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We consider a nonlinear Schrödinger equation with a singular potential on half spaces. Using a Hardy-type inequality and the
moving plane method, we obtain a Liouville type result for its nonnegative solutions.

1. Introduction

Recently, properties of nontrivial solutions for nonlinear
elliptic equations on half spaces have attracted a great deal
of attention from physicians and mathematicians; see, for
example, [1–5].

In this paper, we consider nonnegative solutions of the
following Schrödinger equation with a singular potential on
the half-space:

−Δ𝑢 −

𝛽

𝑧

2
𝑢 − 𝑢

2
∗

−1
= 0, 𝑥 ∈ 𝐻,

𝑢 = 0, 𝑥 ∈ 𝜕𝐻,

(1)

where 𝑛 ≥ 3, 2∗ = 2𝑛/(𝑛 − 2), 𝛽 > 0, and

𝐻 = R
𝑛

+
= {𝑥 = (𝑥

󸀠
, 𝑧) | 𝑥

󸀠
∈ R
𝑛−1
, 𝑧 > 0} . (2)

Equation (1) is related to the Grushin type equation with
critical exponent and the Webster scalar curvature equation
[6, 7].

We are interested in the Liouville type result for nonneg-
ative solutions of (1). This work is motivated by some mono-
tonicity results and Liouville type results for elliptic equations
on half-spaces; see, for example, [2, 3]. In [2], Dancer found
some sufficient conditions for nonlinear term 𝑓(𝑢) such
that the positive bounded solution 𝑢 of −Δ𝑢 = 𝑓(𝑢) with
Dirichlet boundary value condition is monotone increasing

in 𝑧. Guo [3] considered nonnegative solutions for the elliptic
system,

−Δ𝑢 = 𝑓 (V) , in R
𝑛

+
,

−ΔV = 𝑔 (𝑢) , in R
𝑛

+
,

𝑢 = V = 0, on 𝜕R
𝑛

+
,

(3)

and obtained some sufficient conditions for 𝑓 and 𝑔, under
which system (3) admits only trivial solution.

Let D1,2
0
(𝐻) be the space given by the completion

of 𝐶∞
0
(𝐻) under the norm ||𝑢|| = (∫

𝐻
|∇𝑢|

2
𝑑𝑥)

1/2. We say
that 𝑢 is a weak solution of (1) if 𝑢 ∈ D1,2

0
(𝐻) satisfies

∫

𝐻

∇𝑢 ⋅ ∇𝜑 𝑑𝑥 = ∫

𝐻

𝛽

𝑧

2
𝑢𝜑𝑑𝑥 + ∫

𝐻

𝑢

2
∗

−1
𝜑𝑑𝑥,

(4)

for all 𝜑 ∈ 𝐶∞
𝑐
(𝐻).

Using a Hardy-type inequality and the moving plane
method in integral forms [8–10], we obtain the following
Liouville type result.

Theorem 1. Let 𝑢 ∈ D1,2
0
(𝐻) be a nonnegative weak solution

of (1) with 0 < 𝛽 < 1/16. Then, 𝑢 ≡ 0.

Remark 2. For a weak solution 𝑢 ∈ D1,2
0
(𝐻), by using a

regularity lifting method [8], we know that 𝑢 ∈ 𝐶2,𝛼(Ω), for
all bounded smooth domain Ω ⊂ 𝐻. Hence, it is a classical
solution.
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2. Preliminary

In this section, we prepare some lemmas.
Firstly, we recall the Hardy-Sobolev inequality in the half

space; see [11–13].

Lemma 3. Let 𝑢 ∈ D1,2
0
(R𝑛
+
); then,

∫

R𝑛
+

|𝑢|

2

𝑧

2
𝑑𝑥 ≤ 4∫

R𝑛
+

|∇𝑢|

2
𝑑𝑥. (5)

This inequality plays a crucial role in estimating the
singular potential term in the following proof.

In the following, we assume that 𝑢 ∈ D1,2
0
(𝐻) is a

nonnegative weak solution of (1) with 0 < 𝛽 < 1/16. We are
going to use the method of moving plane in the half-space.

For each 𝜆 > 0, let

Σ

𝜆
= {(𝑥

󸀠
, 𝑧) | 𝑥

󸀠
∈ R
𝑛−1
, 𝑧 ∈ (0, 𝜆)} = R

𝑛−1
× (0, 𝜆) . (6)

For 𝑥 ∈ Σ
𝜆
, we write 𝑥𝜆 = (𝑥

1
, . . . , 𝑥

𝑛−1
, 2𝜆 − 𝑧) which is the

reflected point of 𝑥 with respect to the hyperplane 𝑇
𝜆
= {𝑥 =

(𝑥

󸀠
, 𝑧) | 𝑧 = 𝜆} and define

𝑢

𝜆
(𝑥) = 𝑢 (𝑥

𝜆
) , 𝑤

𝜆
(𝑥) = 𝑢

𝜆
(𝑥) − 𝑢 (𝑥) . (7)

Then, direct computation gives

−Δ𝑤

𝜆
(𝑥) = −Δ𝑢

𝜆
(𝑥) + Δ𝑢 (𝑥)

=

𝛽

(2𝜆 − 𝑧)

2
𝑢

𝜆
(𝑥) + (𝑢

𝜆
(𝑥))

2
∗

−1

−

𝛽

𝑧

2
𝑢 (𝑥) − (𝑢 (𝑥))

2
∗

−1

=

𝛽

(2𝜆 − 𝑧)

2
𝑢

𝜆
(𝑥) −

𝛽

𝑧

2
𝑢

𝜆
(𝑥)

+

𝛽

𝑧

2
𝑢

𝜆
(𝑥) −

𝛽

𝑧

2
𝑢 (𝑥)

+ (𝑢

𝜆
(𝑥))

2
∗

−1

− (𝑢 (𝑥))

2
∗

−1

=

𝛽

𝑧

2
𝑤

𝜆
(𝑥) + 𝜉 (𝑥, 𝜆)𝑤

𝜆
(𝑥)

+ 𝛽(

1

(2𝜆 − 𝑧)

2
−

1

𝑧

2
)𝑢

𝜆
(𝑥) ;

(8)

here 𝜉(𝑥, 𝜆) = ((𝑢
𝜆
(𝑥))

2
∗

−1
− 𝑢(𝑥)

2
∗

−1
)/(𝑢

𝜆
(𝑥) − 𝑢(𝑥)).

For 𝑥 ∈ Σ

𝜆
, we have 2𝜆 − 𝑧 > 𝑧, 1/(2𝜆 − 𝑧)2 <

1/𝑧

2, 𝑢
𝜆
(𝑥) ≥ 0, and 𝛽 > 0. Therefore,

−Δ𝑤

𝜆
(𝑥) ≤

𝛽

𝑧

2
𝑤

𝜆
(𝑥) + 𝜉 (𝑥, 𝜆) 𝑤

𝜆
(𝑥) .

(9)

Define 𝑤+
𝜆
(𝑥) = max{𝑤

𝜆
(𝑥), 0} and 𝑤−

𝜆
(𝑥) =

−min{𝑤
𝜆
(𝑥), 0}. Clearly, 𝑤+

𝜆
(𝑥) ≥ 0, 𝑤−

𝜆
(𝑥) ≥ 0 and

𝑤

𝜆
(𝑥) = 𝑤

+

𝜆
(𝑥) − 𝑤

−

𝜆
(𝑥). Define

Σ

−

𝜆
= {𝑥 ∈ Σ

𝜆
| 𝑤

𝜆
(𝑥) < 0} . (10)

The heart of our argument is the following lemma.

Lemma 4. There exists a 𝐶
0
> 0, such that, for 𝜆 > 0,

if ||𝑤−
𝜆
||

𝐿
2
∗

(Σ
𝜆
)
> 0, then

‖𝑢 (𝑥)‖

𝐿
2
∗

(Σ
−

𝜆
)
≥ 𝐶

0
. (11)

Proof. For 0 < 𝜖 < 𝜆/4, let 𝜂
𝜖
(𝑧) ∈ 𝐶(R+) be defined by

𝜂

𝜖
(𝑧) =

{

{

{

{

{

{

{

{

{

1, 𝑧 > 𝜖,

log 𝑧 − 2 log 𝜖
− log 𝜖

, 𝜖

2
≤ 𝑧 ≤ 𝜖

0, 𝑧 < 𝜖

2
.

, (12)

Testing (9) in Σ
𝜆
with function 𝜂2

𝜖
𝑤

−

𝜆
, we obtain

− ∫

Σ
𝜆

Δ𝑤

𝜆
(𝑥) 𝜂

2

𝜖
𝑤

−

𝜆
𝑑𝑥 ≤ 𝛽∫

Σ
𝜆

1

𝑧

2
𝑤

𝜆
(𝑥) 𝜂

2

𝜖
𝑤

−

𝜆
𝑑𝑥

+ ∫

Σ
𝜆

𝜉 (𝑥, 𝜆) 𝑤

𝜆
(𝑥) 𝜂

2

𝜖
𝑤

−

𝜆
𝑑𝑥.

(13)

The left hand side of (13) is

− ∫

Σ
𝜆

Δ𝑤

𝜆
(𝑥) 𝜂

2

𝜖
𝑤

−

𝜆
𝑑𝑥

= ∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝜖
𝑑𝑥 + 2∫

Σ
−

𝜆

𝜂

𝜖
𝑤

−

𝜆
∇𝑤

𝜆
(𝑥) ⋅ ∇𝜂

𝜖
𝑑𝑥.

(14)

Hence, we derive

∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝜖
𝑑𝑥 ≤ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼, (15)

where

𝐼 = 𝛽∫

Σ
−

𝜆

1

𝑧

2
𝜂

2

𝜖
(𝑤

−

𝜆
)

2

𝑑𝑥,

𝐼𝐼 =∫

Σ
−

𝜆

𝜉 (𝑥, 𝜆) 𝜂

2

𝜖
(𝑤

−

𝜆
)

2

𝑑𝑥,

𝐼𝐼𝐼 = − 2∫

Σ
−

𝜆

𝜂

𝜖
𝑤

−

𝜆
∇𝑤

𝜆
(𝑥) ⋅ ∇𝜂

𝜖
𝑑𝑥.

(16)

Using Lemma 3, we have

𝐼 = 𝛽∫

Σ
−

𝜆

1

𝑧

2
𝜂

2

𝜖
(𝑤

−

𝜆
)

2

𝑑𝑥

≤ 4𝛽∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇ (𝑤

−

𝜆
𝜂

𝜖
)

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 8𝛽∫

Σ
−

𝜆

(𝜂

2

𝜖

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

+ (𝑤

−

𝜆
)

2
󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

) 𝑑𝑥.

(17)

For 𝑥 ∈ Σ−
𝜆
, 0 ≤ 𝑢

𝜆
(𝑥) < 𝑢(𝑥), 0 < 𝜉(𝑥, 𝜆) < ((𝑛+2)/(𝑛−

2)(𝑢(𝑥))

4/(𝑛−2), which implies

𝐼𝐼 = ∫

Σ
−

𝜆

𝜉 (𝑥, 𝜆) 𝜂

2

𝜖
(𝑤

−

𝜆
)

2

𝑑𝑥

≤

𝑛 + 2

𝑛 − 2

∫

Σ
−

𝜆

(𝑢 (𝑥))

4/(𝑛−2)
𝜂

2

𝜖
(𝑤

−

𝜆
)

2

𝑑𝑥.

(18)
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By using Hölder inequality, we verify that

𝐼𝐼 ≤

𝑛 + 2

𝑛 − 2

(∫

Σ
−

𝜆

𝑢

2
∗

𝜂

𝑛/2

𝜖
𝑑𝑥)

2/𝑛

⋅ (∫

Σ
−

𝜆

(𝑤

−

𝜆
)

2
∗

𝜂

𝑛/(𝑛−2)

𝜖
𝑑𝑥)

(𝑛−2)/𝑛

≤

𝑛 + 2

𝑛 − 2

‖𝑢‖

4/(𝑛−2)

𝐿
2
∗

(

Σ
−

𝜆
)

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
∗

(

Σ
−

𝜆
)

,

(19)

𝐼𝐼𝐼 = − 2∫

Σ
−

𝜆

𝜂

𝜖
𝑤

−

𝜆
∇𝑤

𝜆
⋅ ∇𝜂

𝜖
𝑑𝑥

≤ 2∫

Σ
−

𝜆

𝜂

𝜖
𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤

1

4

∫

Σ
−

𝜆

𝜂

2

𝜖

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 + 4∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

(𝑤

−

𝜆
)

2

𝑑𝑥.

(20)

Putting (17), (19), and (20) into (15) and using the
assumption 1 < 𝛽 < 1/16 , we then deduce that

∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝜖
𝑑𝑥 ≤ 9∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

(𝑤

−

𝜆
)

2

𝑑𝑥

+ 4 ⋅

𝑛 + 2

𝑛 − 2

‖𝑢‖

4/(𝑛−2)

𝐿
2
∗

(

Σ
−

𝜆
)

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
∗

(

Σ
−

𝜆
)

.

(21)

Moreover, by the Sobolev inequality, we know that

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆
𝜂

𝜖

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
∗

(

Σ
−

𝜆
)

≤ 𝐶

2󵄩
󵄩

󵄩

󵄩

∇ (𝑤

−

𝜆
𝜂

𝜖
)

󵄩

󵄩

󵄩

󵄩𝐿
2
(Σ
−

𝜆
)

≤ 𝐶

2
∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

𝜂

𝜖
∇𝑤

−

𝜆
+ 𝑤

−

𝜆
∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2𝐶

2
∫

Σ
−

𝜆

(𝜂

2

𝜖

󵄨

󵄨

󵄨

󵄨

∇𝑤

−

𝜆

󵄨

󵄨

󵄨

󵄨

2

+ (𝑤

−

𝜆
)

2
󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

) 𝑑𝑥.

(22)

Combine the above inequality with (21) to get

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆
𝜂

𝜖

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
∗

(

Σ
−

𝜆
)

≤ 20𝐶

2
∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

(𝑤

−

𝜆
)

2

𝑑𝑥

+ 8𝐶

2 𝑛 + 2

𝑛 − 2

‖𝑢‖

(𝑛−2)/4

𝐿
2
∗

(

Σ
−

𝜆
)

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
∗

(

Σ
−

𝜆
)

.

(23)

Now we claim that

∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

(𝑤

−

𝜆
)

2

𝑑𝑥 󳨀→ 0, as 𝜖 󳨀→ 0. (24)

Notice that, for 𝑥 ∈ Σ−
𝜆
, 0 < 𝑤−

𝜆
(𝑥) = 𝑢(𝑥) − 𝑢

𝜆
(𝑥) ≤ 𝑢(𝑥).

Hence,

0 ≤ ∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

∇𝜂

𝜖

󵄨

󵄨

󵄨

󵄨

2

(𝑤

−

𝜆
)

2

𝑑𝑥

≤ ∫

Σ
−

𝜆

󵄨

󵄨

󵄨

󵄨

󵄨

𝜂

󸀠

𝜖
(𝑧)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑢

2
𝑑𝑥

= ∫

𝜖
2
≤𝑧≤𝜖

(𝑢 (𝑥))

2

𝑧

2
(log 𝜖)2

𝑑𝑥

≤

1

(log 𝜖)2
∫

𝐻

(𝑢 (𝑥))

2

𝑧

2
𝑑𝑥

≤ 4

1

(log 𝜖)2
∫

𝐻

|∇𝑢|

2
𝑑𝑥.

(25)

Since 𝑢 ∈ D1,2
0
(𝐻), ∫

𝐻
|∇𝑢|

2
𝑑𝑥 < +∞. Thus (24) is valid.

Now, letting 𝜖 → 0 in (23), by using dominated
convergence theorem, we obtain

1 ≤ 8𝐶

2
⋅

𝑛 + 2

𝑛 − 2

‖𝑢‖

4/(𝑛−2)

𝐿
2
∗

(

Σ
−

𝜆
)

(26)

if ||𝑤−
𝜆
||

𝐿
2
∗

(Σ
−

𝜆
)
̸= 0.

One can choose 𝐶
0
= ((𝑛 − 2)/8𝐶

2
(𝑛 + 2))

(𝑛−2)/4,
where 𝐶 is the best constant in the Sobolev inequality.

Using Lemma 4, we now can start the moving plane
process as the following Lemma.

Lemma 5. There is a 𝜆
0
> 0, such that, for all 0 < 𝜆 < 𝜆

0
,

𝑤

𝜆
(𝑥) ≥ 0, ∀𝑥 ∈ Σ

𝜆
. (27)

Proof. Since 𝑢 ∈ D1,2
0
(𝐻), using Sobolev inequality, we

have 𝑢(𝑥) ∈ 𝐿2
∗

(𝐻). Choose 𝜆
0
> 0 small enough such that

‖𝑢‖

𝐿
2
∗

(Σ
𝜆
0

)
< 𝐶

0
, (28)

where 𝐶
0
is the same as in Lemma 4.

Hence, for all 0 < 𝜆 < 𝜆
0
,

‖𝑢‖

𝐿
2
∗

(Σ
−

𝜆
)
≤ ‖𝑢‖

𝐿
2
∗

(Σ
𝜆
)
≤ ‖𝑢‖

𝐿
2
∗

(Σ
𝜆
0

)
< 𝐶

0
, (29)

which is a contradiction to Lemma 4, if ||𝑤−
𝜆
||

𝐿
2
∗

(Σ
−

𝜆
)
̸= 0. That

is to say,
󵄩

󵄩

󵄩

󵄩

𝑤

−

𝜆

󵄩

󵄩

󵄩

󵄩𝐿
2
∗

(Σ
−

𝜆
)
= 0, (30)

which implies that 𝑤
𝜆
≥ 0, for 𝑥 ∈ Σ

𝜆
.

Now we move the hyperplane 𝑇
𝜆
upwards by increasing

the value of 𝜆 continuously as long as (27) holds. We will
show that the hyperplane will be moved to the infinity.
Precisely, define

Λ = sup {𝜆 > 0 | 𝑤
𝜇
(𝑥) ≥ 0, ∀𝑥 ∈ Σ

𝜇
, ∀0 < 𝜇 ≤ 𝜆} . (31)

By the result of Lemma 5, Λ ≥ 𝜆
0
> 0.
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Lemma 6. We have Λ = +∞.

Proof. Suppose Λ < +∞.
On one hand, by continuity we know that 𝑤

Λ
(𝑥) ≥ 0, for

all 𝑥 ∈ Σ
Λ
, which means

Σ

−

Λ
= 0. (32)

On the other hand, by the definition of Λ, there
is {𝛿
𝑖
}

∞

𝑖=1
that satisfy (i) 𝛿

𝑖
→ 0, as 𝑖 → ∞, and

(ii) ||𝑤−
Λ+𝛿
𝑖

(𝑥)||

𝐿
2
∗

(Σ
Λ+𝛿
𝑖

)
> 0, for all 𝑖. By Lemma 4, we

get ||𝑢(𝑥)||
𝐿
2
∗

(Σ
−

Λ+𝛿
𝑖

)
≥ 𝐶

0
> 0. By using the dominated

convergence theorem, we obtain

‖𝑢 (𝑥)‖

𝐿
2
∗

(Σ
−

Λ
)
≥ 𝐶

0
> 0, (33)

which is a contradiction to (32).

3. Proof of Theorem 1

In this section, we prove Theorem 1.
Since 𝑢 is a superharmonic continuous function

in 𝐻 (see Remark 2), we have either 𝑢 ≡ 0 in 𝐻 or 𝑢 >

0 in 𝐻.
If 𝑢 > 0 in 𝐻, then there is some (𝑥󸀠

0
, 𝑧

0
) ∈ 𝐻 satis-

fying 𝑢(𝑥󸀠
0
, 𝑧

0
) = 𝑐 > 0. Moreover, by continuity, there is

a 𝛿 > 0, such that 𝑢(𝑥󸀠, 𝑧
0
) > 𝑎/2, for all |𝑥󸀠 − 𝑥󸀠

0
| < 𝛿. By

using Lemma 6, we know that 𝑢(𝑥) is increasing with respect
to 𝑧 in 𝐻. Thus, 𝑢(𝑥󸀠, 𝑧) ≥ 𝑎/2 for all |𝑥󸀠 − 𝑥󸀠

0
| < 𝛿 and 𝑧 ≥

𝑧

0
. Hence,

∫

+∞

𝑧
0

∫

|𝑥
󸀠
−𝑥
󸀠

0
|<𝛿

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑥

󸀠
, 𝑧)

󵄨

󵄨

󵄨

󵄨

󵄨

2
∗

𝑑𝑥

󸀠
𝑑𝑧

≥ ∫

+∞

𝑧
0

∫

|𝑥
󸀠
−𝑥
󸀠

0
|<𝛿

(

𝑎

2

)

2
∗

𝑑𝑥

󸀠
𝑑𝑧 = +∞,

(34)

which contradicts the fact that 𝑢 ∈ 𝐿2
∗

(𝐻).
Therefore, 𝑢 ≡ 0 in 𝐻.
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