma 7, and choosing k = v(7, y),
we have

ﬂﬂ oy 60 =V ()] e

+sign (u (t,x) — v (1, y))

(27)
x (g (%) - g(v(r, 7)) v
+sign (u(t,x) —v(r,y))

xV, (t,x)y}dxdtdydr =0.



Similarly, it has

ﬂﬂ o @) —uly,

+sign (v(7, y) - u (t,x))
x(gutx)-g(v(my)y, @
+sign (v(, y) —u(t,x))

x ¥, (t,y)y}dxdtdydr = 0.

It follows from (27) and (28) that
0= J-J-J-J-n XTT. { |M (t’x) - V(T’y)| (l//t + w‘[)

+sign (u (t,x) = v (7, y))
x(gu(t,x)-g(r,y))

x (v, +v,)} dxdtdydr

HH o sign(u(tx) v (LX) (29)

X (\yu (t’ X) - \Pv (T’ y))

+

xydxdtdydr

Hﬂ Bydxdt dy dr

We will prove the following inequality:

=B, +B, +

0< JLT {1u(t,x) = v(t, )| ¢

+ sign (u (t, x) — v (t, x))

x (g (u(t,x) - g (v(t,x) ¢} dxdt

+

”n sign (u (1, %) — v (£, X))

x ¥, (t,x) =¥, (t,x)] pdxdt|.

We observe that the first two terms of inequality (29) can be
represented in the form

Jo=T1(t,x, T, y,u(t,x),v(r, y)) A, (x). (31

From Lemma 6, we know that J, satisfies the Lipschitz
condition in u and v, respectively. By the choice of ¢, we have
J. = 0 outside the region

|t -7l

(32)
—Sr—Zp,xTSs},
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Jm Jdxdtdydr

I, ooy

—J(t, x,t,x,u(t,x),v(tx))]
x A, (%) dx dt dy dr

x A, (%)dxdtdy dr
=A, (e +A,.

(33)

Considering the estimate [A(*)| < c¢/e* and the expression of
function A4 (¢), we have

|A11 (€)|
< [ o
<cle+—=
&2
X Jﬂ[ (t-n)2lze, V(6 x) = v (T, y)|dxdt dydr] ,
p<(t+71)/2<T—-p,
|(x=y)/2|<e,
|(x+y)/2|<r—p

(34)

where the constant ¢ does not depend on ¢. Using Lemma 5,
we obtain A;(¢) — 0Oase — 0. The integral A,, does not
depend on e. In fact, substituting t = o, (t — 7)/2 = S, x = 1,
and (x — y)/2 = £ and noting that

[ [ rwoazas-1, (35)

—e J=

we have

An=f“MLWmmmM%mwwwD
AT rpaatanaa o

—& J—00

= 4” J(t,x,t,x,u(t,x),v(t,x))dxdt.

Hence

lim Jm J.dxdt dy dr

(37)
= 4” J(t,x,t,x,u(t,x),v(t,x))dxdt.
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Since
Bj =sign (u(t,x) - v(z, ))
X (\I’u (t’ x) - \Pv (T’y)) quE (*)

=B; (%7, 9) A (%),

ﬂﬂ Bydxdt dydr

I, s s

x A, (¥)dxdtdydr

(38)

+ ﬂﬂ B_3(t,x,t,x) A (%) dxdtdydr
=Ay(e)+ Ay,
we obtain

|A21 (5)|

X ﬂﬂ -z Y, (Hx) =Y, (1, y)| dxdtdydr) .
p<(t+71)/2<T—p,

[(x=y)/2]<e,
|(x+y)/2|<r-p
(39)

Using Lemma 5, we have A,,(¢) — 0ase — 0. Using (35),
we have

Ap =2 | T(@mamun.v(@n)
Ty

x {fhas ([3,£)d£d/3} dn da

= 4” I_3(t, x, t,x,u(t,x),v(tx))dxdt (40)

4” sign (u (t, x) — v (t, x))
x (W, (t,x) =¥, (t,x)) ¢ (t, x) dx dt.
From (33),(37), (39), and (40), we prove that inequality (30)

holds.
Set

w(t) = JOO | (t, x) — v (L, x)| dx. (41)

—00

We define

6, = JO 8, (o) do, (92 (0) =46, (0) 2 0) (42)

and choose two numbers p and 7 € (0,T,), p < 7. In (30),
we choose

¢:[es(t_P)_es(t_T)]X(t’x)’

(43)
h<min(p, T, - 1),
where
x(tx)=yx,tx)=1-0,(x|+ Nt-R+h), h>0.
(44)

When h is sufficiently small, we note that function x(t,x) =
0 outside the cone U and ¢(t,x) = 0 outside the set . For
(t, x) € U, we have the relations

0= X+ N|xe| = xe + Ny (45)

Applying (41)-(45) and (30), we have the inequality

ogﬂm (8.t - p) -8, ¢t - D] 3

0

X |u(t,x) —v(t,x)|} dxdt
(46)

+JT° JO;[GE(t—p)—GE(t—T)]

0o J-
X |[Iu (t,x) - ]V (t, x)] Xn (t, X)l dxdt.

Using Lemma 4 and lettingh — 0and R, — 00, we obtain

OSLTO{[(SS(t—p)—(?s(t—T)]

X Joo e (8, x) — v (E, x)| dx} dt

(47)
Ty
ve| .- p)-0.- )]

0

X JOO lue (¢, x) — v (t, x)| dx dt.

—00

By the properties of the function 8, (o) for € < min(p, T, —
p), we have

Ty
I as(t—mw(t)dr—w(p)]

(48)

Ty
L 8. (t—p)|w() —w(p)|dt

1 pte
SC—J lw(t) —w(p)|dt — 0, ase— 0,
& p—€

where ¢ is independent of e. Letting

T, Ty rt—p
F(p) = L 0. (t - p)w(t)dt = L Lx, 8, (0)do w (t)dt,
(49)



T,
F'(p)z—J S, (t-plwt)dt — -w(p), ase—0,
0
(50)

from which we obtain

F(p) — F(0) - JOP w(o)do, ase— 0. (51)

Similarly, we have

F(tr) — F(0) - JTw(a) do,

0

as ¢ — 0. (52)

It follows from (51) and (52) that

T

Fp)-F(0) —>I w(0) do,
P

as € — 0. (53)

Sending p — Oand 7 — ¢t and using

(pr %) = v (pr0)| = [ () — ty ()

(54)
+ v (py ) = v ()] + g (x) = v ()],
from (47), (48), and (53)-(54), we have
joo [u(t, x) —v(t,x)|dx < joo 1o — vo| dx
- - (55)

t roo

+COJ J lu(t, x) — v (t, x)| dx dt.
0 J-oo

Applying the Gronwall inequality yields the desired result.

O
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