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Let𝑋 be a real normed space with dimension greater than 2 and let 𝑓 be a real functional defined on𝑋. Applying some ideas from
the studies made on the conditional Cauchy functional equation on the restricted domain of the vectors of equal norm and the
isosceles orthogonal vectors, the conditional quadratic equation and theD’Alembert one, namely, ‖𝑥‖ = ‖𝑦‖ ⇒ 𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦) =

2𝑓(𝑥) + 2𝑓(𝑦) and ‖𝑥‖ = ‖𝑦‖ ⇒ 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) = 2𝑓(𝑥)𝑓(𝑦), have been studied in this paper, in order to describe their
solutions. Particular normed spaces are introduced for this aim.

1. Introduction

The conditional functional equation

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , (i)

where 𝑓 : 𝑋 → 𝑌 is a continuous mapping from an inner
product space 𝑋 of dimension ≥ 2 into a real topological
vector space 𝑌, was first studied by Alsina and Garcia Roig
in [1].They recognized the connection between this equation
and the orthogonally additive functional equation that is

𝑥 ⊥ 𝑦 󳨐⇒ 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (ii)

which is a conditional functional equation studied by sev-
eral authors and for long time (see among others [2–5]).
In particular we mention the general results obtained by
Rätz [3]: he described the solutions of (ii) in the so-called
orthogonality spaces in which the orthogonality relation is
defined in axiomatic way and it is homogeneous.

Then Szabó [6] studied the previous (i) for functionals
𝑓 : (𝑋, ‖ ⋅ ‖) → (𝑌, +) defined in a real normed space with
values in an abelian group. In this paper he considered also
the following conditional equation:

𝑥 ⊥
𝑖
𝑦 󳨐⇒ 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (iii)

which is the additive Cauchy functional equation on the
restricted domain of the isosceles orthogonal vectors in

the sense of James [7]; that is, 𝑥, 𝑦 are isosceles orthogonal
𝑥 ⊥
𝑖
𝑦 if ‖𝑥 + 𝑦‖ = ‖𝑥 − 𝑦‖.
This study of functional equations on the restricted

domain of the vectors of equal norm or the isosceles orthog-
onal vectors in linear normed spaces, which are not inner
product spaces, is quite difficult.

In particular, the lack of homogeneity for the isosceles
orthogonality leads to the search for a new different approach
for the proof, since the general theory of the orthogonality
spaces in the sense of Rätz does not cover this case. The
method of the proof of those theorems is by no means ele-
mentary. In particular, some sophisticated connectivity
results on intersection of spheres of equal radii in normed lin-
ear spaces are involved.The proofs are based on the existence
of particular auxiliary vectors of equal norm in normed spa-
ces. Moreover, the method spoken of requires the dimension
of the space considered to be greater than or equal to 3.

The aim of our paper is to consider two other functional
equations: the quadratic functional equation

(𝑥, 𝑦) ∈ 𝑋
2
󳨐⇒ 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦)

(1)

and the D’Alembert functional equation

(𝑥, 𝑦) ∈ 𝑋
2
󳨐⇒ 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) 𝑓 (𝑦)

(2)



2 Abstract and Applied Analysis

and to study the solutions of their conditional version on the
restricted domain of vectors of equal norm in the class of
functionals defined on a normed space; this is the starting
point. In the futurewe purpose to study the above conditional
equations on the restricted domain of the isosceles orthogo-
nal vectors.

Let𝑓 : (𝑋, ‖ ⋅ ‖) → 𝑅. We study the following conditional
equations:

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) ,

(3)

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) 𝑓 (𝑦)

(4)

taking hint from the techniques introduced in the previous
papers, based on suitable vectors in normed spaces.

We notice that the additive equation involves the values
of 𝑓 on the vectors 𝑥, 𝑦, 𝑥 + 𝑦, and the auxiliary vectors
introduced by Szabó can perform in this case. For (3) and
(4) we have to deal with the values of 𝑓 on 𝑥, 𝑦 and both
vectors 𝑥 + 𝑦 and 𝑥 − 𝑦. So we should assume the existence
of useful vectors, defining particular normed spaces in which
such vectors exist. We describe those spaces in Section 2.

Afterwards, in Sections 3 and 4, we study the conditional
quadratic equation and the D’Alembert equation, respec-
tively, in those spaces, obtaining a characterization of its
solutions.

Then, in Section 5, we consider the even isosceles orthog-
onal additive functionals in the particular class of the func-
tional defined on the normed spaces introduced in Section 2,
and we give their representation in order to characterize the
particular normed spaces introduced in this paper; unfor-
tunately this characterization remains since now an open
problem.

2. Particular Normed Spaces

Let (𝑋, ‖ ⋅ ‖) be a normed space𝑋 with dim𝑋 ≥ 3. Following
the ideas of Szabó, let us introduce in 𝑋 some auxiliary
vectors by the following conditions.

Let 𝑥, 𝑦 ∈ 𝑋 be vectors with ‖𝑥‖ < ‖𝑦‖; then there exist
𝑧
1
, 𝑧
2
∈ 𝑋 such that

2𝑥 = 𝑧
1
+ 𝑧
2
,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑧1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 + 𝑧
1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 + 𝑧

2

󵄩󵄩󵄩󵄩 .

(A)

Let 𝑥, 𝑦 ∈ 𝑋 be vectors with ‖𝑥‖ < ‖𝑦‖; then there exist
𝑧
3
, 𝑧
4
∈ 𝑋 such that

2𝑥 = 𝑧
3
+ 𝑧
4
,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑧3
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑧4
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 − 𝑧
3

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 − 𝑧

4

󵄩󵄩󵄩󵄩 .

(B)

Let 𝑥, 𝑦 ∈ 𝑋 be vectors with ‖𝑥‖ < ‖𝑦‖; then there exist
𝑥
1
, 𝑥
2
∈ 𝑋 such that

2𝑥 = 𝑥
1
+ 𝑥
2
,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 + 𝑥
1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 + 𝑥

2

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 − 𝑥
1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 − 𝑥

2

󵄩󵄩󵄩󵄩 .

(C)

We can also use the following condition (C󸀠) which is a
condition equivalent to (C).

Let 𝑥, 𝑦 ∈ 𝑋 be vectors with ‖𝑥‖ < ‖𝑦‖; then there exists
𝑧 ∈ 𝑋 such that

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = ‖𝑧‖ = ‖2𝑥 − 𝑧‖ ,

󵄩󵄩󵄩󵄩𝑦 + 𝑧
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑦 + (2𝑥 − 𝑧)
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑦 − (2𝑥 − 𝑧)
󵄩󵄩󵄩󵄩 .

(C󸀠)

In fact, it is sufficient to consider in (C) 𝑥
1

= 𝑧; hence 𝑥
2

=

2𝑥 − 𝑧.
Condition (A) has been introduced by Szabó [6] and the

existence of such vectors is proved in every normed spaces,
as we can see from the following.

Proposition 1. Let (𝑋, ‖⋅‖) be a normed space𝑋with dim𝑋 ≥

3, then condition (A) is satisfied.

Proof. Let 𝑥, 𝑦 ∈ 𝑋 be vectors with ‖𝑥‖ < ‖𝑦‖. We put ‖𝑦‖ =

𝜌; consider 𝐾 the connected intersection of spheres 𝑆
0
(𝜌) =

{𝑧 ∈ 𝑋/‖𝑥‖ = 𝜌} and 𝑆
2𝑥

(𝜌) = {𝑧 ∈ 𝑋/‖2𝑥 − 𝑧‖ = 𝜌},
with the continuous function 𝜑 : 𝐾 → 𝑅 defined by 𝜑(𝑧) =

‖𝑦 + 𝑧‖ − ‖𝑦 + (2𝑥 − 𝑧)‖; we easily prove that 𝜑(2𝑥 − 𝑧) =

−𝜑(𝑧) so that the function 𝜑 changes its sign on 𝐾 which is
connected. Hence there is a vector 𝑧

0
with 𝜑(𝑧

0
) = 0, that is

‖𝑦 + 𝑧
0
‖ = ‖𝑦 + (2𝑥 − 𝑧

0
)‖, so the assertion is true if we put

𝑧
1
= 𝑧
0
and 𝑧
2
= 2𝑥 − 𝑧

0
.

We remark that from this condition we deduce that for
every nonnull vector, there exists a vector of equal norm
which is also isosceles orthogonal to the given one; this is
easily proved setting 𝑥 = 0 in condition (A).

Condition (B) is easily proved from Proposition 1, using
the auxiliary functional 𝜑(𝑧) = ‖𝑦 − 𝑧‖ − ‖𝑦 − (2𝑥 − 𝑧)‖. For
𝑥 = 0, condition (B) leads us to the same conclusion as in the
case (A).

We remark that the pair of vectors 𝑧
1
, 𝑧
2
and the pair of

vectors 𝑧
3
, 𝑧
4
in conditions (A) and (B)may be different from

each other.
Condition (C) requires that there exists a pair of vectors

satisfying both conditions; this case is not satisfied in every
normed space as we can see from the following counter
example.

Example 2. Let (𝑅3, ‖ ⋅ ‖
∞

) be the normed space in which we
define the norm

‖𝑥‖∞ = max (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥3

󵄨󵄨󵄨󵄨) . (5)
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In this space we prove that there exist 𝑥, 𝑦 ∈ 𝑋with ‖𝑥‖ <

‖𝑦‖ for which it is impossible to find vectors satisfying (C).
For this aim, let us consider 𝑥 = (−1/2, −1/2, −1/2) and 𝑦 =

(1, −1, 0). Those vectors satisfy ‖𝑥‖ < ‖𝑦‖ since ‖𝑥‖ = 1/2

and ‖𝑦‖ = 1. We use now condition (C󸀠).
The idea of the proof that there are not vectors satisfying

condition (C󸀠) is as follows: we suppose by an absurd that
there exists a vector 𝑧 = (𝛼, 𝛽, 𝛾) with ‖𝑦‖ = ‖𝑧‖ = ‖2𝑥 − 𝑧‖

satisfying condition (C󸀠). We compute 2𝑥−𝑧 = (−1−𝛼, −1−

𝛽, −1 − 𝛾); since ‖𝑦‖ = ‖𝑧‖ = ‖2𝑥 − 𝑧‖ = 1, we are forced to
consider only particular values for 𝛼, 𝛽, 𝛾. In fact from

max (|𝛼| ,
󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝛾

󵄨󵄨󵄨󵄨) = max (|−1 − 𝛼| ,
󵄨󵄨󵄨󵄨−1 − 𝛽

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨−1 − 𝛾

󵄨󵄨󵄨󵄨) = 1,

(6)

we remark that conditions: −1 ≤ 𝛼 ≤ 0, −1 ≤ 𝛽 ≤ 0, −1 ≤ 𝛾 ≤

0 must be satisfied in a suitable manner.
First suppose that 𝛼 = −1; hence 𝛽 = 0 or 𝛾 = 0 in order

to satisfy (6). The following three cases hold: 𝑧 = (−1, 0, 0),
𝑧 = (−1, 0, 𝛾), and 𝑧 = (−1, 𝛽, 0), with −1 ≤ 𝛽 ≤ 0 and −1 ≤

𝛾 ≤ 0.
In the first case compute ‖𝑦 + 𝑧‖ = max(0, −1, 0) = 1

and ‖𝑦 + (2𝑥 − 𝑧)‖ = max(1, −2, −1) = 2, so that this case is
impossible.

In the second case compute ‖𝑦 + 𝑧‖ = max(0, −1, 𝛾) = 1

and ‖𝑦 + (2𝑥 − 𝑧)‖ = max(1, −2, −1 − 𝛾) = 2, so also this case
is impossible.

In the third case compute ‖𝑦 + 𝑧‖ = max(0, −1 + 𝛽, 0) =

| − 1 + 𝛽| and ‖𝑦 + (2𝑥 − 𝑧)‖ = max(1, −2 − 𝛽, −1) = | − 2 − 𝛽|.
We have | − 1 + 𝛽| = | − 2 − 𝛽| only if 𝛽 = −1/2, so that we
have the vector 𝑧 = (−1, −1/2, 0). We compute in this case
‖𝑦 + 𝑧‖ = 3/2 and ‖𝑦 + (2𝑥 − 𝑧)‖ = 3/2, but ‖𝑦 − 𝑧‖ = 2 and
‖𝑦 − (2𝑥 − 𝑧)‖ = 1; hence this vector does not satisfy the two
conditions required.

All the remaining cases are similar, so we prove that in the
space (𝑅

3
, ‖ ⋅ ‖
∞

), there exist no vectors satisfying condition
(C).

Since the normed space of the previous example is a
noninner product space, we purpose to find if condition (C)

characterizes or not the inner product spaces among normed
spaces. First we prove the sufficient condition.

Theorem3. If X is an inner product space, then (C) is satisfied.

In fact, using the definition of the norm in inner product
spaces and the basic property of the inner product this
theorem may be easily proved.

The necessary condition remains an open problem, but in
Section 5 we describe an interesting partial result.

3. The Conditional Quadratic
Functional Equation

We give now a characterization of the quadratic equation on
the restricted domain of equal-norm vectors in a normed
space introduced in the previous section, that is a space in
which condition (C) is fulfilled.

Theorem 4. A function 𝑓 : (𝑋, ‖ ⋅ ‖, (C)) → 𝑅 is a solution
of the conditional equation (3) if and only if 𝑓 is everywhere
quadratic, that is, (1).

Proof. It is easily seen that (1) implies (3).
Suppose now that (3) is satisfied. First we prove the

following relations:

𝑓 (0) = 0, (7)

𝑓 (2𝑥) = 4𝑓 (𝑥) , (8)

𝑓 (𝑥) = 𝑓 (−𝑥) . (9)

It is sufficient to put 𝑥 = 𝑦 = 0, 𝑥 = 𝑦 and choose the pair
𝑥, −𝑦 in (3), respectively.

Let 𝑥, 𝑦 ∈ 𝑋 be arbitrarily given vectors with ‖𝑥‖ < ‖𝑦‖.
For property (C), there exist the vectors 𝑥

1
, 𝑥
2
∈ 𝑋 such that

2𝑥 = 𝑥
1
+ 𝑥
2
and

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 + 𝑥
1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 + 𝑥

2

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦 − 𝑥
1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦 − 𝑥

2

󵄩󵄩󵄩󵄩 .

(10)

Substituting in (3) 𝑥
1
, 𝑥
2
in place of 𝑥, 𝑦, we obtain

𝑓 (𝑥
1
+ 𝑥
2
) + 𝑓 (𝑥

1
− 𝑥
2
) = 2𝑓 (𝑥

1
) + 2𝑓 (𝑥

2
) , that is,

𝑓 (𝑥
1
− 𝑥
2
) = 2𝑓 (𝑥

1
) + 2𝑓 (𝑥

2
) − 𝑓 (2𝑥) .

(11)

Since 𝑓 is even, for (3), (8), and (11), we get

𝑓 (2𝑥 + 2𝑦) + 𝑓 (2𝑥 − 2𝑦)

= 𝑓 [(𝑦 + 𝑥
1
) + (𝑦 + 𝑥

2
)] + 𝑓 [(𝑦 − 𝑥

1
) + (𝑦 − 𝑥

2
)]

= 2𝑓 (𝑦 + 𝑥
1
) + 2𝑓 (𝑦 + 𝑥

2
) − 𝑓 (𝑦 + 𝑥

1
− 𝑦 − 𝑥

2
)

+ 2𝑓 (𝑦 − 𝑥
1
) + 2𝑓 (𝑦 − 𝑥

2
) − 𝑓 (𝑦 − 𝑥

1
− 𝑦 + 𝑥

2
)

= 2𝑓 (𝑦 + 𝑥
1
) + 2𝑓 (𝑦 − 𝑥

1
) + 2𝑓 (𝑦 + 𝑥

2
)

+ 2𝑓 (𝑦 − 𝑥
2
) − 2𝑓 (𝑥

1
− 𝑥
2
)

= 8𝑓 (𝑦) + 4𝑓 (𝑥
1
) + 4𝑓 (𝑥

2
)

− 4𝑓 (𝑥
1
) − 4𝑓 (𝑥

2
) + 2𝑓 (2𝑥)

= 2𝑓 (2𝑥) + 2𝑓 (2𝑦) .

(12)

The proof is similar in case of ‖𝑥‖ > ‖𝑦‖: it is sufficient to
change the role of 𝑥 and 𝑦, since 𝑓 is even.

4. The D’Alembert Conditional
Functional Equation

We give now a characterization of the D’Alembert equation
on the restricted domain of equal-norm vectors in a normed
space introduced in the previous section, that is, a space in
which condition (C) is fulfilled.
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Theorem 5. A function𝑓 : (𝑋, ‖ ⋅‖, (𝐶)) → 𝑅 is a solution of
the conditional equation (4) if and only if𝑓satisfies everywhere
the D’Alembert equation, that is, (2).

Proof. It is easily seen that (2) implies (4).
Suppose now that (4) is satisfied. First we prove that

𝑓(0) = 0 or 𝑓(0) = 1, putting in (4) 𝑥 = 𝑦 = 0 and obtaining
𝑓
2
(0) = 𝑓(0).

(a) Let𝑓(0) = 0; we shall prove that, in this case,𝑓(𝑥) = 0

for all 𝑥 ∈ 𝑋. Setting in (4) 𝑥 = 𝑦, we get

𝑓 (2𝑥) = 2𝑓
2
(𝑥) . (13)

Then, substituting in (4) 2𝑥 and 2𝑦 in place of 𝑥, 𝑦, we get
𝑓(2(𝑥 + 𝑦)) + 𝑓(2(𝑥 − 𝑦)) = 2𝑓(2𝑥)𝑓(2𝑦) for ‖𝑥‖ = ‖𝑦‖, and
using (13) we have

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓
2
(𝑥 + 𝑦) + 𝑓

2
(𝑥 − 𝑦) = 4𝑓

2
(𝑥) 𝑓
2
(𝑦) .

(14)

On the other hand, squaring both sides of (4), we get

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓
2
(𝑥 + 𝑦) + 𝑓

2
(𝑥 − 𝑦)

+ 2𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) = 4𝑓
2
(𝑥) 𝑓
2
(𝑦) .

(15)

Comparing (14) with (15), we have

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) = 0. (16)

Now, let 𝑥 ∈ 𝑋 be an arbitrary vector. Then there exists a
vector 𝑦

0
∈ 𝑋 such that ‖𝑥‖ = ‖𝑦

0
‖ and ‖𝑥 + 𝑦

0
‖ = ‖𝑥 − 𝑦

0
‖

(see Szabó, [6, Page 270]). Substituting 𝑥 + 𝑦
0
and 𝑥 − 𝑦

0
for

𝑥 and 𝑦, respectively, in (4), we get 𝑓(2𝑥) + 𝑓(2𝑦
0
) = 2𝑓(𝑥 +

𝑦
0
)𝑓(𝑥 − 𝑦

0
), and then by (16), 𝑓(2𝑥) + 𝑓(2𝑦

0
) = 0. Hence,

by (13), we get 𝑓2(𝑥) + 𝑓
2
(𝑦
0
) = 0; that is, 𝑓(𝑥) = 0.

(b) Let 𝑓(0) = 1, we put 𝑥 = 𝑦 in (4) and obtain

𝑓 (2𝑥) = 2𝑓
2
(𝑥) − 1. (17)

We now prove that 𝑓 is even. Substitution in (4) of 𝑥/2 and
−𝑥/2 for 𝑥 and 𝑦 leads to 1 + 𝑓(𝑥) = 2𝑓(𝑥/2)𝑓(−𝑥/2), for
all 𝑥 ∈ 𝑋. Then, putting 𝑥 = −𝑥 in this last equation, we get
1 + 𝑓(−𝑥) = 2𝑓(−𝑥/2)𝑓(𝑥/2); hence 𝑓(𝑥) = 𝑓(−𝑥).

Using (17) and (4), we prove the following useful equa-
tions:

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) = 𝑓
2
(𝑥) + 𝑓

2
(𝑦) − 1,

(18)

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥) + 𝑓 (𝑦) = 2𝑓(
𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
) .

(19)

Proof of (18). Substituting in (4) 2𝑥 and 2𝑦 in place of 𝑥, 𝑦, we
get 𝑓(2(𝑥 + 𝑦)) + 𝑓(2(𝑥 − 𝑦)) = 2𝑓(2𝑥)𝑓(2𝑦) for ‖𝑥‖ = ‖𝑦‖,
and using (17) we have

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

󳨐⇒ 𝑓
2
(𝑥 + 𝑦) + 𝑓

2
(𝑥 − 𝑦) − 1

= 4𝑓
2
(𝑥) 𝑓
2
(𝑦) − 2𝑓

2
(𝑥) − 2𝑓

2
(𝑦) + 1.

(20)

On the other hand, squaring both sides of (4), we get (15).
Then, comparing (20) and (15) we prove (18).

Proof of (19). Substituting in (18) 𝑥/2 and 𝑦/2 in place of 𝑥, 𝑦,
we get 𝑓((𝑥+𝑦)/2)𝑓((𝑥−𝑦)/2) = 𝑓

2
(𝑥/2)+𝑓

2
(𝑦/2)−1; that

is, 2𝑓((𝑥 + 𝑦)/2)𝑓((𝑥 − 𝑦)/2) = 2𝑓
2
(𝑥/2) − 1 + 2𝑓

2
(𝑦/2) − 1,

and using (17) in the right hand side, we have (19).
Now we have to prove that 𝑓 satisfies the D’Alembert

functional equation for all 𝑥, 𝑦 ∈ 𝑋.
Let 𝑥, 𝑦 ∈ 𝑋 be arbitrarily given vectors; we may assume

that ‖𝑥‖ < ‖𝑦‖.Wedistinguish two cases: first ‖𝑥+𝑦‖ = ‖𝑥−𝑦‖

and then ‖𝑥 + 𝑦‖ ̸= ‖𝑥 − 𝑦‖.
(a) ‖𝑥 + 𝑦‖ = ‖𝑥 − 𝑦‖. Using (4) with 𝑥 + 𝑦 and 𝑥 − 𝑦

in place of 𝑥 and 𝑦, respectively, we have 𝑓(2𝑥) + 𝑓(2𝑦) =

2𝑓(𝑥 + 𝑦)𝑓(𝑥 − 𝑦), and then by (17) we get

𝑓
2
(𝑥) + 𝑓

2
(𝑦) = 𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) + 1. (21)

Moreover, since ‖(𝑥 + 𝑦)/2‖ = ‖(𝑥 − 𝑦)/2‖, substituting (𝑥 +

𝑦)/2 and (𝑥 − 𝑦)/2 in place of 𝑥 and 𝑦, respectively, in (4) we
obtain 𝑓(𝑥) + 𝑓(𝑦) = 2𝑓((𝑥 + 𝑦)/2)𝑓((𝑥 − 𝑦)/2). Squaring
both sides of this last equation and using (21) we get

𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) + 2𝑓 (𝑥) 𝑓 (𝑦) + 1

= 4𝑓
2
(
𝑥 + 𝑦

2
)𝑓
2
(
𝑥 − 𝑦

2
) .

(22)

From (17) we have 𝑓(𝑥 ± 𝑦) = 2𝑓
2
((𝑥 ± 𝑦)/2) − 1, so that

substitution of 𝑓
2
((𝑥 ± 𝑦)/2) in the right hand side of (22)

leads to 𝑓(𝑥 + 𝑦)𝑓(𝑥 − 𝑦) + 2𝑓(𝑥)𝑓(𝑦) + 1 = [𝑓(𝑥 + 𝑦) +

1][𝑓(𝑥−𝑦)+1], which is the D’Alembert functional equation
for this values of 𝑥, 𝑦.

(b) Let us now suppose that ‖𝑥 + 𝑦‖ ̸= ‖𝑥 − 𝑦‖ and use the
auxiliary vector 𝑧 of condition (C󸀠).

Since ‖𝑦‖ = ‖𝑧‖, from (4) we get

𝑓 (𝑦 + 𝑧) + 𝑓 (𝑦 − 𝑧) = 2𝑓 (𝑦) 𝑓 (𝑧) (23)

and then by ‖𝑦‖ = ‖2𝑥 − 𝑧‖ we obtain in the same way

𝑓 (𝑦 + 2𝑥 − 𝑧) + 𝑓 (𝑦 − (2𝑥 − 𝑧)) = 2𝑓 (𝑦) 𝑓 (2𝑥 − 𝑧) .

(24)

Addition of both sides of (23) and (24) leads to

𝑓 (𝑦 + 𝑧) + 𝑓 (𝑦 − 𝑧) + 𝑓 (𝑦 + 2𝑥 − 𝑧) + 𝑓 (𝑦 − (2𝑥 − 𝑧))

= 2𝑓 (𝑦) [𝑓 (𝑧) + 𝑓 (2𝑥 − 𝑧)] .

(25)

Now, writing in (19) 𝑧 and 2𝑥 − 𝑧 in place of 𝑥 and 𝑦,
respectively, since ‖𝑧‖ = ‖2𝑥 − 𝑧‖, and from the evenness of
𝑓, we arrive at

𝑓 (𝑧) + 𝑓 (2𝑥 − 𝑧) = 2𝑓 (𝑥) 𝑓 (𝑥 − 𝑧) . (26)

In the same way, by ‖𝑦 + 𝑧‖ = ‖𝑦 + (2𝑥 − 𝑧)‖ and ‖𝑦 − 𝑧‖ =

‖𝑦 − (2𝑥 − 𝑧)‖, we obtain from (19)

𝑓 (𝑦 + 𝑧) + 𝑓 (𝑦 + (2𝑥 − 𝑧)) = 2𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑧) ,

𝑓 (𝑦 − 𝑧) + 𝑓 (𝑦 − (2𝑥 − 𝑧)) = 2𝑓 (𝑥 − 𝑦)𝑓 (𝑥 − 𝑧) .

(27)
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Adding both sides of (27) and then using (25) and (26), we
get

[𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)] 𝑓 (𝑥 − 𝑧) = 2𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑥 − 𝑧) .

(28)

We have to deal with the following possibilities: 𝑓(𝑥 − 𝑧) ̸= 0

or 𝑓(𝑥 − 𝑧) = 0.
In the first case, that is, 𝑓(𝑥 − 𝑧) ̸= 0, we prove that the

D’Alembert functional equation is satisfied for these values of
𝑥, 𝑦 ∈ 𝑋.

In the second case we suppose that 𝑓(𝑥 − 𝑧) = 0. From
(17) we deduce that 𝑓((𝑥 − 𝑧)/2) ̸= 0 and 𝑓((𝑥 − 𝑧)/4) ̸= 0 by
a simple calculation. Hence, we can easily show that (28) can
be reformulated as follows:

[𝑓(
𝑥 + 𝑦

2
) + 𝑓(

𝑥 − 𝑦

2
)]𝑓(

𝑥 − 𝑧

2
)

= 2𝑓(
𝑥

2
)𝑓(

𝑦

2
)𝑓(

𝑥 − 𝑧

2
) ,

[𝑓 (
𝑥 + 𝑦

4
) + 𝑓(

𝑥 − 𝑦

4
)]𝑓(

𝑥 − 𝑧

4
)

= 2𝑓(
𝑥

4
)𝑓(

𝑦

4
)𝑓(

𝑥 − 𝑧

4
) ,

(29)

so that we obtain

𝑓(
𝑥 + 𝑦

2
) + 𝑓(

𝑥 − 𝑦

2
) = 2𝑓(

𝑥

2
)𝑓(

𝑦

2
) , (30)

𝑓(
𝑥 + 𝑦

4
) + 𝑓(

𝑥 − 𝑦

4
) = 2𝑓(

𝑥

4
)𝑓(

𝑦

4
) . (31)

Squaring both side of (30) and we get

𝑓
2
(
𝑥 + 𝑦

2
) + 𝑓
2
(
𝑥 − 𝑦

2
) + 2𝑓(

𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
)

= 4𝑓
2
(
𝑥

2
)𝑓
2
(
𝑦

2
)

(32)

and by elementary calculations

2𝑓
2
(
𝑥 + 𝑦

2
) − 1 + 2𝑓

2
(
𝑥 − 𝑦

2
) − 1

+ 4𝑓(
𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
)

= 8𝑓
2
(
𝑥

2
)𝑓
2
(
𝑦

2
) − 2

(33)

in order to obtain, using (17),

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) + 4𝑓(
𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
)

= 2 [4𝑓
2
(
𝑥

2
)𝑓
2
(
𝑦

2
) − 1] .

(34)

Now let us consider the following identity:

4𝑓
2
(
𝑥

2
)𝑓
2
(
𝑦

2
) − 1 = {2𝑓

2
(
𝑥

2
) − 1} {2𝑓

2
(
𝑦

2
) − 1}

+ 2𝑓
2
(
𝑥

2
) − 1 + 2𝑓

2
(
𝑦

2
) − 1

(35)

by (17) we get 4𝑓2(𝑥/2)𝑓
2
(𝑦/2)−1 = 𝑓(𝑥)𝑓(𝑦)+𝑓(𝑥)+𝑓(𝑦).

We substitute the right hand side of this last equation in the
right hand side of (34) and have

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) + 4𝑓(
𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
)

= 2𝑓 (𝑥) 𝑓 (𝑦) + 2𝑓 (𝑥) + 2𝑓 (𝑦) .

(36)

We purpose now to prove the following identity:

2𝑓(
𝑥 + 𝑦

2
)𝑓(

𝑥 − 𝑦

2
) = 𝑓 (𝑥) + 𝑓 (𝑦) (37)

in order to show that the D’Alembert functional equation is
satisfied in this case too.

Squaring both sides of (31) we have𝑓
2
((𝑥+𝑦)/4)+𝑓

2
((𝑥−

𝑦)/4)+2𝑓((𝑥+𝑦)/4)𝑓((𝑥−𝑦)/4) = 4𝑓
2
(𝑥/4)𝑓

2
(𝑦/4), and by

the suitable calculation above used, we get [2𝑓2((𝑥 + 𝑦)/4) −

1] + [2𝑓
2
((𝑥 − 𝑦)/4) − 1] + 4𝑓((𝑥 + 𝑦)/4)𝑓((𝑥 − 𝑦)/4) =

2[2𝑓
2
(𝑥/4)−1][2𝑓

2
(𝑦/4)−1]−2[2𝑓

2
(𝑥/4)−1]−2[2𝑓

2
(𝑦/4)−

1].
Now let us use (17) in order to have 𝑓((𝑥+𝑦)/2) +𝑓((𝑥 −

𝑦)/2) + 4𝑓((𝑥 + 𝑦)/4)𝑓((𝑥 − 𝑦)/4) = 2𝑓(𝑥/2)𝑓(𝑦/2) +

2𝑓(𝑥/2) + 2𝑓(𝑦/2).
We now consider (30) and we can prove that 2𝑓((𝑥 +

𝑦)/4)𝑓((𝑥−𝑦)/4) = 𝑓(𝑥/2)+𝑓(𝑦/2), by the same techniques
used in the proof of (37). Squaring both sides of this last
equation we have 4𝑓

2
((𝑥 + 𝑦)/4)𝑓

2
((𝑥 − 𝑦)/4) = 𝑓

2
(𝑥/2) +

𝑓
2
(𝑦/2) + 2𝑓(𝑥/2)𝑓(𝑦/2) and by suitable calculations using

(17) and (30) we prove (37).
Hence the theorem is proved.

5. The Isosceles Orthogonal Additive
Functional Equation

In order to study the problem of the characterization of the
normed spaces satisfying condition (C), we recall the follow-
ing result of Szabó [8] concerning a characterization of the
inner product spaces among the normed spaces; its character-
ization involves a particular conditional functional equation.

Theorem 6 (Szabó). There exists a nontrivial, even, isosceles
orthogonally additive mapping from X to Y if and only if X is
an inner product space.

Until now we can prove a partial result: we describe two
properties of the isosceles orthogonally additive mappings in
the normed spaces (𝑋, ‖ ⋅ ‖, (𝐶)).

Theorem 7. Let 𝑓 : (𝑋, ‖ ⋅ ‖, (𝐶)) → 𝑅 be an even isosceles
orthogonally additive mapping, that is, an even solution of the
conditional equation

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 󳨐⇒ 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , (38)

then 𝑓 satisfies everywhere the quadratic equation, that is, (1),
and it is constant on each sphere centred at zero.

Proof. Let 𝑓 be an even isosceles orthogonally additive
mapping. From 𝑥 ⊥

𝑖
𝑦, we may show that 𝑥 ⊥

𝑖
(−𝑦); hence
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from (38), in which we substitute 𝑥 and −𝑦 in place of 𝑥 and
𝑦, we get 𝑓(𝑥 − 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), using the oddness of 𝑓.
Adding both sides of (38) and this last equation, we have

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

󳨐⇒ 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) .

(39)

Now, consider an arbitrary 𝑥 ∈ 𝑋. We prove that for all 𝑥 ∈ 𝑋

𝑓 (2𝑥) = 4𝑓 (𝑥) . (40)

We observe that for all 𝑥 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that
𝑥 ⊥
𝑖
(± 𝑧) and 𝑥 + 𝑧 ⊥

𝑖
± (𝑥 − 𝑧); it is sufficient to consider

the continuous functional 𝜑 : 𝑆(‖𝑥‖) → 𝑅 defined by 𝜑(𝑢) =

‖𝑥+𝑢‖−‖𝑥−𝑢‖.This functional has a connected domain and
satisfies 𝜑(−𝑢) = −𝜑(𝑢); hence there exists a vector 𝑧 ∈ 𝑆(‖𝑥‖)

such that 𝜑(𝑧) = 0.
From (38), using the evenness of the function 𝑓, we get

𝑓 (2𝑥) = 𝑓 (𝑥 + 𝑧 + 𝑥 − 𝑧)

= 𝑓 (𝑥 + 𝑧) + 𝑓 (𝑥 − 𝑧)

= 2𝑓 (𝑥) + 2𝑓 (𝑧) .

(41)

On the other hand, since ((𝑥 + 𝑧)/2) ⊥
𝑖
±(𝑥−𝑧)/2, from (38)

and the evenness of 𝑓 again, we have

𝑓 (𝑥) = 𝑓(
𝑥 + 𝑧

2
+

𝑥 − 𝑧

2
) = 𝑓(

𝑥 + 𝑧

2
) + 𝑓(

𝑥 − 𝑧

2
)

= 𝑓(
𝑥 + 𝑧

2
) + 𝑓(

𝑧 − 𝑥

2
) = 𝑓(

𝑥 + 𝑧 + 𝑧 − 𝑥

2
)

= 𝑓 (𝑧) .

(42)

Thus, substituting𝑓(𝑥) in place of𝑓(𝑧) in (41) we obtain (40).
Let us now consider 𝑥, 𝑦 ∈ (𝑋, ‖ ⋅ ‖, (𝐶)) with ‖𝑥‖ = ‖𝑦‖.

Putting

𝑢 = 𝑥 + 𝑦,

V = 𝑥 − 𝑦

(43)

we have 𝑥 = (𝑢 + V)/2, 𝑦 = (𝑢 − V)/2, that is, 𝑢 ⊥
𝑖
V. From

(39) we obtain 𝑓(𝑢 + V) + 𝑓(𝑢 − V) = 2𝑓(𝑢) + 2𝑓(V); hence,
𝑓(2𝑥)+𝑓(2𝑦) = 2𝑓(𝑥+𝑦)+2𝑓(𝑥−𝑦). From (40) we deduce
that (3) is true in this case. So Theorem 4 gives us that 𝑓 is
everywhere quadratic.

Let us nowprove that𝑓 is constant on each sphere centred
at the origin. Let 𝑥, 𝑦 ∈ (𝑋, ‖ ⋅ ‖, (𝐶)) be such that ‖𝑥‖ = ‖𝑦‖.
By (43), substituting 𝑢, V in place of 𝑥, 𝑦 in (38), we have𝑓(𝑢+

V) = 𝑓(𝑢)+𝑓(V); hence 𝑓(2𝑥) = 𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦). We now
remember that𝑓 satisfies the quadratic equation everywhere,
in order to show that 𝑓(2𝑥) = 2𝑓(𝑥) + 2𝑓(𝑦); then, for (40)
we obtain that 𝑓(𝑥) = 𝑓(𝑦) for all 𝑥, 𝑦 ∈ (𝑋, ‖ ⋅ ‖, (𝐶)) with
‖𝑥‖ = ‖𝑦‖. Consequently, there exists a function 𝜑 : 𝑅 → 𝑅

such that𝑓(𝑥) = 𝜙(‖𝑥‖) for all 𝑥 ∈ (𝑋, ‖ ⋅ ‖, (𝐶)).The theorem
is proved.

References

[1] C. Alsina and J. L. Garcia Roig, “On a conditional cauchy equa-
tion on rhombuses,” in Functional Analysis, ApproximationThe-
ory andNumerical Analysis, pp. 5–7,World Scientific Publishing
Company, River Edge, NJ, USA, 1994.

[2] S.Gudder andD. Strawther, “Orthogonally additive and orthog-
onally increasing functions on vector spaces,” Pacific Journal of
Mathematics, vol. 58, no. 2, pp. 427–436, 1975.

[3] J. Rätz, “On orthogonally additive mappings,” Aequationes
Mathematicae, vol. 28, no. 1-2, pp. 35–49, 1985.
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