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A delayed worm propagation model with birth and death rates is formulated. The stability of the positive equilibrium is studied.
Through theoretical analysis, a critical value 𝜏

0
ofHopf bifurcation is derived.Thewormpropagation system is locally asymptotically

stable when time delay is less than 𝜏
0
. However, Hopf bifurcation appears when time delay 𝜏 passes the threshold 𝜏

0
, which means

that the worm propagation system is unstable and out of control. Consequently, time delay should be adjusted to be less than 𝜏
0
to

ensure the stability of the system stable and better prediction of the scale and speed of Internet worm spreading. Finally, numerical
and simulation experiments are presented to simulate the system, which fully support our analysis.

1. Introduction

In recent years, Internet is undoubtedly one of the fastest
increasing scientific technologies, which brings about con-
venience in people’s daily work and changes people’s life
in variety of aspects. With rapid development of network
applications and the increase of network complexity, security
problems emerge progressively. Among them, the problem
of Internet worms has become the focus with its wide infec-
tion range, fast spread speed, and tremendous destruction.
Enlightened by the researches in epidemiology, plenty of
models have been constructed to predict the spread of worms
and some containment strategies have been taken into con-
sideration. In addition, birth and death rates are widely
applied in epidemiology because individuals in the ecological
system may die during the spread of diseases. Meanwhile
baby individuals are born everyday and join the ecological
system [1–3]. In the computer science field, computers are
like individuals in an ecological system. As a result of being
infected by Internet worms or quarantined by intrusion
detection systems (IDS), hostswill get unstable andunreliable
which will result in system reinstallation by their owners.
Besides, when many new computers are brought, most of
them are preinstalled with operating systems without newest

safety patches. Furthermore, old computers are discarded and
recycled at the same time. These phenomena are quite simi-
lar to the death and birth in epidemiology. Thus, in order to
imitate the real world, birth and death rates should be intro-
duced to worm propagation model.

Quarantine strategies have been exploited and applied
in the control of disease. The implementation of quarantine
strategy in computer field relies on the IDS [4]. The IDS
include twomajor categories: misuse intrusion detection and
anomaly intrusion detection system. The anomaly detection
system is commonly used to detect malicious code such as
computer virus and worms for its relatively better perfor-
mance [5, 6]. Once a deviation from the normal behavior is
detected, such behavior is recognized as an attack and appro-
priate response actions, such as quarantine or vaccination, are
triggered.

Mechanism of time window was brought in IDS in order
to balance the false negative rate and false positive rate [7].
The introduction of time window is used to decide whether
an alarm is a true or false positive based on the number of
abnormal behaviors detected in a time window. It implies
that the size of time window affects both the number of true
positive and false positive rates. However, the import of the
timewindow leads to time delay.Therefore, in order to accord
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with actual condition, time delay should be considered. In
this paper, time delay is introduced in the worm propagation
model along with birth and death rates, and its stability is
analyzed. Moreover, it is indicated that overlarge time delay
may result in the bifurcation which would do little help to
eliminate the worms. Consequently, in order to guarantee the
simplification and stability of the worm propagation system,
time delay should be decreased appropriately by a decrease in
the window size.

The rest of the paper is organized as follows. In the next
section, related work on time delay and birth is death rates
and introduced. Section 3 gives a brief introduction of the
simple worm propagation model and quarantine strategy.
Afterwards we present the delayed worm propagation model
with birth and death rates and analyze the stability of the
positive equilibrium. In Section 4, numerical and simulation
experiments are presented to support our theoretical analysis.
Finally, Section 5 draws the conclusions.

2. Related Work

Due to the high similarity between the spread of infectious
biological viruses and computer worms, some scholars have
used epidemic model to simulate and analyze the worm
propagation [8–14]. For instance, Staniford first constructs
the propagation of Internet worms by imitating epidemic
propagation models, called simple epidemic model (SEM)
model [9]. susceptible-infected-removed (SIR) model plays
a significant role in the research of worm propagation model
[10]. On the basis of SIR model, Zou et al. propose a worm
propagation model with two factors on Code Red [11]. Ren et
al. give a novel computer virus propagation model and study
its dynamic behaviors [12]. Mishra and Pandey formulate
an e-epidemic SIRS model for the fuzzy transmission of
worms in computer network [13]. L.-X. Yang and X. Yang
investigate the propagation behavior of virus programs and
propose that infected computers are connected to the Internet
with positive probability [14]. Mathematical analysis and
simulation experiment of these models are conducted, which
are helpful to predict the speed and scale of Internet worm
propagation. In addition, to our knowledge, the use of quar-
antine strategies has produced a great effect on controlling
disease. Enlightened by this, quarantine strategies are also
widely used inworm containment [15–18]. Yao et al. construct
awormpropagationmodelwith time delay under quarantine,
and its stability of the positive equilibrium is analyzed [15, 16].
Yao also proposes a pulse quarantine strategy to eliminate
worms and obtains its stability condition [17]. Wang et al.
propose a novel epidemic model which combines both vacci-
nations and dynamic quarantine methods, referred to as
SEIQV model [18].

Furthermore, some scholars have done some researches
on time delay [19–21]. Dong et al. propose a computer virus
model with time delay based on SEIR model [19]. By pro-
posing an SIRS model with stage structure and time delays,
Zhang et al. perform some bifurcation analysis of this model
[20]. Zhang et al. also consider a delayed predator-prey
epidemiological system with disease spreading in predator
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Figure 1: State transition diagram of the KMmodel.

population [21]. In addition, the direction of Hopf bifurca-
tions and the stability of bifurcated periodic solutions are
studied, which are our extension direction in the future
research.

3. Worm Propagation Model

3.1. The Simple Worm Propagation Model. Realizing the
similarities between Internet worms and biological viruses in
propagation characteristics, classical epidemic models have
been applied to the research of worm propagation models.
Initially, we introduce a simple propagation model, the
Kermack Mckendrick model (KM model) [22], as the basis
of our research.

The KM model assumes that all Internet hosts are in
one of three states: susceptible state (𝑆), infectious state (𝐼),
and removed state (𝑅). And hosts can only maintain one
state at any given moment. Infectious hosts are converted
from susceptible hosts by a worm infection and can shift to
removed state through killing worms by antivirus softwares
and installing safety patches. Once patches are installed, the
hosts can no longer be infected by worms.The state transition
diagram of the KMmodel is given in Figure 1.

𝑆(𝑡) denotes the number of susceptible hosts at time 𝑡,
𝐼(𝑡) denotes the number of infectious hosts at time 𝑡, and
𝑅(𝑡) denotes the number of removed hosts at time 𝑡.The total
number of hosts in the network is 𝑁 and remains constant.
𝛽 is infection rate at which susceptible hosts are infected by
infectious hosts, and 𝛾 is recovery rate at which infectious
hosts get recovered. The KM model can be formulated by a
set of differential equations from the state transition diagram
as follows:

𝑑𝑆 (𝑡)

𝑑𝑡

= − 𝛽𝑆 (𝑡) 𝐼 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾𝐼 (𝑡) .

(1)

Although KM model adopts recovery feature and does
generate some braking containment effect on the worm
propagation, it only describes the initial stage of worm prop-
agation and does not control the outbreaks of worms. More
suppression strategies should be taken to further control the
worm propagation.

3.2. The Worm Propagation Model with Quarantine Strategy.
Quarantine strategy, which relies on the intrusion detection
system, is an effective way to diminish the speed of worm
propagation. On the basis of the KM model, quarantine
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Figure 2: State transition diagram of the quarantine model.

strategy should be taken into consideration. Firstly, infectious
hosts are detected by the systems and then get quarantined
and patched. Moreover, considering that hosts could get
patched whatever state the hosts stay, we add a new path
from hosts in susceptible state to vaccinated state to accord
with actual situation. The state transition diagram of the
worm propagation model with quarantine strategy is given
in Figure 2.

In this model, vaccinated state equals to removed state
in KM model, and 𝑉(𝑡) denotes the number of vaccinated
hosts at time 𝑡. Susceptible hosts can be infected by worms
with an infection rate 𝛽 due to their vulnerabilities. After
infection, the hosts become infectious hosts, which means
the hosts can infect other susceptible hosts. The hosts can
be directly patched into the vaccinated state before getting
infected at rate 𝜔. By applying misuse intrusion detection
system for its relatively high accuracy, we add a new state
called quarantine state, but only infectious hosts will be
quarantined. 𝑄(𝑡) denotes the number of quarantine hosts at
time 𝑡. Infectious hosts will be quarantined at rate 𝛼 which
depends on the performance of intrusion detection systems
and network devices. When infectious hosts are quarantined,
the hosts will get rid of worms and get patched at rate 𝜑.
Meanwhile, infectious hosts can be manually patched into
vaccinated state at recovery rate 𝛾. It can be perceived that
if a host is patched, it has gained immunity permanently.

The differetial equations of this model are given as

𝑑𝑆 (𝑡)

𝑑𝑡

= − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝜔𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑑𝑄 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝜑𝑄 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡

= 𝜔𝑆 (𝑡) + 𝛾𝐼 (𝑡) + 𝜑𝑄 (𝑡) .

(2)

The total number of this model is set to 𝑁 = 1, which
means the sum of hosts in all four states is equal to one; that
is 𝑆(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑉(𝑡) = 1. Then, the infection-free

equilibrium of this model and its stability condition will be
studied.

The first, second, and third equations in system (2) have
no dependence on the last one; therefore, the last one can be
omitted. System (2) can be rewritten as a three-demensional
system

𝑑𝑆 (𝑡)

𝑑𝑡

= − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝜔𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑑𝑄 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝜑𝑄 (𝑡) .

(3)

Due to the infection-free state which the system holds
in the end, the number of infectious hosts is equal to 0.
Obviously, the number of susceptible hosts and number of
quarantined hosts are both equal to 0, because all of the
hosts in the network will get patched at last, no matter which
way the hosts take. Thus the infection-free equilibrium point
𝐸
∗
(0, 0, 0) of system (3) can be obtained. Since 𝑉(𝑡) = 𝑁 −

𝑆(𝑡) − 𝐼(𝑡) −𝑄(𝑡), the infection-free equilibrium of the model
with quarantine strategy is 𝐸∗(0, 0, 0,𝑁).

Although all infectious hosts in quarantine model con-
vert to vaccinated hosts, in other words, worms have been
eliminated, it is hardly appropriate for real world situation.
Actually, not all the hosts will convert to vaccinated hosts, and
no-patch hosts are still existing in the network and suffering
high risk of worm attack. In addition, considering that hosts
are consumer electronic products, the recycling of old hosts
happens frequently every day. In order to imitate the facts
in the real world, birth and death rates must be taken into
consideration.

Additionally, due to the time windows of intrusion detec-
tion system, which decreases the number of false positives,
time delay should be considered to accord with actual
situation. Therefore, in the next section, the new model is
proposed.

3.3. The Delayed Worm Propagation Model with Birth and
Death Rates. By adding time delay, along with birth and
death rates, the delayed worm propagation model with birth
and death rates is presented. Figure 3 shows the state transi-
tion diagram of the delayed worm propagation model with
birth and death rates.

In this model, the total number of hosts denoted by𝑁 is
divided into five parts. Compared with quarantine model, a
new state, delayed state, is added. The hosts do not have the
ability to infect other susceptible hosts but are not quaran-
tined yet. Therefore, a new state is needed to represent these
hosts. 𝐷(𝑡) denotes the hosts in delayed state at time 𝑡. Fur-
thermore, the hosts in susceptible, infected, quarantined, and
removed states have the same rate 𝜇 to leave the network.
If the hosts are quarantined by IDS, some of applications
may not access to network because their ports are occupied
by worms. At this moment, the users would like to reinstall
OS and leave the network system. Thus, the birth and death
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Figure 3: State transition diagram of the delayed model.

rates are correlative to the number of infectious hosts and
quarantined hosts in the network system. And the rate 𝜇 is

𝜇 = 𝜇
0
(

𝐼 (𝑡) + 𝑄 (𝑡)

𝑁

) . (4)

The hosts in delayed state are not likely to leave the
network, accounting for the activeness of these hosts. The
newborn hosts enter the system with the same rate 𝜇, of
which a portion 1 − 𝑝 is recovered by installing patches
instantly at birth. This differs from the transition denoted by
𝜔, because the hosts are vaccinated at the time of entering the
network by installing patched operating system. The transi-
tion 𝜔 represents the rate by which those susceptible in the
network get vaccinated by installing patches later.Thedelayed
differential equations are written as

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑝𝜇 (𝑁 (𝑡) − 𝐷 (𝑡)) − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝜔𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝛼𝐼 (𝑡 − 𝜏) ,

𝑑𝑄 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡 − 𝜏) − 𝜑𝑄 (𝑡) − 𝜇𝑄 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡

= (1 − 𝑝) 𝜇 (𝑁 (𝑡) − 𝐷 (𝑡))

+ 𝜔𝑆 (𝑡) + 𝛾𝐼 (𝑡) + 𝜑𝑄 (𝑡) − 𝜇𝑉 (𝑡) .

(5)

Other notations are identical to those in the previous
model. To understand themmore clearly, the notations in this
model are shown in Table 1.

Table 1: Notations in this paper.

Notation Definition
𝑁 Total number of hosts in the network
𝑆(𝑡) Number of susceptible hosts at time 𝑡
𝐼(𝑡) Number of infectious hosts at time 𝑡
𝐷(𝑡) Number of delayed hosts at time 𝑡
𝑄(𝑡) Number of quarantined hosts at time 𝑡
𝑉(𝑡) Number of vaccinated hosts at time 𝑡
𝛽 Infection rate
𝜔 Vaccine rate of susceptible hosts
𝛼 Quarantine rate
𝜑 Removal rate of quaratined hosts
𝛾 Removal rate of infectious hosts
𝜇 Birth and death rates
𝑝 Birth ratio of susceptible hosts
𝜏 Length of the time window in IDS

As mentioned in Table 1, the population size is set to 𝑁,
which is set to unity:

𝑆 (𝑡) + 𝐼 (𝑡) + 𝐷 (𝑡) + 𝑄 (𝑡) + 𝑉 (𝑡) = 𝑁. (6)

3.4. Stability of the Positive Equilibrium and
Bifurcation Analysis

Theorem 1. The system has a unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
), when the condition

(𝐻
1
) (𝑝𝜇𝛽𝑁/(𝜇 + 𝛼 + 𝛾)(𝜇 + 𝜔)) > 1

is satisfied, where

𝑆
∗
=

𝜇 + 𝛼 + 𝛾

𝛽

, 𝐷
∗
= 𝛼𝜏𝐼

∗
, 𝑄

∗
=

𝛼𝐼
∗

𝜑 + 𝜇

,

𝑉
∗
=

𝛾𝐼
∗
+ 𝜔𝑆
∗
+ 𝜑𝑄
∗
+ 𝜇 (1 − 𝑝) (𝑁 − 𝐷

∗
)

𝜇

.

(7)

Proof. From system (5), according to [23], if all the derivatives
on the left of equal sign of the system are set to 0, which
implies that the system becomes stationary, we can get

𝑆 =

𝜇 + 𝛼 + 𝛾

𝛽

, 𝐷 = 𝛼𝜏𝐼
∗
, 𝑄 =

𝛼𝐼
∗

𝜑 + 𝜇

,

𝑉 =

𝛾𝐼
∗
+ 𝜔𝑆
∗
+ 𝜑𝑄
∗
+ 𝜇 (1 − 𝑝) (𝑁 − 𝐷

∗
)

𝜇

.

(8)

Substituting the value of each variable in (8) for each of (6),
then we can get:

𝜇 + 𝛼 + 𝛾

𝛽

+ 𝐼 + 𝛼𝜏𝐼 +

𝛼𝐼

𝜑 + 𝜇

+ 𝑉 = 𝑁. (9)

After solving this equation with respect to 𝐼∗, a solution of 𝐼∗
is obtained

𝐼 =

𝑝𝑁𝜇𝛽 − (𝜇 + 𝜔) (𝜇 + 𝛼 + 𝛾)

𝛽 (𝛼 + 𝜇𝑝𝛼𝜏 + 𝜇 + 𝛾)

. (10)
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Thus, if (𝐻
1
) is satisfied, (10) has one unique positive

root 𝐼
∗, and there is one unique positive equilibrium

𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (5). The proof is com-

pleted.

According to (6),𝑉 = 𝑁−𝑆− 𝐼 −𝐷−𝑄, and thus system
(5) can be simplified to

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑝𝜇 (𝑁 (𝑡) − 𝐷 (𝑡)) − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝑤𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡) − 𝛼𝐼 (𝑡 − 𝜏) ,

𝑑𝑄 (𝑡)

𝑑𝑡

= 𝛼𝐼 (𝑡 − 𝜏) − 𝜑𝑄 (𝑡) − 𝜇𝑄 (𝑡) .

(11)

The Jacobimatrix of (11) about𝐸∗(𝑆∗, 𝐼∗, 𝐷∗, 𝑄∗, 𝑉∗) is given
by

𝐽 (𝐸
∗
) = (

𝑎
1

𝑎
2

𝑎
3
𝑎
4

𝛽𝐼
∗

𝑎
5

0 𝑎
6

0 𝛼 − 𝛼𝑒
−𝜆𝜏

0 0

0 𝛼𝑒
−𝜆𝜏

− 𝑎
7

0 𝑎
8

), (12)

where

𝑎
1
= −

𝜇
0
(𝐼
∗
+ 𝑄
∗
)

𝑁

− 𝜔 − 𝛽𝐼
∗
,

𝑎
2
=

𝑝𝜇
0
(𝑁 − 𝐷

∗
)

𝑁

−

𝜇
0
𝑆
∗

𝑁

− 𝛽𝑆
∗
,

𝑎
3
= −

𝑝𝜇
0
(𝐼
∗
+ 𝑄
∗
)

𝑁

,

𝑎
4
=

𝑝𝜇
0
(𝑁 − 𝐷

∗
) − 𝜇
0
𝑆
∗

𝑁

,

𝑎
5
= 𝛽𝑆
∗
− 𝛼 − 𝛾 −

2𝜇
0
𝐼
∗
+ 𝜇
0
𝑄
∗

𝑁

,

𝑎
6
= −

𝜇
0
𝐼
∗

𝑁

, 𝑎
7
=

𝜇
0
𝑄
∗

𝑁

,

𝑎
8
= −𝜑 −

𝜇
0
𝐼
∗
+ 2𝜇
0
𝑄
∗

𝑁

.

(13)

The characteristic equation of that matrix can be obtained by

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0, (14)

where

𝑃 (𝜆) = 𝜆
4
− (𝑎
1
+ 𝑎
5
+ 𝑎
8
) 𝜆
3

+ (𝑎
1
𝑎
5
+ 𝑎
1
𝑎
8
+ 𝑎
5
𝑎
8
+ 𝑎
6
𝑎
7
− 𝑎
2
𝛽𝐼
∗
) 𝜆
2

+ (−𝑎
1
𝑎
5
𝑎
8
− 𝑎
1
𝑎
6
𝑎
7
+ 𝑎
2
𝑎
8
𝛽𝐼
∗

+ 𝑎
4
𝑎
7
𝛽𝐼
∗
− 𝑎
3
𝛼𝛽𝐼
∗
) 𝜆

+ 𝑎
3
𝑎
8
𝛼𝛽𝐼
∗
,

𝑄 (𝜆) = −𝑎
6
𝛼𝜆
2
+ (𝑎
1
𝑎
6
𝛼 − 𝑎
4
𝛼𝛽𝐼
∗
+ 𝑎
3
𝛼𝛽𝐼
∗
) 𝜆

− 𝑎
3
𝑎
8
𝛼𝛽𝐼
∗
.

(15)

Let
𝑏
3
= − (𝑎

1
+ 𝑎
5
+ 𝑎
8
) ,

𝑏
2
= 𝑎
1
𝑎
5
+ 𝑎
1
𝑎
8
+ 𝑎
5
𝑎
8
+ 𝑎
6
𝑎
7
− 𝑎
2
𝛽𝐼
∗

𝑏
1
= −𝑎
1
𝑎
5
𝑎
8
− 𝑎
1
𝑎
6
𝑎
7
+ 𝑎
2
𝑎
8
𝛽𝐼
∗

+ 𝑎
4
𝑎
7
𝛽𝐼
∗
− 𝑎
3
𝛼𝛽𝐼
∗
,

𝑏
0
= 𝑎
3
𝑎
8
𝛼𝛽𝐼
∗
,

𝑐
2
= −𝑎
6
𝛼

𝑐
1
= 𝑎
1
𝑎
6
𝛼 − 𝑎
4
𝛼𝛽𝐼
∗
+ 𝑎
3
𝛼𝛽𝐼
∗
,

𝑐
0
= −𝑎
3
𝑎
8
𝛼𝛽𝐼
∗
.

(16)

Then
𝑃 (𝜆) = 𝜆

4
+ 𝑏
3
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
1
𝜆 + 𝑏
0
,

𝑄 (𝜆) = 𝑐
2
𝜆
2
+ 𝑐
1
𝜆 + 𝑐
0
.

(17)

Theorem 2. The positive equilibrium 𝐸
∗ is locally asymptoti-

cally stable without time delay, if the following holds:

(𝐻
2
) 𝑏
3
> 0, 𝑑

1
> 0, 𝑏

1
+ 𝑐
1
> 0,

where

𝑑
1
= 𝑏
3
(𝑏
2
+ 𝑐
2
) − (𝑏
1
+ 𝑐
1
) (18)

is satisfied.

Proof. If 𝜏 = 0, then (14) reduces to

𝜆
4
+ 𝑏
3
𝜆
3
+ (𝑏
2
+ 𝑐
2
) 𝜆
2

+ (𝑏
1
+ 𝑐
1
) 𝜆 + (𝑏

0
+ 𝑐
0
) = 0.

(19)

Because 𝑏
0
+ 𝑐
0
= 0, equation (19) can be further reduced to

𝜆
3
+ 𝑏
3
𝜆
2
+ (𝑏
2
+ 𝑐
2
) 𝜆 + (𝑏

1
+ 𝑐
1
) = 0. (20)

According to Routh-Hurwitz criterion, all the roots of
(20) have negative real parts.Therefore, it can be deduced that
the positive equilibrium 𝐸

∗ is locally asymptotically stable
without time delay. The proof is completed.

Obviously, 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (14). After separat-
ing the real and imaginary parts, it can be written as

𝜔
4
− 𝑏
2
𝜔
2
+ 𝑏
0
+ (𝑐
0
− 𝑐
2
𝜔
2
) cos (𝜔𝜏) + 𝑐

1
𝜔 sin (𝜔𝜏) = 0,

−𝑏
3
𝜔
3
+ 𝑏
1
𝜔 + (𝑐

2
𝜔
2
− 𝑐
0
) sin (𝜔𝜏) + 𝑐

1
𝜔 cos (𝜔𝜏) = 0.

(21)



6 Journal of Applied Mathematics

From the two equations of (21), the following equation
can be obtained:

𝑐
2

1
𝜔
2
+ (𝑐
2

2
𝜔
2
− 𝑐
0
)

2

= (𝜔
4
− 𝑏
2
𝜔
2
+ 𝑏
0
)

2

+ (𝑏
1
𝜔 − 𝑏
3
𝜔
3
)

2

,

(22)

which implies that

𝜔
8
+ 𝑚
3
𝜔
6
+ 𝑚
2
𝜔
4
+ 𝑚
1
𝜔
2
+ 𝑚
0
= 0, (23)

where

𝑚
3
= 𝑏
2

3
− 2𝑏
2
,

𝑚
2
= 𝑏
2

2
+ 2𝑏
0
− 2𝑏
1
𝑏
3
− 𝑐
2

2
,

𝑚
1
= 𝑏
2

1
− 𝑐
2

1
− 2𝑏
2
𝑏
0
+ 2𝑐
0
𝑐
2
,

𝑚
0
= 𝑏
2

0
− 𝑐
2

0
.

(24)

Then (23) reduces to

𝜔
6
+ 𝑚
3
𝜔
4
+ 𝑚
2
𝜔
2
+ 𝑚
1
= 0. (25)

Let 𝑧 = 𝜔
2.Then (25) can be written as

ℎ (𝑧) = 𝑧
3
+ 𝑚
3
𝑧
2
+ 𝑚
2
𝑧 + 𝑚

1
, (26)

Δ is defined as Δ = 𝑚
2

3
− 3𝑚
2
. And we can get a solution

𝑧
∗
= (√Δ − 𝑚

3
)/3 of h(z).

Lemma 3. Suppose that (𝐻
2
) 𝑏
3
> 0, 𝑑

1
> 0, 𝑏

1
+ 𝑐
1
> 0 is

satisfied.

(i) If one of followings holds: (a) Δ > 0, 𝑧∗ < 0; (b) Δ >

0, 𝑧∗ > 0, and ℎ(𝑧∗) > 0, then all roots of (14) have
negative real parts when 𝜏 ∈ [0, 𝜏

0
), and 𝜏

0
is a certain

positive constant.
(ii) If the conditions (a) and (b) are not satisfied, then all

roots of (14) have negative real parts for all 𝜏 ≥ 0.

Proof. When 𝜏 = 0, equation (14) can be reduced to

𝜆
3
+ 𝑏
3
𝜆
2
+ (𝑏
2
+ 𝑐
2
) 𝜆 + (𝑏

1
+ 𝑐
1
) = 0. (27)

By the Routh-Hurwitz criterion, all roots of (20) have
negative real parts if and only if 𝑏

3
> 0, 𝑑

1
> 0, and 𝑏

1
+𝑐
1
> 0.

Considering (26), it is easy to see from the characters of
cubic algebra equation that ℎ(𝑧) is a strictly monotonically
increasing function if Δ ≤ 0. If Δ > 0 and 𝑧∗ < 0 or Δ > 0,
𝑧
∗
> 0 but ℎ(𝑧∗) > 0, then ℎ(𝑧) has no positive root. Thus,

under these conditions, equation (14) has no purely imag-
inary roots for any 𝜏 > 0. In addition, this also implies that
the positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (5)

is absolutely stable. Therefore, the following theorem on the
stability of positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) can

be easily obtained.

Theorem 4. Assume that (𝐻
1
) and (𝐻

2
) are satisfied and Δ >

0 and 𝑧∗ < 0 orΔ > 0, 𝑧∗ > 0, and ℎ(𝑧∗) > 0.Then the positive

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (5) is absolutely

stable; that is to say 𝐸∗(𝑆∗, 𝐼∗, 𝐷∗, 𝑄∗, 𝑉∗) is asymptotically
stable for any time delay 𝜏 ≥ 0.

It is assumed that the coefficients in ℎ(𝑧) satisfy the
condition as follows:

(𝐻
3
) Δ > 0, 𝑧

∗
> 0, ℎ(𝑧

∗
) < 0.

Then, according to lemma in [15], it is known that (26) has
at least a positive root 𝜔

0
; namely, the characteristic equation

(14) has a pair of purely imaginary roots ±𝑖𝜔
0
.

In view of the fact that (14) has a pair of purely imaginary
roots ±𝑖𝜔

0
, the corresponding 𝜏

𝑘
> 0 is given by eliminating

sin(𝜔𝜏) in (21):

𝜏
𝑘
=

1

𝜔
0

arccos[
(𝑏
2
𝜔
2

0
− 𝜔
4

0
− 𝑏
0
) (𝑐
0
− 𝑐
2
𝜔
2

0
)

(𝑐
0
− 𝑐
2
𝜔
2

0
)
2
+ 𝜔 (𝑏

3
𝜔
2
− 𝑏
1
− 𝑐
1
)

]

+

2𝑘𝜋

𝜔
0

(𝑘 = 0, 1, 2, . . .) .

(28)

Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the root of (14) so that V(𝜏
𝑘
) = 0

and 𝜔(𝜏
𝑘
) = 𝜔
0
are satisfied when 𝜏 = 𝜏

𝑘
.

Lemma 5. Suppose that ℎ󸀠(𝑧
0
) ̸= 0. If 𝜏 = 𝜏

0
, then ±𝑖𝜔

0
is a

pair of simple purely imaginary roots of (14). In addition, if the
conditions in Lemma 3 are satisfied, then

𝑑 (Re 𝜆)
𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑘

> 0. (29)

This signifies that there exists at least one eigenvalue with
positive real part for 𝜏 > 𝜏

𝑘
. Differentiating both sides of (14)

with respect to 𝜏, it can be written as

(

𝑑𝜆

𝑑𝜏

)

−1

= ((4𝜆
3
+ 3𝑏
3
𝜆
2
+ 2𝑏
2
𝜆 + 𝑏
1
)

+𝑐
1
𝑒
−𝜆𝜏

− (𝑐
1
𝜆 + 𝑐
0
) 𝜏𝑒
−𝜆𝜏

)

× ((𝑐
1
𝜆 + 𝑐
0
) 𝜆𝑒
−𝜆𝜏

)

−1

.

(30)

Therefore

sgn{𝑑Re 𝜆
𝑑𝜏

}

𝜏=𝜏𝑘

= sgn{Re(𝑑𝜆
𝑑𝜏

)

−1

}

𝜆=𝑖𝜔0

= sgn
𝜔
2

0

Λ

(4𝜔
6

0
+ 3𝑚
3
𝜔
4

0

+2𝑚
2
𝜔
2

0
+ 𝑚
1
)

= sgn
𝜔
2

0

Λ

{ℎ
󸀠
(𝜔
2

0
)} = sgn {ℎ󸀠 (𝜔2

0
)} ,

(31)

where Λ = 𝑐
2

1
𝜔
4

0
+ 𝑐
0
𝜔
2

0
. Then it can be derived that

𝑑 (Re 𝜆)
𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏𝑘

> 0. (32)
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Figure 4: Worm propagation trend of the model when 𝜏 < 𝜏
0
.

It follows the hypothesis (𝐻
3
) that ℎ󸀠(𝜔2

0
) ̸= 0. Therefore,

transversality condition holds and the conditions for Hopf
bifurcation are satisfied when 𝜏 = 𝜏

𝑘
, according to Hopf

bifurcation theorem [24] for functional differential equations.
Then the following results can be obtained.

Theorem 6. Suppose that the conditions (𝐻
1
) and (𝐻

2
) are

satisfied.

(i) For system (5), the equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
)

is locally asymptotically stable when 𝜏 ∈ [0, 𝜏
0
) but

unstable when 𝜏 > 𝜏
0
.

(ii) When condition (𝐻
3
) is satisfied, system (5) will

undergo a Hopf bifurcation at the positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) when 𝜏 = 𝜏

𝑘
(𝑘 = 0, 1, 2, . . .),

where 𝜏
𝑘
is defined by (28).

Theorem 2 implies to us that when birth and death rates
and the mechanism of time window in intrusion detection
system are considered, the length of time window is crucial
for the stability of the propagation process. When time delay
is less than the threshold 𝜏

0
, the system will stabilize at

its infection equilibrium point, which is beneficial to fur-
ther implement containment strategies to eliminate worms.
However, when time delay is greater than the threshold, the
system will be unstable and undergo a bifurcation. Although
the propagation of worm presents a periodical phenome-
non, in real world, complicated environment may make the
propagation pass the critical state and reach to an unpre-
dictable chaos.

4. Numerical and Simulation Experiments

4.1. Numerical Experiments. The parameters of the delayed
modelwill be chosen properly, according to the stability of the
positive equilibrium, bifurcation analysis, and the practical
environment. 500,000 hosts are picked as the population size,
and the worm’s average scan rate is 𝜂 = 4000 per second.
The worm infection rate can be calculated as 𝜀 = 𝜂𝑁/2

32
=

0.4657 [11], which means that average 0.4657 hosts of all the
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Figure 5: Worm propagation trend of the model when 𝜏 > 𝜏
0
.

2.5

2

1.5

1

0.5

0
0 100 200 300 400 500 600 700 800

×105

I(
t)

t(s)

Figure 6: The number of 𝐼(𝑡) when 𝜏 is changed.

hosts can be scanned by one host. The infection ratio is 𝛽 =

𝜂/2
32

= 0.0000053. The rest of the parameters are 𝛾 = 0.03,
𝜇
0
= 0.026, 𝜔 = 0.00001, 𝛼 = 0.56, 𝜑 = 0.0009, and

𝑝 = 0.99. Initially, 𝐼(0) = 50, which means that there are
50 infectious hosts while the rest of the hosts are susceptible
at the beginning.

Figure 4 shows the curves of five kinds of hosts when
𝜏 = 5 < 𝜏

0
. All of the five kinds of hosts get stable within

4 minutes, which illustrates that 𝐸∗ is asymptotically stable.
It implies that the number of infectious hosts maintain a
constant level and thus can be predicted. Further strategies
can be developed and utilized to eliminate worms. But when
time delay 𝜏 gets increased and then reach the threshold 𝜏

0
,

𝐸
∗ will lose its stability and a bifurcation will occur. Figure 5

shows the susceptible, infected, and recovered hosts when
𝜏 > 𝜏
0
. In this firgure, we can clearly see that the number of

infectious hosts will outburst after a short period of peace
and repeat again and again but not in the same period.

In order to see the influence of time delay, 𝜏 is set to a
different value each time with other parameters remaining
the same. Figure 6 shows the number of infected hosts in the
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Figure 7: The number of 𝐼(𝑡) when 𝜏 is changed.

same coordinate with time delays 𝜏 = 5, 𝜏 = 15, 𝜏 = 45, and
𝜏 = 90, respectively.

Figure 7 gives the four curves in four coordinates. In these
two figures, the impact of time delay on infected hosts is
evident. Initially, the four curves are overlapped whichmeans
that time delay has little effect in the initial stage of worm
propagation.With the increase of time delay, the curve begins
to oscillate. When time delay passes through the threshold
𝜏
0
, the infecting process gets unstable. Then simultaneously,

it can be discovered that the amplitude and period of the
number of infected hosts get increased.

Figure 8(a) shows the projection of the phase portrait of
system (5) when 𝜏 = 15 < 𝜏

0
in (𝑆, 𝐼, 𝑉)-space. The curve

converges to a fixed point which suggests that the system is
stable. Figure 8(b) shows the projection of the phase portrait
of system (5) when 𝜏 = 25 > 𝜏

0
in (𝑆, 𝐼, 𝑉)-space. The curve

converges to a limit circle which implies that the system is
unstable. Figures 8(c) and 8(d) show the phase portraits of
susceptible 𝑆(𝑡) and infected 𝐼(𝑡) as 𝜏 = 15 < 𝜏

0
and 𝜏 = 25 >

𝜏
0
, respectively.

4.2. Simulation Experiments. The discrete-time simulation is
an expanded version of Zou’s program simulating Code Red
worm propagation and has been modified to run on a Linux
server. The system in our simulation experiment consists
of 500,000 hosts that can reach each other directly, which

is consistent with the numerical experiments, and there is
no topology issue in our simulation. At the beginning of
simulation, 50 hosts are randomly chosen to be infectious and
the others are all susceptible.

Identical with the results of numerical experiments,
Figure 9 shows all five kinds of hosts when 𝜏 = 5 < 𝜏

0
. We

find that themodel will reach a stable state after a short period
of time, which suggests that the number of infetious hosts can
be predicted and we can develop further strategy to eliminate
worms.

When time delay increases but is less than the threshold
derived from theoretical analysis, the number of infectious
hosts and other hosts present a damped oscillation and finally
reach an approximately stable state. Figure 10 shows the num-
ber of five kinds of hosts when 𝜏 = 15 < 𝜏

0
. An interesting

result is that the number of each host maintain a slight
random vibration. However, the overall amplitude is only
0.273% to the population size, and themaximumamplitude is
only 0.953% to the population size. The reason why this phe-
nomenon occurs is due to the random events in simulation
experiments. The implement of transition rates of the model
is based on probability. That is to say, when the removal rate
of infectious hosts is set to 0.03, it means that the probability
of transition from infectious hosts to vaccinated state is 3%; it
also means that infectious hosts get patched with probability
of 3%. To investigate this phenomenon, phase portrait of
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Figure 8: The phase portrait when 𝜏 < 𝜏
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Figure 9: Simulation result of the five kinds of hosts when 𝜏 < 𝜏
0
.

susceptible 𝑆(𝑡) and infected 𝐼(𝑡) is depictedwhen 𝜏 = 15 < 𝜏
0

as shown Figure 11. It shows that the curve is converged to a
fixed point, which means that the system gets stable.

When time delay passes the threshold, a bifurcation
appears. Figure 12 shows the number of susceptible, infectious
and vaccinated hosts when 𝜏 > 𝜏

0
. Figure 13 shows the differ-

ence between simulation and numerical results of susceptible
and infectious hosts, respectively. In this figure, the periods
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Figure 10: Simulation result of the five kinds of hosts when 𝜏 = 15.

of these two curves are well matched, which suggests that
the results of numerical and simulation experiments are
identical. But there is a difference of 9.6% of total population
size in amplitudes. This mainly results from the precision of
experiments. The number of hosts in numerical experiments
can be either integers or decimals because it is the solution of
differential equations. However, in simulation experiments,
the number of hosts must be integers. Furthermore, when the
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Figure 12: Simulation result of the three kinds of hosts when 𝜏 > 𝜏
0
.

number of infectious hosts are very little, this tiny difference
will result in a big gap afterwards.

5. Conclusions

In order to accord with actual facts in the real world, time
delay generated by time window in IDS is introduced to
construct the worm propagation model. Dynamic birth and
death rates are considered in this paper, accounting for the
reinstallation of OS which users are more likely to do after
when the hosts suffer worm’s destruction or quarantined to
the Internet. In addition, combined with birth and death
rates, time delay may lead to bifurcation and make the worm
propagation system unstable.

In this paper, a delayed worm propagation model with
birth and death rates is studied. Next, the stability of the
positive equilibrium is analyzed.Through theoretical analysis
and numerical and simulation experiments, the following
conclusions can be derived.

(i) The introduction of time window in IDS may lead to
time delay in worm propagationmodel, which results
in bifurcation. The critical time delay 𝜏

0
where the

bifurcation appears is obtained.
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Figure 13: The comparison of numerical and simulation experi-
ments.

(ii) The worm propagation system is stable when time
delay 𝜏 < 𝜏

0
. In this situation, the worm propagation

can be easily predicted and eliminated.
(iii) A bifurcation emerges when time delay 𝜏 ≥ 𝜏

0
, which

means the worm propagation is unstable and may be
out of control.

Consequently, time delay 𝜏 should remain less than 𝜏
0

by decreasing the time window in IDS, which is helpful to
predict the worm propagation and even eliminate the worm.

In this paper, we have only discussed the cases which
satisfy conditions (𝐻

1
), (𝐻
2
), and (𝐻

3
). But for cases that

satisfy (𝐻
1
), (𝐻
2
), and (𝐻

3
), the dynamical behavior of this

model has not been studied. These issues will be studied and
discussed in our future work.
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