
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 869705, 7 pages
http://dx.doi.org/10.1155/2013/869705

Research Article
Eigenvector-Free Solutions to the Matrix Equation 𝐴𝑋𝐵𝐻 = 𝐸
with Two Special Constraints

Yuyang Qiu

College of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China

Correspondence should be addressed to Yuyang Qiu; yuyangqiu77@163.com

Received 11 March 2013; Accepted 18 September 2013

Academic Editor: Qing-WenWang

Copyright © 2013 Yuyang Qiu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The matrix equation 𝐴𝑋𝐵𝐻 = 𝐸 with 𝑆𝑋 = 𝑋𝑅 or 𝑃𝑋 = 𝑠𝑋𝑄 constraint is considered, where S, R are Hermitian idempotent, P, Q
are Hermitian involutory, and 𝑠 = ±1. By the eigenvalue decompositions of S, R, the equation 𝐴𝑋𝐵𝐻 = 𝐸 with 𝑆𝑋 = 𝑋𝑅 constraint
is equivalently transformed to an unconstrained problem whose coefficient matrices contain the corresponding eigenvectors, with
which the constrained solutions are constructed. The involved eigenvectors are released by Moore-Penrose generalized inverses,
and the eigenvector-free formulas of the general solutions are presented. By choosing suitable matrices S, R, we also present the
eigenvector-free formulas of the general solutions to the matrix equation 𝐴𝑋𝐵𝐻 = 𝐸 with 𝑃𝑋 = 𝑠𝑋𝑄 constraint.

1. Introduction
In [1], Chen has denoted a square matrix 𝑋, the reflexive or
antireflexive matrix with respect to 𝑃 by

𝑃𝑋 = 𝑋𝑃 or 𝑃𝑋 = −𝑋𝑃, (1)

where the matrix 𝑃 ∈ C𝑛×𝑛 is Hermitian involutory. He also
pointed out that these matrices possessed special properties
and had wide applications in engineering and scientific
computations [1, 2]. So, solving thematrix equation ormatrix
equations with these constraints is maybe interesting [3–14].
In this paper, we consider the matrix equation

𝐴𝑋𝐵
𝐻
= 𝐸 (2)

with constraint

𝑃𝑋 = 𝑠𝑋𝑄 or 𝑆𝑋 = 𝑋𝑅, (3)

where the matrices 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑝×𝑛, 𝐸 ∈ C𝑚×𝑝, the
Hermitian involutory matrices 𝑃,𝑄 ∈ C𝑛×𝑛, the Hermitian
idempotent matrices 𝑆, 𝑅 ∈ C𝑛×𝑛, and the scalars 𝑠 = ±1.

Equation (2) with different constraints such as symmetry,
skew-symmetry, and 𝑃𝑋 = ±𝑋𝑃, was discussed in [9–11, 15–
21], where existence conditions and the general solutions
to the constrained equation were presented. By generalized
singular value decomposition (GSVD) [22, 23], the authors

of [15–17] simplified the matrix equation by diagonalizing
the coefficient matrices and block-partitioned the new vari-
able matrices into several block matrices, then imposed
the constrained condition on subblocks, and determined
the unknown subblocks separately for (2) with symmetric
constraint. A similar strategy was also used in [18]; the
authors achieved symmetric, skew-symmetric, and positive
semidefinite solutions to (2) by quotient singular value
decomposition (QSVD) [24, 25].Moreover, in [20], CCD [26]
was used for establishing a formula of the general solutions to
(2) with diagonal constraint.

In [19], we have presented an eigenvector-free solution to
the matrix equation (2) with constraint 𝑃𝑋 = ±𝑋𝑃, where
we represented its general solution and existence condition
by 𝑔-inverses of the matrices 𝐴, 𝐵, and 𝑃. Note that the 𝑔-
inverses are always not unique, and they can be generalized
to the Moore-Penrose generalized inverses. Moreover, the
constraint which guarantees the eigenvector-free expressions
can be maybe improved further. So, in this paper, we focus
on (2) with generalized constraint 𝑃𝑋 = 𝑠𝑋𝑄 or another
constraint 𝑆𝑋 = 𝑋𝑅; our ideas are based on the following
observations.

(1) If we set

𝑆 =
1

2
(𝐼 + 𝑃) , 𝑅 =

1

2
(𝐼 + 𝑠𝑄) , (4)
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then 𝑆 and 𝑅 are both Hermitian idempotent. The
above fact implies 𝑃𝑋 = 𝑠𝑋𝑄 is the special case of
𝑆𝑋 = 𝑋𝑅. So, we only discuss (2) with 𝑆𝑋 = 𝑋𝑅

constraint and construct the 𝑃𝑋 = 𝑠𝑋𝑄 constrained
solution by selecting suitable matrices 𝑅, 𝑄 as (4).

(2) With the eigenvalue decompositions (EVDs) of the
Hermitian matrices 𝑅, 𝑆, matrix 𝑋 with 𝑆𝑋 = 𝑋𝑅

constraint can be rewritten in (lower dimensional)
two free variables 𝑋 and 𝑌̂. And the corresponding
constrained problem can be equivalently transformed
to an unconstrained equation

𝐴
1
𝑋𝐵
𝐻

1
+ 𝐴
2
𝑌̂𝐵
𝐻

2
= 𝐸, (5)

with given coefficientmatrices𝐴
𝑖
,𝐵
𝑖
, 𝑖 = 1, 2 (one can

see the details of this discussion in Section 2).
(3) The general solutions and existence conditions of (5)

can be represented by theMoore-Penrose generalized
inverses of 𝐴

𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2 [15, 20, 27–29]. However,

the formulas above aremaybe not simpler because the
coefficient matrices contain the eigenvectors of 𝑆, 𝑅.
In fact, the Hermitian idempotence of the matrices
𝑆, 𝑅 implies they only have two clusters different
eigenvalues, and their corresponding eigenvectors
appear in the expression of general solutions, and
existence conditions can be easily represented by 𝑆, 𝑅
themselves. So we present a simple and eigenvector-
free formulation for the constrained general solution.

The rest of this paper is organized as follows. In Section 2,
we give the general solutions and the existence condition
to (2) with 𝑆𝑋 = 𝑋𝑅 constraint by the EVDs of 𝑆, 𝑅.
In Section 3, we present the corresponding eigenvector-free
representations. Equation (2) with 𝑃𝑋 = 𝑠𝑋𝑄 constraint is
regarded as the special case of (2) with 𝑆𝑋 = 𝑋𝑅 constraint,
and its eigenvector-free representation is given in Section 4.
Numerical examples are given in Section 5 to display the
effectiveness of our theorems.

We will use the following notations in the rest of this
paper. Let C𝑚×𝑛 denote the space of complex 𝑚 × 𝑛 matrix.
For a matrix 𝐴, 𝐴𝐻 and 𝐴† denote its transpose and Moore-
Penrose generalized inverse, respectively.Matrix 𝐼

𝑛
is identity

matrix with order 𝑛;𝑂
𝑚×𝑛

refers to𝑚×𝑛 zero matrix, and𝑂
𝑛

is the zero matrix with order 𝑛. For any matrix 𝐴 ∈ C𝑚×𝑛, we
also denote

P
𝐴
= 𝐴𝐴

†
, 𝐾

𝐴
= 𝐼
𝑚
−P
𝐴
. (6)

So,

P
𝐴
𝐻 = 𝐴

†
𝐴, 𝐾

𝐴
𝐻 = 𝐼
𝑛
−P
𝐴
𝐻 . (7)

2. Solution to (2) with 𝑆𝑋=𝑅𝑋 Constraint by
the EVDs

For the Hermitian idempotent matrices 𝑆, 𝑅, let

𝑆 = 𝑈 diag (𝐼
𝑘
, 𝑂
𝑛−𝑘
) 𝑈
𝐻
, 𝑅 = 𝑉 diag (𝐼

𝑙
, 𝑂
𝑛−𝑙
) 𝑉
𝐻 (8)

be their two eigenvalue decompositionswith unitarymatrices
𝑈, 𝑉, respectively. Then 𝑆𝑋 = 𝑋𝑅 holds if and only if

diag (𝐼
𝑘
, 𝑂
𝑛−𝑘
)𝑋 = 𝑋 diag (𝐼

𝑙
, 𝑂
𝑛−𝑙
) , (9)

where 𝑋 = 𝑈
𝐻
𝑋𝑉. And the constrained solution 𝑋 can be

expressed in

𝑋 = 𝑈 diag (𝑋, 𝑌̂)𝑉𝐻, 𝑋 ∈ C
𝑘×𝑙
,

𝑌̂ ∈ C
(𝑛−𝑘)×(𝑛−𝑙)

.

(10)

Partitioning 𝑈 = [𝑈
1
, 𝑈
2
], 𝑉 = [𝑉

1
, 𝑉
2
] and using the

transformations (10), (2) with 𝑆𝑋 = 𝑋𝑅 constraint is
equivalent to the following unconstrained problem:

𝐴
1
𝑋𝐵
𝐻

1
+ 𝐴
2
𝑌̂𝐵
𝐻

2
= 𝐸, (11)

where

𝐴
1
= 𝐴𝑈
1
, 𝐵

1
= 𝐵𝑉
1
, 𝐴

2
= 𝐴𝑈
2
, 𝐵

2
= 𝐵𝑉
2
.

(12)

For the unconstrained problem (11), we introduce the
results about its existence conditions and expression of
solutions.

Lemma 1. Given 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑝×𝑞, 𝐶 ∈ C𝑚×𝑟, 𝐷 ∈ C𝑠×𝑞,
and 𝐸 ∈ C𝑚×𝑞, the linear matrix equation 𝐴𝑋𝐵 +𝐶𝑌𝐷 = 𝐸 is
consistent if and only if

P
𝐺
𝐾
𝐴
𝐸P
𝐷
𝐻 = 𝐾

𝐴
𝐸, P

𝐶
𝐸𝐾
𝐵
𝐻P
𝐽
𝐻 = 𝐸𝐾

𝐵
𝐻 , (13)

or, equivalently, if and only if

𝐾
𝐺
𝐾
𝐴
𝐸 = 0, 𝐾

𝐴
𝐸𝐾
𝐷
𝐻 = 0,

𝐾
𝐶
𝐸𝐾
𝐵
𝐻 = 0, 𝐸𝐾

𝐵
𝐻𝐾
𝐽
𝐻 = 0,

(14)

where 𝐺 = 𝐾
𝐴
𝐶 and 𝐽 = 𝐷𝐾

𝐵
𝐻 . And a representation of the

general solution is

𝑌 = 𝐺
†
𝐾
𝐴
𝐸𝐷
†
+ 𝑇 −P

𝐺
𝐻𝑇P
𝐷
,

𝑋 = 𝐴
†
(𝐸 − 𝐶𝑌𝐷)𝐵

†
+ 𝑍 −P

𝐴
𝐻𝑍P
𝐵
,

(15)

with

𝑇 = (𝐶𝐾
𝐺
𝐻)
†
(𝐼
𝑚
− 𝐶𝐺
†
𝐾
𝐴
) 𝐸𝐾
𝐵
𝐻𝐽
†
+𝑊 −P

(𝐶𝐾
𝐺
𝐻 )
𝐻𝑊P

𝐽
,

(16)

where the matrices𝑊 ∈ C𝑟×𝑠 and 𝑍 ∈ C𝑛×𝑝 are arbitrary.

The lemma is easy to verify; we can turn to [27] for
details. The difference between them is that we replace the 𝑔-
inverse in the theorem of [27] by the corresponding Moore-
Penrose generalized inverse, and the expression of solutions
is complicated relatively. However, compared with the mul-
tiformity of the 𝑔-inverses, the Moore-Penrose generalized
inverse involved representation is unique and fixed.

Apply Lemma 1 on the unconstrained problem (11), we
have the following theorem.
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Theorem 2. The matrix equation 𝐴𝑋𝐵𝐻 = 𝐸 with constraint
𝑆𝑋 = 𝑋𝑅 is consistent if and only if

P
𝐺
𝐾
𝐴1
𝐸P
𝐵2
= 𝐾
𝐴1
𝐸, P

𝐴2
𝐸𝐾
𝐵1
P
𝐽
𝐻 = 𝐸𝐾

𝐵1
, (17)

where

𝐺 = 𝐾
𝐴1
𝐴
2
, 𝐽 = 𝐵

𝐻

2
𝐾
𝐵1
. (18)

In the meantime, a general solution is given by

𝑌̂ = 𝐺
†
𝐾
𝐴1
𝐸𝐵
𝐻

2

†

+ (𝐴
2
𝐾
𝐺
𝐻)
†

(𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†

−P
𝐺
𝐻(𝐴2𝐾𝐺𝐻)

†

(𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†
P
𝐵
𝐻

2

+𝑊 −P
𝐺
𝐻𝑊P

𝐵
𝐻

2

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽

+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽
P
𝐵
𝐻

2

,

𝑋 = 𝐴
†

1
(𝐸 − 𝐴

2
𝑌̂𝐵
𝐻

2
) 𝐵
𝐻
†

1
+ 𝑍 −P

𝐴
𝐻

1

𝑍P
𝐵
𝐻

1

,

(19)

where the matrices𝑊 and 𝑍 are arbitrary.

In order to separate 𝑌̂ from 𝑋 of the second equality in
(19), we substitute 𝑌̂ into𝑋. Let

𝑌
∗
= 𝐺
†
𝐾
𝐴1
𝐸𝐵
𝐻

2

†

+ (𝐴
2
𝐾
𝐺
𝐻)
†

(𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†

−P
𝐺
𝐻(𝐴2𝐾𝐺𝐻)

†

(𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†
P
𝐵
𝐻

2

,

𝑋
∗
= 𝐴
†

1
𝐸𝐵
𝐻

1

†

− 𝐴
†

1
𝐴
2
𝑌
∗
𝐵
𝐻

2
𝐵
𝐻
†

1
,

(20)

together with

𝐵
†

2
𝐵
2
𝐵
𝐻

2
= (𝐵
†

2
𝐵
2
)
𝐻

𝐵
𝐻

2
= 𝐵
𝐻

2
,

𝐴
2
𝐾
𝐺
𝐻(𝐴2𝐾𝐺𝐻)

†

𝐴
2
𝐾
𝐺
𝐻 = 𝐴2𝐾𝐺𝐻 .

(21)

Then (19) can be rewritten as

𝑌̂ = 𝑌
∗
+𝑊 −P

𝐺
𝐻𝑊P

𝐵
𝐻

2

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽

+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽
P
𝐵
𝐻

2

,

𝑋 = 𝑋
∗
+ 𝑍 −P

𝐴
𝐻

1

𝑍P
𝐵
𝐻

1

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝑊𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻
†

1
.

(22)

3. Eigenvector-Free Formulas of the General
Solutions to (2) with 𝑆𝑋=𝑋𝑅 Constraint

The existence conditions and the expression of the general
solution given inTheorem 2 contain the eigenvector matrices
of 𝑆, 𝑅, respectively. This implies that the eigenvalue decom-
positions will be included. In this section, we intend to release

the involved eigenvectors in detailed expressions. With the
first equality in (8), we have

𝑈
1
𝑈
𝐻

1
= 𝑆, 𝑈

2
𝑈
𝐻

2
= 𝐼
𝑛
− 𝑆,

𝑉
1
𝑉
𝐻

1
= 𝑅, 𝑉

2
𝑉
𝐻

2
= 𝐼
𝑛
− 𝑅.

(23)

Note that𝑈
𝑖
(𝐴𝑈
𝑖
)
† is the Moore-Penrose generalized inverse

of 𝐴𝑈
𝑖
𝑈
𝐻

𝑖
, which gives

P
𝐴𝑖
= 𝐴
𝑖
𝐴
†

𝑖
= (𝐴𝑈

𝑖
𝑈
𝐻

𝑖
) (𝐴𝑈

𝑖
𝑈
𝐻

𝑖
)
†

= 𝐴
𝑖
𝐴
†

𝑖
= P
𝐴𝑖
, (24)

where

𝐴
1
= 𝐴𝑈
1
𝑈
𝐻

1
= 𝐴𝑆, 𝐴

2
= 𝐴𝑈
2
𝑈
𝐻

2
= 𝐴 (𝐼

𝑛
− 𝑆) .

(25)

Then

𝐾
𝐴𝑖
= 𝐼
𝑚
−P
𝐴𝑖
= 𝐼
𝑚
−P
𝐴𝑖
= 𝐾
𝐴𝑖
, 𝐺𝑈

𝐻

2
= 𝐾
𝐴1
𝐴
2
.

(26)

Set

𝐵
1
= 𝐵𝑉
1
𝑉
𝐻

1
= 𝐵𝑅, 𝐵

2
= 𝐵𝑉
2
𝑉
𝐻

2
= 𝐵 (𝐼

𝑛
− 𝑅) , (27)

and denote

𝐺 = 𝐾
𝐴1
𝐴
2
, 𝐽 = 𝐵

𝐻

2
𝐾
𝐵1
. (28)

It is not difficult to verify that

𝑉
2
𝐽 = 𝐽, 𝐺𝑈

𝐻

2
= 𝐺, (29)

together with

P
𝐺
= 𝐺𝑈

𝐻

2
(𝐺𝑈
𝐻

2
)
†

= P
𝐺
,

P
𝐽
𝐻 = (𝑉2𝐽)

†

(𝑉
2
𝐽) = P

𝐽
𝐻 .

(30)

Then the first equality of (17) can be rewritten as

P
𝐺
𝐾
𝐴1
𝐸P
𝐵2
= 𝐾
𝐴1
𝐸, (31)

and the other can be rewritten as

P
𝐴2
𝐸𝐾
𝐵1
P
𝐽
𝐻 = 𝐸𝐾

𝐵1
. (32)

Now, we consider the simplification of the general solution𝑋
given by (10), which can be rewritten as

𝑋 = 𝑈
1
𝑋𝑉
𝐻

1
+ 𝑈
2
𝑌̂𝑉
𝐻

2
. (33)

Note that

𝑈
2
𝐺
†
= (𝐺𝑈

𝐻

2
)
†

= 𝐺
†
, 𝐾

𝐺
𝐻𝑈
𝐻

2
= 𝑈
𝐻

2
𝐾
𝐺
𝐻 ,

𝑈
2
𝐴
†

2
= 𝐴
†

2
.

(34)
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Together with (26),

𝑈
2
𝑌
∗
𝑉
𝐻

2
= 𝑈
2
(𝐺
†
𝐾
𝐴1
𝐸𝐵
𝐻

2

†

+ (𝐴
2
𝐾
𝐺
𝐻)
†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†

−P
𝐺
𝐻(𝐴2𝐾𝐺𝐻)

†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†
P
𝐵
𝐻

2

)𝑉
𝐻

2

= 𝐺
†
𝐾
𝐴1
𝐸𝐵
𝐻

2

†

+ (𝐴
2
𝐾
𝐺
𝐻)
†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†

−P
𝐺
𝐻(𝐴
2
𝐾
𝐺
𝐻)
†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†
P
𝐵
𝐻

2

,

(35)

so we can represent 𝑈
𝑗2
𝑌
∗
𝑉
𝐻

2
by a given expression of 𝐴

𝑖
, 𝐵
𝑖
,

𝐸. Let

𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) = 𝐺

†
𝐾
𝐴1
𝐸𝐵
𝐻

2

†

+ (𝐴
2
𝐾
𝐺
𝐻)
†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†

−P
𝐺
𝐻(𝐴
2
𝐾
𝐺
𝐻)
†

× (𝐼
𝑚
− 𝐴
2
𝐺
†
𝐾
𝐴1
) 𝐸𝐾
𝐵1
𝐽
†
P
𝐵
𝐻

2

.

(36)

Hence, we have

𝑈
𝑗2
𝑌
∗
𝑉
𝐻

2
= 𝑓 (𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) ,

𝑈
1
𝑋
∗
𝑉
𝐻

1
= 𝐴
†

1
𝐸𝐵
𝐻

1

†

− 𝐴
†

1
𝐴
2
𝑈
2
𝑌
∗
𝑉
𝐻

2
𝐵
𝐻

2
𝐵
𝐻

1

†

= 𝐴
†

1
𝐸𝐵
𝐻

1

†

− 𝐴
†

1
𝐴
2
𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) 𝐵
𝐻

2
𝐵
𝐻

1

†

.

(37)

Since

𝑉
2
𝐾
𝐽
= 𝑉
2
(𝐼
𝑛−𝑙
−P
𝐽
) = (𝐼

𝑝
− 𝑉
2
𝐽(𝑉
2
𝐽)
†

)𝑉
2
= 𝐾
𝐽
𝑉
2
,

(38)

then

𝑈
1
(𝑍 −P

𝐴
𝐻

1

𝑍P
𝐵
𝐻

1

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝑊𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻
†

1
)𝑉
𝐻

1

= 𝑈
1
𝑍𝑉
𝐻

1
−P
𝐴
𝐻

1

𝑈
1
𝑍𝑉
𝐻

1
P
𝐵
𝐻

1

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝑈
2
𝑊𝑉
𝐻

2
𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

,

𝑈
2
(𝑊 −P

𝐺
𝐻𝑊P

𝐵
𝐻

2

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽

+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑊P

𝐽
P
𝐵
𝐻

2

)𝑉
𝐻

2

= 𝑈
2
𝑊𝑉
𝐻

2
−P
𝐺
𝐻𝑈
2
𝑊𝑉
𝐻

2
P
𝐵
𝐻

2

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑈
2
𝑊𝑉
𝐻

2
P
𝐽

+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑈
2
𝑊𝑉
𝐻

2
𝑃
𝐽
P
𝐵
𝐻

2

.

(39)

Letting

𝑈
1
𝑍𝑉
𝐻

1
+ 𝑈
2
𝑊𝑉
𝐻

2
= 𝐹, (40)

it is not difficult for us to verify 𝑆𝐹 = 𝐹𝑅. Together with

𝐴
2
𝑈
1
= 0, 𝐴

1
𝑈
2
= 0, 𝑉

𝐻

2
𝐵
†

1
= 0, 𝑉

𝐻

1
𝐵
†

2
= 0,

(41)

the following equality holds:

𝑃
𝐴
𝐻

1

𝑈
1
𝑍𝑉
𝐻

1
P
𝐵
𝐻

1

+P
𝐺
𝐻𝑈
2
𝑊𝑉
𝐻

2
P
𝐵
𝐻

2

= (𝑃
𝐴
𝐻

1

+P
𝐺
𝐻) (𝑈

2
𝑊𝑉
𝐻

2
+ 𝑈
1
𝑍𝑉
𝐻

1
)

× (P
𝐵
𝐻

1

+P
𝐵
𝐻

2

)

= (𝑃
𝐴
𝐻

1

+P
𝐺
𝐻) 𝐹 (P

𝐵
𝐻

1

+P
𝐵
𝐻

2

) .

(42)

Note that

𝐺𝑈
1
= 0, 𝐴

2
𝐾
𝐺
𝐻𝑈
1
= 0. (43)

Then

𝐴
2
𝐾
𝐺
𝐻𝑈
2
𝑊𝑉
𝐻

2
= 𝐴
2
𝐾
𝐺
𝐻 (𝑈
2
𝑊𝑉
𝐻

2
+ 𝑈
1
𝑍𝑉
𝐻

1
) = 𝐴

2
𝐾
𝐺
𝐻𝐹.

(44)

Hence,

𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝑈
2
𝑊𝑉
𝐻

2
𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

= 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝐹𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

,

P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑈
2
𝑊𝑉
𝐻

2
P
𝐽
−P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝑈
2
𝑊𝑉
𝐻

2
𝑃
𝐽
P
𝐵
𝐻

2

= P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹P
𝐽
−P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹𝑃
𝐽
P
𝐵
𝐻

2

.

(45)

Substituting the expressions above into (33) yields that

𝑋 = 𝐴
†

1
𝐸𝐵
𝐻

1

†

+ 𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸)

− 𝐴
†

1
𝐴
2
𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) 𝐵
𝐻

2
𝐵
𝐻

1

†

+ 𝐹

− (𝑃
𝐴
𝐻

1

+P
𝐺
𝐻) 𝐹 (P

𝐵
𝐻

1

+P
𝐵
𝐻

2

)

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝐹𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹P
𝐽
+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹𝑃
𝐽
P
𝐵
𝐻

2

.

(46)

We have the following theorem.
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Theorem 3. Let

𝐴
1
= 𝐴𝑆, 𝐴

2
= 𝐴 (𝐼

𝑛
− 𝑆) ,

𝐵
1
= 𝐵𝑅, 𝐵

2
= 𝐵 (𝐼

𝑛
− 𝑅) .

(47)

Thematrix equation (2) with constraint 𝑆𝑋 = 𝑋𝑅 is consistent
if and only if

P
𝐺
𝐾
𝐴1
𝐸P
𝐵2
= 𝐾
𝐴1
𝐸, P

𝐴2
𝐸𝐾
𝐵1
P
𝐽
𝐻 = 𝐸𝐾

𝐵1
, (48)

with

𝐺 = 𝐾
𝐴1
𝐴
2
, 𝐽 = 𝐵

𝐻

2
𝐾
𝐵1
. (49)

In the meantime, a general solution is given by

𝑋 = 𝐴
†

1
𝐸𝐵
𝐻

1

†

+ 𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸)

− 𝐴
†

1
𝐴
2
𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) 𝐵
𝐻

2
𝐵
𝐻

1

†

+ 𝐹

− (𝑃
𝐴
𝐻

1

+P
𝐺
𝐻) 𝐹 (P

𝐵
𝐻

1

+P
𝐵
𝐻

2

)

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝐹𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹P
𝐽
+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹𝑃
𝐽
P
𝐵
𝐻

2

,

(50)

where the arbitrary matrix 𝐹 satisfies 𝑆𝐹 = 𝐹𝑅 and 𝑓(𝐴
1
, 𝐴
2
,

𝐵
1
, 𝐵
2
, 𝐸) is determined by (36).

4. Eigenvector-Free Formulas of the General
Solutions to (2) with 𝑃𝑋=𝑠𝑋𝑄 Constraint

For this constraint, if we set 𝑆 and 𝑅 as (4), it is not difficult to
verify that 𝑆, 𝑅 are Hermitian idempotent, and the constraint
𝑃𝑋 = 𝑠𝑋𝑄 is equivalent to

𝑆𝑋 = 𝑋𝑅. (51)

ByTheorem 3, we have the following theorem.

Theorem 4. Let

𝐴
1
=
1

2
𝐴 (𝐼
𝑛
+ 𝑃) , 𝐴

2
=
1

2
𝐴 (𝐼
𝑛
− 𝑃) ,

𝐵
1
=
1

2
𝐵 (𝐼
𝑛
+ 𝑠𝑄) , 𝐵

2
=
1

2
𝐵 (𝐼
𝑛
− 𝑠𝑄) .

(52)

The matrix equation (2) with constraint 𝑃𝑋 = 𝑠𝑋𝑄 is
consistent if and only if

P
𝐺
𝐾
𝐴1
𝐸P
𝐵2
= 𝐾
𝐴1
𝐸, P

𝐴2
𝐸𝐾
𝐵1
P
𝐽
𝐻 = 𝐸𝐾

𝐵1
, (53)

with

𝐺 = 𝐾
𝐴1
𝐴
2
, 𝐽 = 𝐵

𝐻

2
𝐾
𝐵1
. (54)

In the meantime, a general solution is given by

𝑋 = 𝐴
†

1
𝐸𝐵
𝐻

1

†

+ 𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸)

− 𝐴
†

1
𝐴
2
𝑓 (𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐸) 𝐵
𝐻

2
𝐵
𝐻

1

†

+ 𝐹

− (𝑃
𝐴
𝐻

1

+P
𝐺
𝐻) 𝐹 (P

𝐵
𝐻

1

+P
𝐵
𝐻

2

)

− 𝐴
†

1
𝐴
2
𝐾
𝐺
𝐻𝐹𝐾
𝐽
𝐵
𝐻

2
𝐵
𝐻

1

†

−P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹P
𝐽
+P
𝐺
𝐻P
(𝐴2𝐾𝐺𝐻

)
𝐻𝐹𝑃
𝐽
P
𝐵
𝐻

2

,

(55)

where the arbitrarymatrix𝐹 satisfies𝑃𝐹 = 𝑠𝐹𝑄 and𝑓(𝐴
1
, 𝐴
2
,

𝐵
1
, 𝐵
2
, 𝐸) is determined by (36).

5. Numerical Examples

In this section, we present some numerical examples to
illustrate the effectiveness ofTheorems 3 and 4. For simplicity,
we set 𝑚 = 𝑛 = 𝑝 and restrict the coefficient matrices 𝐴, 𝐵
and the right-hand-sided matrix 𝐸 to R𝑛×𝑛. The coefficient
matrices 𝐴, 𝐵 are randomly constructed by

𝐴 = 𝑈 diag (𝜎
1
, . . . , 𝜎

𝑛
) 𝑉
𝑇
, (56)

where the orthogonal matrices 𝑈 and 𝑉 are constructed as
follows:

[𝑈, temp] = qr (1 − 2 rand (𝑛)) ,

[𝑉, temp] = qr (1 − 2 rand (𝑛)) ,
(57)

and the singular values {𝜎
𝑖
} will be chosen at interval (0, 1).

For the computational value 𝑋 of (2) with constraint 𝑃𝑋 =

𝑠𝑋𝑄 or 𝑆𝑋 = 𝑋𝑅, the residual error 𝜖
𝑋
, the 𝑃𝑄-commuting

error 𝜖
𝑃𝑄
, 𝑆𝑅-commuting error 𝜖

𝑆𝑅
, and consistent error

Conderr are denoted by

𝜖
𝑋
=
󵄩󵄩󵄩󵄩󵄩
𝐸 − 𝐴𝑋𝐵

𝐻󵄩󵄩󵄩󵄩󵄩𝐹
, 𝜖

𝑃𝑄
= ‖𝑃𝑋 − 𝑠𝑋𝑄‖𝐹,

𝜖
𝑆𝑅
= ‖𝑆𝑋 − 𝑋𝑅‖𝐹,

Conderr = max {󵄩󵄩󵄩󵄩󵄩P𝐺𝐾𝐴1𝐸P𝐵2 − 𝐾𝐴1𝐸
󵄩󵄩󵄩󵄩󵄩𝐹
,

󵄩󵄩󵄩󵄩󵄩
P
𝐴2
𝐸𝐾
𝐵1
P
𝐽
𝐻 − 𝐸𝐾

𝐵1

󵄩󵄩󵄩󵄩󵄩𝐹
} .

(58)

Example 1. In this example, we test the solutions to (2) with
𝑆𝑋 = 𝑋𝑄 constraint by Theorem 3. The coefficient matrices
𝐴, 𝐵 are constructed as in (56), and the right-hand-sided
matrix 𝐸 is constructed as follows:

𝐸 = 𝐴𝑋
∗
𝐵
𝐻
, (59)

where𝑋
∗
satisfies

𝑅𝑋
∗
= 𝑋
∗
𝑆, (60)

and 𝑆, 𝑅 are symmetric idempotent. That implies that the
constrained equation (2) is consistent, so the residual error
𝜖
𝑋

and consistent error Conderr should be zero with the
computational value𝑋.
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Table 1: Variant matrix sizes 𝑛 for the solutions to (2) with 𝑆𝑋 = 𝑋𝑅

constraint.

𝑛 CPU (s) 𝜖
𝑋

𝜖
𝑆𝑅

Conderr
100 0.38 1.14 ∗ 10

−12
6.53 ∗ 10

−13
7.12 ∗ 10

−12

300 1.34 3.23 ∗ 10
−12

4.43 ∗ 10
−13

5.63 ∗ 10
−12

500 5.62 4.12 ∗ 10
−10

4.76 ∗ 10
−13

2.24 ∗ 10
−11

700 14.55 3.91 ∗ 10
−10

7.54 ∗ 10
−13

5.43 ∗ 10
−11

900 29.63 2.31 ∗ 10
−09

3.13 ∗ 10
−12

1.37 ∗ 10
−11

1100 55.34 9.36 ∗ 10
−09

6.64 ∗ 10
−12

2.19 ∗ 10
−11

Table 2: Variant matrix sizes 𝑛 for solutions to (2) with 𝑃𝑋 = 𝑋𝑄

constraint.

𝑛 CPU (s) 𝜖
𝑋

𝜖
𝑃𝑄

Conderr
100 0.42 6.11 ∗ 10

−13
5.61 ∗ 10

−13
2.31 ∗ 10

−11

300 2.83 2.07 ∗ 10
−10

9.73 ∗ 10
−13

4.34 ∗ 10
−10

500 8.21 5.85 ∗ 10
−10

1.55 ∗ 10
−12

3.61 ∗ 10
−10

700 14.53 1.17 ∗ 10
−10

2.24 ∗ 10
−12

5.37 ∗ 10
−09

900 28.54 2.60 ∗ 10
−09

4.61 ∗ 10
−11

8.18 ∗ 10
−09

1100 52.81 5.35 ∗ 10
−09

4.92 ∗ 10
−11

6.53 ∗ 10
−09

For different 𝑛, the residual error 𝜖
𝑋
, 𝑆𝑅-commuting error

𝜖
𝑆𝑅
, and consistent errors Conderr can reach the precision

10
−09, but all of them seem not to depend on the matrix

size 𝑛 very much, and the CPU time also grows quickly as
𝑛 increases. In Table 1, we list the CPU time, 𝜖

𝑋
, 𝜖
𝑆𝑅
, and

Conderr, respectively.

Example 2. We test the solutions to (2) with 𝑃𝑋 = 𝑋𝑄

constraint by Theorem 4. The test matrices 𝐴, 𝐵, and 𝐸 are
constructed as in (56) with𝑋

∗
satisfying

𝐸 = 𝐴𝑋
∗
𝐵
𝐻
, (61)

where𝑋
∗
satisfies

𝑃𝑋
∗
= 𝑋
∗
𝑄, (62)

and 𝑃, 𝑄 are symmetric involutory.
For different 𝑛, the numerical result is similar to those of

Example 1; that is, the residual error 𝜖
𝑋
,𝑃𝑄-commuting error

𝜖
𝑃𝑄
, and consistent errors Conderr can all reach the precision

10
−09, but it seems that they do not depend on the matrix

size 𝑛 very much. However, the CPU time grows quickly as
𝑛 increases. In Table 2, we list the CPU time, 𝜖

𝑋
, 𝜖
𝑃𝑄
, and

Conderr, respectively.

6. Conclusion

In this paper, we consider (2) with two special constraints
𝑃𝑋 = 𝑠𝑋𝑄 and 𝑆𝑋 = 𝑋𝑅, where 𝑃, 𝑄 ∈ C𝑛×𝑛 are
Hermitian involutory, 𝑆,𝑅 ∈ C𝑛×𝑛 areHermitian idempotent,
and 𝑠 = ± 1. We represent the general solutions to the
constrained equation by eigenvalue decompositions of 𝑃,
𝑄, 𝑆, 𝑅, release the involved eigenvector by Moore-Penrose
generalized inverses, and get the eigenvector-free formulas of
the general solutions.
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