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A quartic B-spline method is proposed for solving the linear sixth order boundary value problems. The method converts the
boundary problem to solve a system of linear equations and obtains coefficients of the corresponding B-spline functions. The
method has the convergence of two order. It develops not only the quartic spline approximate solution but also the higher
order approximate derivatives. Two numerical examples are presented to verify the theoretical analysis and show the validity and
applicability of the method. Compared with other existing recent methods, the quartic B-spline method is a more efficient and
effective tool.

1. Introduction

In the paper, we consider the linear sixth order boundary
value problems (6BVP) of the form:

𝑦
(6)

(𝑥) + 𝑓 (𝑥) 𝑦 (𝑥) = 𝑔 (𝑥) , (1)

subject to the conditions

𝑦 (𝑎) = 𝐴0, 𝑦
󸀠
(𝑎) = 𝐴1, 𝑦

󸀠󸀠
(𝑎) = 𝐴2,

𝑦 (𝑏) = 𝐵0, 𝑦
󸀠
(𝑏) = 𝐵1, 𝑦

󸀠󸀠
(𝑏) = 𝐵2,

(2)

where 𝑓(𝑥) and 𝑔(𝑥) are continuous functions on [𝑎, 𝑏],
and[? ] 𝐴 𝑖 (𝑖 = 0, 1, 2) and 𝐵𝑖 (𝑖 = 0, 1, 2) are given finite
real constants. Many mathematical models arising in various
applications can be written as boundary value problems.
One such problem is the sixth boundary value problem
which plays an important role in astrophysics and the narrow
convecting layers bounded by stable layers [1–4]. Further
discussion of sixth order boundary value problems is given
in [5, 6] and in a book by Chandrasekhar [7]. Theorems
that list conditions for the existence and uniqueness of
solution of such type of boundary value problems can be
found in the book written by Agarwal [8]. However, it is

difficult to obtain the analytic solutions of (1)-(2). Therefore,
the availability of numerical method for this problem is of
practical importance.

Over the years, there are several authors who worked
on this type of boundary value problems by using different
methods. For example, finite difference method was devel-
oped by Boutayeb and Twizell [2, 3, 9]. A modified form of
the decomposition method was established by Wazwaz [10]
and used to solve such BVPs [11]. Sinc-Galerkin method,
variational iteration method, and homotopy perturbation
method were developed to study the same problem [12–14].
Spline functions have been also used to construct efficient
and accurate numerical methods for solving boundary value
problems. For example, Siddiqi and Akram solved the same
boundary value problems by using different splines such as
quintic splines, septic splines, and nonpolynomial splines
[15–17]. Loghmani and Viswanadham used sixth and septic
B-spline functions to solve sixth order boundary value prob-
lems [18, 19]. Instead of the above two ways, other differential
spline collocation methods can also be used [20–22].

It is well known that the quartic B-spline has been widely
applied for the approximation solution of boundary value
problems. Caglar used quartic B-spline to solve the linear
cubic order boundary value problem [23]. Besides, quartic
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B-spline was also used to solve fifth order boundary value
problems and the obstacle problems [24, 25]. Our method
is based on quartic B-spline interpolation. It is second order
convergent and with lower computational cost. Moreover, we
also can get the approximate derivative values of 𝑦(𝑘)(𝑥) (𝑘 =

1, 2, 3, 4, 5) at the knots. This is another advantage of our
method, since some methods cannot obtain those results.

This paper is arranged as follows. In Section 2, the
definition of quintic B-splines has been described and some
preliminary results of quartic B-spline interpolation have
been presented. In Section 3, we mainly give the quartic B-
spline solution of linear sixth-order boundary value problems
based on the results. In Section 4, the convergence of the
method has been demonstrated. In Section 5, numerical
examples of linear boundary value problems are presented,
which illustrate the performance of this method.

2. Quartic B-Spline

2.1. Definition of Quartic B-Spline. For an interval [𝑎, 𝑏] ⊂ 𝑅,
we introduce a set of equally spaced knots of partition Ω =

{𝑥0, 𝑥1, . . . , 𝑥𝑛}, and we assume that 𝑛 ≥ 5, 𝑥𝑖 = 𝑎 + 𝑖ℎ (𝑖 =

0, 1, . . . , 𝑛), 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏.
Let 𝑆4[𝜋] be the space of continuously differentiable,

piecewise, quartic-degree polynomials on 𝜋. Consider the
B-splines basis in 𝑆4[𝜋]. A detailed description of B-spline
functions generated by subdivision can be founded in [26].

The zero degree B-spline is defined as

𝑁𝑖,0 (𝑥) = {
1, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] ,

0, otherwise,
(3)

and for positive constant 𝑝, it is defined in the following
recursive form:

𝑁𝑖,𝑝 (𝑥) =
𝑥 − 𝑥𝑖

𝑥𝑖+𝑝 − 𝑥𝑖

𝑁𝑖,𝑝−1 (𝑥) +
𝑥𝑖+𝑝+1 − 𝑥

𝑥𝑖+𝑝+1 − 𝑥𝑖+1

𝑁𝑖+1,𝑝−1,

𝑝 ≥ 2.

(4)

We apply this recursion to get the quartic B-spline
𝑁𝑖,4(𝑥) (𝑖 = −2, −1, . . . , 𝑛+1); it is defined in 𝑆4[𝜋] as follows:

𝑁𝑖,4 (𝑥)

=
1

24ℎ4

{{{{{{{{{{{{

{{{{{{{{{{{{

{

(𝑥 − 𝑥𝑖−2)
4
, 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1] ,

(𝑥 − 𝑥𝑖−2)
4
− 5 (𝑥 − 𝑥

4
𝑖−1) , 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] ,

(𝑥 − 𝑥𝑖−2)
4
− 5(𝑥 − 𝑥𝑖−1)

4

+10(𝑥 − 𝑥𝑖)
4
, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] ,

(𝑥 − 𝑥𝑖+3)
4
− 5(𝑥 − 𝑥𝑖+2)

4
, 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2] ,

(𝑥 − 𝑥𝑖+3)
4
, 𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3] ,

0, otherwise.
(5)

The properties of quartic B-spline functions:
(1) compact supported:

𝑁𝑖,4 (𝑥) = {
≥ 0, 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖+3] ,

= 0, otherwise.
(6)

Table 1: The values of𝑁(𝑘)𝑖,4 (𝑥) at the knots.

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 Otherwise
𝑁𝑖,4(𝑥) 1/24 11/24 11/24 1/24 0
𝑁
󸀠
𝑖,4(𝑥) 1/6ℎ 3/6ℎ −3/6ℎ −1/6ℎ 0

𝑁
󸀠󸀠
𝑖,4(𝑥) 1/2ℎ

2
−1/2ℎ

2
−1/2ℎ

2
1/2ℎ
2 0

𝑁
󸀠󸀠󸀠
𝑖,4 (𝑥) 1/ℎ

3
−3/ℎ
3

3/ℎ
3

−1/ℎ
3 0

(2) Normalization:∑𝑛+1𝑖=−2𝑁𝑖,4(𝑥) = 1.
(3) Translation invariance:𝑁𝑖,4(𝑥) = 𝑁0,4(𝑥−(𝑖−1)ℎ) (𝑖 =

−2, −1, . . . , 𝑛 + 1).
(4) Derivation formula: 𝑁

(𝑘)

𝑖,4
(𝑥) = (4!/(4 −

𝑘)!) ∑
𝑛

𝑗=1 𝛼𝑘,𝑗𝑁𝑖+𝑗,4−𝑘, where

𝛼0,0 = 1,

𝛼𝑘,0 =
𝛼𝑘−1,0

𝑥𝑖+3−𝑘 − 𝑥𝑖

,

𝛼𝑘,𝑘 =
−𝛼𝑘−1,𝑘−1

𝑥𝑖+5 − 𝑥𝑖+𝑘

,

𝛼𝑘,𝑗 =
𝛼𝑘−𝑗,𝑗 − 𝛼𝑘−1,𝑗−1

𝑥𝑖+𝑗+5−𝑘 − 𝑥𝑖+𝑗

.

(7)

By some trivial computations, we can obtain the value of
𝑁
(𝑘)

𝑖,4
(𝑥) (𝑖 = −2, −1, . . . , 𝑛 + 1, 𝑘 = 0, 1, 2, 3) at the knots,

which are listed in Table 1.

2.2. Quartic B-Spline Interpolation. For a given function
𝑦(𝑥) (assuming to be sufficiently smooth), there exists a
unique quartic B-spline 𝑠(𝑥) = ∑

𝑖=𝑛+1

𝑖=−2 𝑐𝑖𝑁𝑖,4(𝑥) satisfying the
interpolation conditions

𝑠 (𝑥𝑖) = 𝑦 (𝑥𝑖) , (𝑖 = 0, 1, . . . , 𝑛) ,

𝑠
󸀠
(𝑎) = 𝑦

󸀠
(𝑎) , 𝑠

󸀠󸀠
(𝑎) = 𝑦

󸀠󸀠
(𝑎) ,

𝑠
󸀠
(𝑏) = 𝑦

󸀠
(𝑏) , 𝑠

󸀠󸀠
(𝑏) = 𝑦

󸀠󸀠
(𝑏) .

(8)

For 𝑗 = 0, 1, . . . , 𝑛, let 𝑦𝑗 = 𝑠(𝑥𝑗) = 𝑦(𝑥𝑗), 𝑃𝑗 = 𝑠
󸀠
(𝑥𝑗),

𝑄𝑗 = 𝑠
󸀠󸀠
(𝑥𝑗), and 𝑅𝑗 = 𝑠

(3)
(𝑥𝑗) for short. Through a simple

calculation by Table 1, we have

𝑦𝑗 =

𝑛+1

∑

𝑖=−2

𝑐𝑖𝑁𝑖,4 (𝑥𝑗) =
1

24
(𝑐𝑗−2 + 11𝑐𝑗−1 + 11𝑐𝑗 + 𝑐𝑗+1) , (9)

𝑃𝑗 =

𝑛+1

∑

𝑖=−2

𝑐𝑖𝑁
󸀠

𝑖,4 (𝑥𝑗) =
1

6ℎ
(−𝑐𝑗−2 − 3𝑐𝑗−1 + 3𝑐𝑗 + 𝑐𝑗+1) , (10)

𝑄𝑗 =

𝑛+1

∑

𝑖=−2

𝑐𝑖𝑁
󸀠󸀠

𝑖,4 (𝑥𝑗) =
1

2ℎ2
(𝑐𝑗−2 − 𝑐𝑗−1 − 𝑐𝑗 + 𝑐𝑗+1) , (11)

𝑅𝑗 =

𝑛+1

∑

𝑖=−2

𝑐𝑖𝑁
󸀠󸀠󸀠

𝑖,4 (𝑥𝑗) =
1

ℎ3
(−𝑐𝑗−2 + 3𝑐𝑗−1 − 3𝑐𝑗 + 𝑐𝑗+1) . (12)
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So, we get

ℎ

4
(𝑃𝑗−2 + 11𝑃𝑗−1 + 11𝑃𝑗 + 𝑃𝑗+1)

= −𝑦𝑗−2 − 3𝑦𝑗−1 + 3𝑦𝑗 + 𝑦𝑗+1,

ℎ
2

12
(𝑄𝑗−1 + 10𝑄𝑗 + 𝑄𝑗+1) = 𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1,

ℎ
3

24
(𝑅𝑗−2 + 11𝑅𝑗−1 + 11𝑅𝑗 + 𝑅𝑗+1)

= −𝑦𝑗−2 + 3𝑦𝑗−1 − 3𝑦𝑗 + 𝑦𝑗+1.

(13)

Using operator notation in [27, 28], we obtain

𝑃𝑗 =
4

ℎ
(

−𝐸
−2

− 3𝐸
−1

+ 3𝐼 + 𝐸

𝐸−2 + 11𝐸−1 + 11𝐼 + 𝐸
)𝑦𝑗,

𝑄𝑗 =
12

ℎ2
(

𝐸
−1

− 2𝐼 + 𝐸

𝐸−1 + 10𝐼 + 𝐸
)𝑦𝑗,

𝑅𝑗 =
24

ℎ3
(

−𝐸
−2

+ 3𝐸
−1

− 3𝐼 + 𝐸

𝐸−2 + 11𝐸−1 + 11𝐼 + 𝐸
)𝑦𝑗,

(14)

where the operators are defined 𝐸𝑦(𝑥) = 𝑦(𝑥 + ℎ), 𝐷𝑦(𝑥) =

𝑦
󸀠
(𝑥), and 𝐼𝑦(𝑥) = 𝑦(𝑥). Let 𝐸 = exp(ℎ𝐷) and expand them

in powers of ℎ𝐷; we get

𝑦
󸀠
(𝑥𝑗) = 𝑃𝑗 −

1

720
ℎ
4
𝑦
(5)

(𝑥𝑗) + 𝑂 (ℎ
6
) ,

𝑦
󸀠󸀠
(𝑥𝑗) = 𝑄𝑗 +

1

240
ℎ
4
𝑦
(6)

(𝑥𝑗) + 𝑂 (ℎ
6
) ,

𝑦
󸀠󸀠󸀠

(𝑥𝑗) = 𝑅𝑗 −
1

12
ℎ
2
𝑦
(5)

(𝑥𝑗) +
1

240
ℎ
4
𝑦
(7)

(𝑥𝑗) + 𝑂 (ℎ
6
) .

(15)

We can use 𝑅𝑗 to construct numerical difference formula
for 𝑦(4)(𝑥𝑗), 𝑦

(5)
(𝑥𝑗), and 𝑦

(6)
(𝑥𝑗) (𝑗 = 1, 2, . . . , 𝑛 − 1) by the

Taylor series expansion as follows:

𝑦
(4)

(𝑥𝑗) =
𝑅𝑗+1 − 𝑅𝑗−1

2ℎ
+ 𝑂 (ℎ

2
) , (16)

𝑦
(5)

(𝑥𝑗) =
𝑅𝑗+1 − 2𝑅𝑗 + 𝑅𝑗−1

ℎ2
+ 𝑂 (ℎ

2
) , (17)

𝑦
(6)

(𝑥𝑗) = ((
𝑅𝑗+2 − 𝑅𝑗

2ℎ
− 2

𝑅𝑗+1 − 𝑅𝑗−1

2ℎ

+
𝑅𝑗 − 𝑅𝑗−2

2ℎ
) × (ℎ

2
)
−1
) + 𝑂 (ℎ

2
) ,

=
𝑅𝑗+2 − 2𝑅𝑗+1 + 2𝑅𝑗−1 − 𝑅𝑗−2

2ℎ3
+ 𝑂 (ℎ

2
) .

(18)

Substituting (9)–(12) into (15)–(18) yields

𝑦
󸀠
(𝑥𝑗) =

1

6ℎ
(−𝑐𝑗−2 − 3𝑐𝑗−1 + 3𝑐𝑗 + 𝑐𝑗+1) + 𝑂 (ℎ

4
) ,

𝑦
󸀠󸀠
(𝑥𝑗) =

1

2ℎ2
(𝑐𝑗−2 − 𝑐𝑗−1 − 𝑐𝑗 + 𝑐𝑗+1) + 𝑂 (ℎ

4
) ,

𝑦
󸀠󸀠󸀠

(𝑥𝑗) =
1

ℎ3
(−𝑐𝑗−2 + 3𝑐𝑗−1 − 3𝑐𝑗 + 𝑐𝑗+1) + 𝑂 (ℎ

2
) ,

𝑦
(4)

(𝑥𝑗) =
1

2ℎ4
(𝑐𝑗−3 − 3𝑐𝑗−2 + 2𝑐𝑗−1 + 2𝑐𝑗

− 3𝑐𝑗+1 + 𝑐𝑗+2) + 𝑂 (ℎ
2
) ,

𝑦
(5)

(𝑥𝑗) =
1

ℎ5
(−𝑐𝑗−3 + 5𝑐𝑗−2 − 10𝑐𝑗−1 + 10𝑐𝑗

− 5𝑐𝑗+1 + 𝑐𝑗+2) + 𝑂 (ℎ
4
) ,

𝑦
(6)

(𝑥𝑗) =
1

2ℎ6
(𝑐𝑗−4 − 5𝑐𝑗−3 + 9𝑐𝑗−2 − 5𝑐𝑗−1 − 5𝑐𝑗

+ 9𝑐𝑗+1 − 5𝑐𝑗+2 + 𝑐𝑗+3) + 𝑂 (ℎ
2
) .

(19)

3. Description of Numerical Method

In the section, we give the quartic B-spline method for
the linear sixth order boundary value problem. Let 𝑠(𝑥) =

∑
𝑛+1

𝑖=−2 𝑐𝑖𝑁𝑖,4(𝑥) be the approximate solution of 6BVP (1)-(2)
and 𝑠(𝑥) = ∑

𝑛+1

𝑖=−2 𝑐𝑖𝑁𝑖,4(𝑥) the approximate spline of 𝑠(𝑥).
Discretize (1) at the knots 𝑥𝑖 (𝑖 = 2, 3, . . . , 𝑛 − 2), we get

𝑦
(6)

(𝑥𝑖) + 𝑓 (𝑥𝑖) 𝑦 (𝑥𝑖) = 𝑔 (𝑥𝑖) . (20)

By (9) and (18), we turn (20) into

1

2ℎ6
(𝑐𝑖−4 − 5𝑐𝑖−3 + 9𝑐𝑖−2 − 5𝑐𝑖−1

−5𝑐𝑖 + 9𝑐𝑖+1 − 5𝑐𝑖+2 + 𝑐𝑖+3) +
𝑓 (𝑥𝑖)

24

× (𝑐𝑖−2 + 11𝑐𝑖−1 + 11𝑐𝑖 + 𝑐𝑖+1) = 𝑔 (𝑥𝑖) + 𝑂 (ℎ
2
) ,

(21)

where 𝑓(𝑥𝑖) and 𝑔(𝑥𝑖) are the value of 𝑓(𝑥) and 𝑔(𝑥) at
the knots 𝑥𝑖 (𝑖 = 2, 3, . . . , 𝑛 − 2) for short. Change (21)
equivalently, we yield

12 (𝑐𝑖−4 − 5𝑐𝑖−3 + 9𝑐𝑖−2 − 5𝑐𝑖−1 − 5𝑐𝑖

+9𝑐𝑖+1 − 5𝑐𝑖+2 + 𝑐𝑖+3) + 𝑓 (𝑥𝑖)

× (𝑐𝑖−2 + 11𝑐𝑖−1 + 11𝑐𝑖 + 𝑐𝑖+1) ℎ
6

= 24ℎ
6
𝑔 (𝑥𝑖) + 𝑂 (ℎ

8
) .

(22)
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Dropping the term𝑂(ℎ
8
) from (22), we get a linear system

with 𝑛 − 3 linear equations in 𝑛 + 4 unknowns 𝑐𝑖 (𝑖 =

−2, −1, . . . , 𝑛 + 1)

12 (𝑐𝑖−4 − 5𝑐𝑖−3 + 9𝑐𝑖−2 − 5𝑐𝑖−1 − 5𝑐𝑖

+9𝑐𝑖+1 − 5𝑐𝑖+2 + 𝑐𝑖+3) + 𝑓 (𝑥𝑖)

× (𝑐𝑖−2 + 11𝑐𝑖−1 + 11𝑐𝑖 + 𝑐𝑖+1) ℎ
6

= 24ℎ
6
𝑔 (𝑥𝑖) (𝑖 = 2, 3, . . . , 𝑛 − 2) ,

(23)

so seven more equations are needed.
By the boundary conditions at 𝑥 = 𝑎

𝑦 (𝑎) = 𝐴0,

𝑦
󸀠
(𝑎) = 𝐴1,

𝑦
󸀠󸀠
(𝑎) = 𝐴2,

(24)

we have

𝑐−2 + 11𝑐−1 + 11𝑐0 + 𝑐1 = 24𝐴0,

−𝑐−2 − 3𝑐−1 + 3𝑐0 + 𝑐1 = 6ℎ𝐴1,

𝑐−2 − 𝑐−1 − 𝑐0 + 𝑐1 = 2ℎ
2
𝐴2.

(25)

By the boundary conditions at 𝑥 = 𝑏

𝑦 (𝑏) = 𝐵0,

𝑦
󸀠
(𝑏) = 𝐵1,

𝑦
󸀠󸀠
(𝑏) = 𝐵2,

(26)

we get

𝑐𝑛−2 + 11𝑐𝑛−1 + 11𝑐𝑛 + 𝑐𝑛+1 = 24𝐵0,

−𝑐𝑛−2 − 3𝑐𝑛−1 + 3𝑐𝑛 + 𝑐𝑛+1 = 6ℎ𝐵1,

𝑐𝑛−2 − 𝑐𝑛−1 − 𝑐𝑛 + 𝑐𝑛+1 = 2ℎ
2
𝐵2.

(27)

We can construct an approximate formula as follows:

𝑦
(6)

(𝑎) =
−5𝑅0 + 18𝑅1 − 24𝑅2 + 14𝑅3 − 3𝑅4

24ℎ3
+ 𝑂 (ℎ

2
) ,

(28)

where the coefficients are determined by maximizing the
error order.

Substituting (12) into (28), we have

5𝑐−2 − 33𝑐−1 + 93𝑐0 − 145𝑐1 + 135𝑐2

− 75𝑐3 + 23𝑐4 − 3𝑐5 = 24ℎ
6
𝑦
(6)

(𝑎) + 𝑂 (ℎ
5
) .

(29)

Dropping the term 𝑂(ℎ
5
) from (29), we can get

5𝑐−2 − 33𝑐−1 + 93𝑐0 − 145𝑐1 + 135𝑐2 − 75𝑐3

+ 23𝑐4 − 3𝑐5 = 24ℎ
6
𝑦
(6)

(𝑎) .

(30)

Take (22), (25), (27), and (29) together, we get 𝑛+ 4 linear
equation with 𝑐𝑖 (𝑖 = −2, −1, . . . , 𝑛 + 1) as unknowns. The
linear system can be written in matrix notations

(𝐴 + ℎ
6
𝐹𝐵)𝐶 = 𝐷 + 𝐸. (31)

Take (23), (25), (27), and (30) together, we get 𝑛+ 4 linear
equation with 𝑐𝑖 (𝑖 = −2, −1, . . . , 𝑛 + 1) as unknowns. The
linear system can be written in matrix notations

(𝐴 + ℎ
6
𝐹𝐵)𝐶 = 𝐷, (32)

where

𝐶 = (𝑐−2, 𝑐−1, 𝑐0, . . . , 𝑐𝑛+1)
𝑇
,

𝐶 = (𝑐−2, 𝑐−1, 𝑐0, . . . , 𝑐𝑛+1)
𝑇
,

𝐷 = (24ℎ
6
𝑦
(6)

(𝑎) , 24𝐴0, 6ℎ𝐴1, 2ℎ
2
𝐴2, 24ℎ

6
𝑔 (𝑥2) , . . . ,

24ℎ
6
𝑔 (𝑥𝑛−1) , 24𝐵0, 6ℎ𝐵1, 2ℎ

2
𝐵2)
𝑇
,

𝐸 = (𝑒−2, 𝑒−1, . . . , 𝑒𝑛+1)
𝑇
,

𝑒−1 = 𝑒0 = 𝑒1 = 𝑒𝑛−1 = 𝑒𝑛 = 𝑒𝑛+1 = 0,

𝑒−2 = 𝑂 (ℎ
5
) , 𝑒𝑖 = 𝑂 (ℎ

8
) (𝑖 = 2, . . . , 𝑛 − 2) ,

𝐴

=

(
(
(
(
(
(

(

5 −33 93 −145 135 −75 23 −3
1 11 11 1
−1 −3 3 1
1 −1 −1 1
12 −60 108 −60 −60 108 −60 12

d d d d d d d d

12 −60 108 −60 −60 108 −60 12

1 11 11 1
−1 −3 3 1
1 −1 −1 1

)
)
)
)
)
)

)

,

𝐹

=

(
(
(
(
(
(

(

0

0

0

𝑓 (𝑥2)

d
𝑓 (𝑥𝑛−1)

0

0

0

)
)
)
)
)
)

)

,
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Table 2: Max [𝑦(])(𝑥𝑖)] of quartic B-spline method for Example 1.

𝑛 max[𝑦(𝑥𝑖)] max[𝑦󸀠(𝑥𝑖)] max[𝑦󸀠󸀠(𝑥𝑖)] max[𝑦󸀠󸀠󸀠(𝑥𝑖)] max[𝑦(4)(𝑥𝑖)] max[𝑦(5)(𝑥𝑖)]
10 3.2599𝑒 − 6 1.3642𝑒 − 5 1.9072𝑒 − 4 6.1038𝑒 − 3 1.1021𝑒 − 2 8.444𝑒 − 1

20 1.3846𝑒 − 7 5.1383𝑒 − 7 6.7388𝑒 − 6 1.2107𝑒 − 5 2.1304𝑒 − 4 4.2045𝑒 − 2

40 2.8847𝑒 − 8 1.5453𝑒 − 7 1.3402𝑒 − 6 2.8482𝑒 − 5 7.4701𝑒 − 4 2.1074𝑒 − 2

80 1.3493𝑒 − 8 7.8389𝑒 − 8 6.657𝑒 − 7 7.5303𝑒 − 5 3.1822𝑒 − 4 1.602𝑒 − 2

𝐵

=

(
(
(
(
(
(

(

0 0 0

0 0 0

0 0 0

1 11 11 1 0 0 0

d d d d d d d
0 0 0 1 11 11 1

0 0 0

0 0 0

0 0 0

)
)
)
)
)
)

)

.

(33)

After solving the linear system (32), we obtain the quartic
spline approximate solution 𝑦(𝑥) ≈ 𝑠(𝑥) = ∑

𝑛+1

𝑖=−2 𝑐𝑖𝑁𝑖,4(𝑥).
Furthermore, we can take 𝑠

(𝑘)
(𝑥) (𝑘 = 1, 2, 3, 4, 5) as the

approximation of 𝑦(𝑘)(𝑥) (𝑘 = 1, 2, 3, 4, 5).

4. Convergence Analysis

By (31) and (32), we have

(𝐴 + ℎ
6
𝐹𝐵) (𝐶 − 𝐶) = 𝐸. (34)

𝐴 is invertible, and if we assume that

ℎ
6󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

‖𝐹‖∞‖𝐵‖∞ < 1, (35)

then (𝐼 + ℎ
8
𝐴
−1
𝐹𝐵) is also invertible.

Hence, we get

𝐶 − 𝐶 = (𝐼 + ℎ
6
𝐴
−1
𝐹𝐵)
−1
𝐴
−1
𝐸. (36)

By (35) and (36) and note ‖𝐸‖∞ ≤ 𝑘ℎ
8, we have

󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞
≤

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

‖𝐸‖∞

1 − ℎ6
󵄩󵄩󵄩󵄩𝐴
−1󵄩󵄩󵄩󵄩∞‖𝐹‖∞‖𝐵‖∞

≤

𝑘ℎ
6󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

1 − ℎ6
󵄩󵄩󵄩󵄩𝐴
−1󵄩󵄩󵄩󵄩∞‖𝐵‖∞‖𝐹‖∞

ℎ
2

≤
𝑘

‖𝐵‖∞‖𝐹‖∞

ℎ
2
= 𝑂 (ℎ

2
) .

(37)

Hence,

‖𝑠 − 𝑠‖∞ ≤
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑖=1

𝑁𝑖,4 (𝑥)

=
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞
= 𝑂 (ℎ

2
) .

(38)

Generally, we get

󵄩󵄩󵄩󵄩𝑦 − 𝑠
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝑦 − 𝑠
󵄩󵄩󵄩󵄩∞ + ‖𝑠 − 𝑠‖∞

= 𝑂 (ℎ
2
) + 𝑂 (ℎ

2
) = 𝑂 (ℎ

2
) .

(39)

5. Numerical Results

In the section, we give some computational results of numer-
ical experiments with method based on previous sections to
support our theoretical discussion. We use double precision
arithmetic in order to reduce the round-off errors to a
minimum.

Example 1. We consider the following equation:

𝑦
(6)

(𝑥) + 𝑦 (𝑥) = 6 cos𝑥, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 0, 𝑦
󸀠
(0) = −1, 𝑦

󸀠󸀠
(0) = 2,

𝑦 (1) = 0, 𝑦
󸀠
(1) = sin 1, 𝑦

󸀠󸀠
(1) = 2 cos 1.

(40)

The exact solution is given by 𝑦(𝑥) = (𝑥 − 1) sin𝑥.

The results of maximum absolute errors max[𝑦(])(𝑥𝑖)] =

max1⩽𝑖⩽𝑛|𝑦
(])
(𝑥𝑖) − 𝑠

(])
(𝑥𝑖)| (] = 0, 1, 2, 3, 4, 5) for this

problem are tabulated in Table 2.
Next, we compare our method with the other spline

method. Consider another sixth order boundary value prob-
lem.

Example 2. Consider the boundary value problem

𝑦
(6)

(𝑥) − 𝑦 (𝑥) = −6𝑒
𝑥
, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 1, 𝑦
󸀠
(0) = 0, 𝑦

󸀠󸀠
(0) = −1,

𝑦 (1) = 0, 𝑦
󸀠
(1) = −𝑒, 𝑦

󸀠󸀠
(1) = −2𝑒,

(41)

which has the exact solution 𝑦(𝑥) = (1 − 𝑥)𝑒
𝑥.

The example has been solved by the collocation method
based on the sixth B-spline [18], and the numerical results
are stated in Table 3. Also, the system of differential equation
along with the given boundary conditions was solved by
Wazwaz using Adomian decomposition method [10] and
Noor using variational iteration method [13]. The respective
maximum absolute errors are given in Table 3. Obviously, the
results of our method are very encouraging.
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Table 3: Max[𝑦(𝑥𝑖)] of different methods for Example 2.

𝑥 Exact solution [18] [13] [10] Our method
0.1 0.99465383 1.2159𝑒 − 5 4.0933𝑒 − 4 4.0933𝑒 − 4 4.5092𝑒 − 6

0.2 0.97712221 2.7418𝑒 − 5 7.7820𝑒 − 4 7.7820𝑒 − 4 1.2619𝑒 − 5

0.3 0.94490117 2.2053𝑒 − 6 1.0704𝑒 − 3 1.0704𝑒 − 3 1.9154𝑒 − 5

0.4 0.89509482 2.5033𝑒 − 6 1.2578𝑒 − 3 1.2578𝑒 − 3 2.1632𝑒 − 5

0.5 0.82436064 5.4836𝑒 − 6 1.3223𝑒 − 3 1.3223𝑒 − 3 1.9704𝑒 − 5

0.6 0.72884752 1.6212𝑒 − 5 1.2578𝑒 − 3 1.2578𝑒 − 3 1.4548𝑒 − 5

0.7 0.60412581 2.0682𝑒 − 5 1.0704𝑒 − 3 1.0704𝑒 − 3 8.2238𝑒 − 6

0.8 0.44510819 2.2619𝑒 − 5 7.7820𝑒 − 4 7.7820𝑒 − 4 2.9420𝑒 − 6

0.9 0.24596031 1.9460𝑒 − 5 4.0933𝑒 − 4 4.0933𝑒 − 4 2.3610𝑒 − 7

6. Conclusion

In the section, we employ the quartic B-spline for solving
the sixth order boundary value problems. Properties of the
B-spline function are utilized to reduce the computation of
this problem to some algebraic equations. The method is
computationally attractive and applications are demonstrated
through illustrative examples. The obtained results showed
that this approach can solve the problem effectively, and the
comparison shows that the proposed technique is in good
agreement with the existing results in the literature.
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