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Using bifurcation methods and the Abelian integral, we investigate the number of the limit cycles that bifurcate from the period
annulus of the singular point when we perturb the planar ordinary differential equations of the form 𝑥̇ = −𝑦𝐶(𝑥, 𝑦), ̇𝑦 = 𝑥𝐶(𝑥, 𝑦)
with an arbitrary polynomial vector field, where 𝐶(𝑥, 𝑦) = 1 − 𝑥3 or 𝐶(𝑥, 𝑦) = 1 − 𝑥4.

1. Introduction and Main Results

In the qualitative theory of real planar differential systems,
one of the main problems is to determine the existence and
number of the limit cycles of the polynomial differential
system. In the general case, this is a very difficult task.
Therefore, the researchers consider the weak Hilbert 16th
problem. In addition, the existence of invariant algebraic
curves in polynomial systems may influence the number of
limit cycles. For example, the planar quadratic systems with
one invariant line or conic curve or cubic curve can have at
most one limit cycle [1–4]. In [3], the authors proved that
the cubic systems with four invariant lines have at most one
limit cycle. In [5, 6], the authors proved that a real polynomial
systemof degree𝑚with irreducible invariant algebraic curves
has at most 1 + (𝑚 − 1)(𝑚 − 2)/2 limit cycles if𝑚 is even and
(𝑚 − 1)(𝑚 − 2)/2 limit cycles if𝑚 is odd.

In this paper, we consider the weak Hilbert 16th problem
that the unperturbed systems have a linear center and an
invariant algebraic curve

𝑥̇ = −𝑦𝐶 (𝑥, 𝑦) + 𝜀𝑃 (𝑥, 𝑦) ,

̇𝑦 = 𝑥𝐶 (𝑥, 𝑦) + 𝜀𝑄 (𝑥, 𝑦) ,

(1)

where 𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) are polynomials of degree 𝑛 inR2,
the algebraic curve 𝐶(𝑥, 𝑦) satisfies 𝐶(0, 0) ̸= 0, and 𝜀 ∈ R is a
sufficient small parameter.

It is obvious that, on the regionΩ = {(𝑥, 𝑦) | 𝐶(𝑥, 𝑦) ̸= 0},
the system (1) is equivalent to the following form:

𝑥̇ = −𝑦 + 𝜀

𝑃 (𝑥, 𝑦)

𝐶 (𝑥, 𝑦)

,

̇𝑦 = 𝑥 + 𝜀

𝑄 (𝑥, 𝑦)

𝐶 (𝑥, 𝑦)

.

(2)

When 𝜀 = 0, system (2) is a Hamilton system with a family of
ovals

𝛾

ℎ
= {(𝑥, 𝑦) ∈ R

2
| 𝐻 (𝑥, 𝑦) = 𝑥

2
+ 𝑦

2
= ℎ, ℎ > 0} . (3)

Define the Abelian integral

Φ (ℎ) = ∮

𝛾ℎ

𝑃 (𝑥, 𝑦) d𝑦 − 𝑄 (𝑥, 𝑦) d𝑥
𝐶 (𝑥, 𝑦)

, (4)

which is also called first-order Melnikov function of (2).
According to the Poincaré-Pontryagin theorem [7], the num-
ber of isolated real zeros ofΦ(ℎ) controls the number of limit
cycles of system (1) that bifurcate from the periodic annulus
of the perturbed system (1) with 𝜀 = 0. That is to say, when
the Φ(ℎ) does not vanish exactly, the maximum number of
the isolated real zeros of Φ(ℎ) is corresponding to the upper
bound of the number of limit cycles which bifurcate from
periodic annulus of unperturbed systems.

For the arbitrary polynomials 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) of given
degree 𝑛, the number of limit cycles of (2) depends on
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the different choices of𝐶(𝑥, 𝑦). At present, several works have
figured out this problem for the particular choices of 𝐶(𝑥, 𝑦).
In [8], the authors studied the system (1) with 𝐶(𝑥, 𝑦) = 1+𝑥
and proved that the number of limit cycles that bifurcate
from the period orbits is at most 𝑛. The authors in [9, 10]
studied the number of limit cycles which bifurcate from (1)
when 𝜀 = 0 with 𝐶(𝑥, 𝑦) = 1 + 𝐵𝑥 + 𝐴𝑥

2 and 𝐶(𝑥, 𝑦) =
1 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥(𝑥

2
+ 𝑦

2
), respectively. The authors in [11]

studied the number of limit cycles of system (1)with𝐶(𝑥, 𝑦) =
𝑦

2
+ 𝐴𝑥

2
+ 𝐵𝑥 + 𝐶. In [12], the authors studied the number

of limit cycles of system (1) with 𝐶(𝑥, 𝑦) = (𝑥 + 𝑎)(𝑥 + 𝑏)
and obtain that the system can have at most 3[(𝑛 − 1)/2] + 2
limit cycles if 𝑎 ̸= 𝑏 and 2[(𝑛 − 1)/2] + 1 if 𝑎 = 𝑏, respectively.
In [13], the authors studied the case the curves 𝐶(𝑥, 𝑦) = 0
are three lines, two of them parallel and one perpendicular,
and [14, 15] studied the case the curves are 𝑘 (𝑘 > 3) lines,
and any two of them are parallel or perpendicular directions.
The authors in [16] studied the case the curves are consistent
by 𝑘 nonzero points. The authors in [17] considered system
(1) with 𝐶(𝑥, 𝑦) = 1 + 𝑥4 and proved that 3[(𝑛 + 1)/2] − 2
limit cycles can at most bifurcate from the periodic orbits of
the unperturbed system. In [18], the authors proved that the
system (1) with 𝐶(𝑥, 𝑦) = (1 − 𝑥)𝑚 has at most 𝑛 +𝑚− 1 limit
cycles.

The aim of this paper is to investigate the upper bound
of the number of limit cycles bifurcate from the periodic
annulus of the center of the unperturbed system (1) (𝜀 =
0) with the perturbed polynomials 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) of given
degree 𝑛, and 𝐶(𝑥, 𝑦) = 1 − 𝑥3 or 𝐶(𝑥, 𝑦) = 1 − 𝑥4.

Consider the planar differential system

𝑥̇ = −𝑦𝐶 (𝑥, 𝑦) + 𝜀 ∑

0≤𝑘+𝑗≤𝑛

𝑎

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗
,

̇𝑦 = 𝑥𝐶 (𝑥, 𝑦) + 𝜀 ∑

0≤𝑘+𝑗≤𝑛

𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗
,

(5)

where 𝜀 ∈ R is a sufficient small parameter. Applying the
Abelian integral, we obtain the following twomain theorems.

Theorem 1. If 𝐶(𝑥, 𝑦) = 1 − 𝑥

3, the lower bound of the
maximum number of limit cycles bifurcating from the period
orbits of system (5) with 𝜀 = 0 is 4[(𝑛 + 1)/2] − 2.

Theorem 2. If 𝐶(𝑥, 𝑦) = 1 − 𝑥

4, the upper bound of the
maximum number of limit cycles bifurcating from the period
orbits of system (5) with 𝜀 = 0 is 3[(𝑛 + 1)/2] − 2.

Our primary purpose is to calculate the concrete expres-
sion of Φ(ℎ); then we can obtain the number of limit cycles
of the perturbed system (5) by determining the isolated real
zeros of Abelian integral Φ(ℎ). In Sections 2 and 3, we prove
these two theorems with the different methods, respectively.

2. The proof of Theorem 1

Taking the change of variable𝑥 = √ℎ cos 𝜃,𝑦 = √ℎ sin 𝜃 (0 <
ℎ < 1), we have

Φ (ℎ)

= ∮

𝛾ℎ

∑

0≤𝑘+𝑗≤𝑛
𝑎

𝑘,𝑗
𝑥

𝑘+1
𝑦

𝑗
+ ∑

0≤𝑘+𝑗≤𝑛
𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗+1

1 − 𝑥

3
d𝜃

= ∑

0≤𝑘+𝑗≤𝑛

ℎ

(𝑘+𝑗+1)/2
∫

2𝜋

0

𝑎

𝑘,𝑗
cos𝑘+1𝜃sin𝑗𝜃 + 𝑏

𝑘,𝑗
cos𝑘𝜃sin𝑗+1𝜃

1 − ℎ

3/2cos3𝜃
d𝜃

= ∑

0≤𝑘+𝑗≤𝑛

(𝑎

𝑘,𝑗
Φ

𝑘+1,𝑗 (
ℎ) + 𝑏𝑘,𝑗

Φ

𝑘,𝑗+1 (
ℎ)) ,

(6)

where

Φ

𝑘,𝑗
= ℎ

(𝑘+𝑗)/2
∫

2𝜋

0

cos𝑘𝜃sin𝑗𝜃
1 − ℎ

3/2cos3𝜃
d𝜃. (7)

Firstly, we have the following obvious result.

Lemma 3. If 𝑗 is odd, Φ
𝑘,𝑗
= 0 (𝑘 ≥ 0).

According to Lemma 3, we can rewrite the Φ(ℎ) as
follows:

Φ (ℎ)

=

𝑛

∑

𝑠=1

𝑎

𝑠,0
Φ

𝑠+1,0
+

𝑛

∑

𝑠=1

∑

𝑘+𝑗=𝑠

(𝑎

𝑘,𝑗
+ 𝑏

𝑘+1,𝑗−1
)Φ

𝑘+1,𝑗

+

𝑛

∑

𝑠=0

𝑠 odd

𝑏

0,𝑠
Φ

0,𝑠+1
.

(8)

Denote 𝑙 = [(𝑛 + 1)/2] and 𝑎∗
𝑘,𝑗
= 𝑎

𝑘,𝑗
+ 𝑏

𝑘+1,𝑗−1
(𝑗 ≥ 1); then

𝑛

∑

𝑠=0

𝑎

𝑠,0
Φ

𝑠+1,0
=

𝑙

∑

𝑠=1

(𝑎

2𝑠−1,0
Φ

2𝑠,0
+ 𝑎

2𝑠−2,0
Φ

2𝑠−1,0
) ,

𝑛

∑

𝑠=0

𝑠 odd

𝑏

0,𝑠
Φ

0,𝑠+1
=

𝑙

∑

𝑠=1

𝑏

0,2𝑠−1
Φ

0,2𝑠
,

𝑛

∑

𝑠=0

∑

𝑘+𝑗=𝑠

(𝑎

𝑘,𝑗
+ 𝑏

𝑘+1,𝑗−1
)Φ

𝑘+1,𝑗

=

𝑙

∑

𝑠=1

(

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−1,2𝑚
Φ

2𝑠−2𝑚,2𝑚

+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−2,2𝑚
Φ

2𝑠−2𝑚−1,2𝑚
) .

(9)
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Therefore, we have

Φ (ℎ)

=

𝑙

∑

𝑠=1

(𝑎

2𝑠−1,0
Φ

2𝑠,0
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−1,2𝑚
Φ

2𝑠−2𝑚,2𝑚

+ 𝑏

0,2𝑠−1
Φ

0,2𝑠
+ 𝑎

2𝑠−2,0
Φ

2𝑠−1,0

+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−2,2𝑚
Φ

2𝑠−2𝑚−1,2𝑚
) .

(10)

Let

Γ

0
= 2𝜋, Γ

2𝑖
= ∫

2𝜋

0

cos2𝑖𝜃d𝜃 = 2𝜋(2𝑖 − 1)!!
2𝑖!!

(𝑖 ≥ 1) ,

𝐴

𝑘,𝑗
=

𝑘

∑

𝑟=0

(−1)

𝑟
𝐶

𝑟

𝑘
Γ

2𝑗+2𝑟
,

(11)

𝐵

𝑖,𝑗
= 𝑎

2𝑖−1,0
Γ

2𝑖+6𝑗

+

𝑖−1

∑

𝑚=1

𝑎

∗

2𝑖−2𝑚−1,2𝑚
𝐴

𝑚,𝑖−𝑚+3𝑗
+ 𝑏

0,2𝑖−1
𝐴

𝑖,3𝑗
,

(12)

𝐶

𝑖,𝑗
= 𝑎

2𝑖−2,0
Γ

2𝑖+2+6𝑗
+

𝑖−1

∑

𝑚=1

𝑎

∗

2𝑖−2𝑚−2,2𝑚
𝐴

𝑚,𝑖−𝑚+3𝑗+1
, (13)

where 𝑎∗
𝑖,𝑗
= 0 if 𝑖 < 0. Then, we have the following lemma.

Lemma 4. Abelian integralΦ(ℎ) has an expansion in the form

Φ (ℎ) = ℎ (𝑝0
+ 𝑝

1
ℎ + 𝑝

2
ℎ

2
+ ⋅ ⋅ ⋅ + 𝑝

3𝑙
ℎ

3𝑙

+𝑝

3𝑙+1
ℎ

3𝑙+1
+ 𝑝

3𝑙+2
ℎ

3𝑙+2
+ 𝑜 (ℎ

3𝑙+2
)) ,

ℎ ∈ (0, 1) ,

(14)

where

𝑝

𝑗
=

[(𝑗+1)/3]

∑

𝑠=0

(𝐵

𝑗−3𝑠+1,𝑠
+ 𝐶

𝑗−3𝑠,𝑠
) , if 𝑗 < 𝑙,

𝑝

𝑗
=

[𝑙/3]

∑

𝑠=0

(𝐵

𝑙−3𝑠,𝑢+𝑠
+ 𝐶

𝑙−3𝑠−1,𝑢+𝑠
) ,

if 𝑗 = 𝑙 + 3𝑢 − 1 (𝑢 = 1, 2, 3, . . .) ,

𝑝

𝑗
=

[(𝑙−2)/3]

∑

𝑠=0

𝐵

𝑙−3𝑠−2,𝑢+𝑠+1
+

[𝑙/3]

∑

𝑠=0

𝐶

𝑗−3𝑠,𝑢+𝑠
,

if 𝑗 = 𝑙 + 3𝑢 (𝑢 = 0, 1, 2, . . .) ,

𝑝

𝑗
=

[(𝑙−1)/3]

∑

𝑠=0

(𝐵

𝑙−3𝑠−1,𝑢+𝑠
+ 𝐶

𝑙−3𝑠−2,𝑢+𝑠
) ,

if 𝑗 = 𝑙 + 3𝑢 − 2 (𝑢 = 1, 2, 3, . . .) .

(15)

Proof. Firstly, we have

Φ

2𝑠,0

= ℎ

𝑠
∫

2𝜋

0

cos2𝑠𝜃
1 − ℎ

3/2cos3𝜃
d𝜃

= ℎ

𝑠
∫

2𝜋

0

(cos2𝑠𝜃 + ℎ3cos2𝑠+6𝜃 + ⋅ ⋅ ⋅

+ℎ

3𝑖cos2𝑠+6𝑖𝜃 + ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
(Γ

2𝑠
+ ℎ

3
Γ

2𝑠+6
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
Γ

2𝑠+6𝑖
+ ⋅ ⋅ ⋅ ) ,

Φ

2𝑠−2𝑚,2𝑚

= ℎ

𝑠
∫

2𝜋

0

cos2𝑠−2𝑚𝜃sin2𝑚𝜃
1 − ℎ

3/2cos3𝜃
d𝜃

= ℎ

𝑠

𝑚

∑

𝑟=0

(−1)

𝑟
𝐶

𝑟

𝑚
∫

2𝜋

0

(cos2𝑠−2𝑚+2𝑟𝜃

+ ℎ

3cos2𝑠−2𝑚+6+2𝑟𝜃

+ ⋅ ⋅ ⋅ + ℎ

3𝑖cos2𝑠−2𝑚+2𝑟+6𝑖𝜃

+ ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
(𝐴

𝑚,𝑠−𝑚
+ ℎ

3
𝐴

𝑚,𝑠−𝑚+3

+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐴

𝑚,𝑠−𝑚+3𝑖
+ ⋅ ⋅ ⋅ ) ,

Φ

0,2𝑠

= ℎ

𝑠
∫

2𝜋

0

sin2𝑠𝜃
1 − ℎ

3/2cos3𝜃
d𝜃

= ℎ

𝑠

𝑠

∑

𝑟=0

(−1)

𝑟
𝐶

𝑟

𝑠
∫

2𝜋

0

(cos2𝑟𝜃 + ℎ3cos2𝑟+6𝜃

+ ⋅ ⋅ ⋅ + ℎ

3𝑖cos2𝑟+6𝑖𝜃

+ ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
(𝐴

𝑠,0
+ ℎ

3
𝐴

𝑠,3
+ ⋅ ⋅ ⋅ + ℎ

6
𝐴

𝑠,3𝑖
+ ⋅ ⋅ ⋅ ) ,

Φ

2𝑠−1,0

= ℎ

𝑠−1/2
∫

2𝜋

0

cos2𝑠−1𝜃
1 − ℎ

3/2cos3𝜃
d𝜃

= ℎ

𝑠−1/2
∫

2𝜋

0

(ℎ

3/2cos2𝑠+2𝜃 + ℎ9/2cos2𝑠+8𝜃 + ⋅ ⋅ ⋅

+ℎ

3/2+3𝑖cos2𝑠+2+6𝑖𝜃 ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
∫

2𝜋

0

(ℎcos2𝑠+2𝜃 + ℎ4cos2𝑠+8𝜃

+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖cos2𝑠+2+6𝑖𝜃 ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
(ℎΓ

2𝑠+2
+ ℎ

4
Γ

2𝑠+8
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
Γ

2𝑠+2+6𝑖
+ ⋅ ⋅ ⋅ ) ,
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Φ

2𝑠−2𝑚−1,2𝑚

= ℎ

𝑠−1/2
∫

2𝜋

0

cos2𝑠−2𝑚−1𝜃sin2𝑚𝜃
1 − ℎ

3/2cos3𝜃
d𝜃

= ℎ

𝑠−1/2

×

𝑚

∑

𝑟=0

(−1)

𝑟
𝐶

𝑟

𝑚
∫

2𝜋

0

(ℎ

3/2cos2𝑠−2𝑚+2+2𝑟𝜃

+ ℎ

9/2cos2𝑠−2𝑚+8+2𝑟𝜃 + ⋅ ⋅ ⋅

+ℎ

3/2+3𝑖cos2𝑠−2𝑚+2+2𝑟+6𝑖 + ⋅ ⋅ ⋅ ) d𝜃

= ℎ

𝑠
(ℎ𝐴

𝑚,𝑠−𝑚+1
+ ℎ

4
𝐴

𝑚,𝑠−𝑚+4

+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐴

𝑚,𝑠−𝑚+1+3𝑖
+ ⋅ ⋅ ⋅ ) .

(16)

Substituting the previous formulas into (10), we have

Φ (ℎ)

=

𝑙

∑

𝑠=1

ℎ

𝑠

× [(𝑎

2𝑠−1,0
Γ

2𝑠
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−1,2𝑚
𝐴

𝑚,𝑠−𝑚

+ 𝑏

0,2𝑠−1
𝐴

𝑠,0
)

+ ℎ

3
(𝑎

2𝑠−1,0
Γ

2𝑠+6
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−1,2𝑚
𝐴

𝑚,𝑠−𝑚+3

+𝑏

0,2𝑠−1
𝐴

𝑠,3
) + ⋅ ⋅ ⋅

+ ℎ

3𝑖
(𝑎

2𝑠−1,0
Γ

2𝑠+6𝑖
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−1,2𝑚
𝐴

𝑚,𝑠−𝑚+3𝑖

+𝑏

0,2𝑠−1
𝐴

𝑠,3𝑖
) + ⋅ ⋅ ⋅

+ ℎ(𝑎

2𝑠−2,0
Γ

2𝑠+2
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−2,2𝑚
𝐴

𝑚,𝑠−𝑚+1
)

+ ℎ

4
(𝑎

2𝑠−2,0
Γ

2𝑠+8
+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−2,2𝑚
𝐴

𝑚,𝑠−𝑚+4
) + ⋅ ⋅ ⋅

+ℎ

1+3𝑖
(𝑎

2𝑠−2,0
Γ

2𝑠+6𝑖+2

+

𝑠−1

∑

𝑚=1

𝑎

∗

2𝑠−2𝑚−2,2𝑚
𝐴

𝑚,𝑠−𝑚+3𝑖+1
) + ⋅ ⋅ ⋅ ] .

(17)

Using (12) and (13), (17) can be written as follows:

Φ (ℎ)

=

𝑙

∑

𝑠=1

ℎ

𝑠
(𝐵

𝑠,0
+ ℎ

3
𝐵

𝑠,1
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐵

𝑠,𝑖

+ ⋅ ⋅ ⋅ + ℎ𝐶

𝑠,0
+ ℎ

4
𝐶

𝑠,1
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐶

𝑠,𝑖
+ ⋅ ⋅ ⋅ )

= ℎ [(𝐵

1,0
+ ℎ

3
𝐵

1,1
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐵

1,𝑖
+ ⋅ ⋅ ⋅ + ℎ𝐶

1,0

+ℎ

4
𝐶

1,1
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐶

1,𝑖
+ ⋅ ⋅ ⋅ )

+ ℎ (𝐵

2,0
+ ℎ

3
𝐵

2,1
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐵

2,𝑖

+ ⋅ ⋅ ⋅ + ℎ𝐶

2,0
+ ℎ

4
𝐶

2,1
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐶

2,𝑖
+ ⋅ ⋅ ⋅ )

+ ℎ

2
(𝐵

3,0
+ ℎ

3
𝐵

3,1
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐵

3,𝑖
+ ⋅ ⋅ ⋅ + ℎ𝐶

3,0

+ℎ

4
𝐶

3,1
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐶

3,𝑖
+ ⋅ ⋅ ⋅ ) + ⋅ ⋅ ⋅

+ ℎ

𝑙−1
(𝐵

𝑙,0
+ ℎ

3
𝐵

𝑙,1
+ ⋅ ⋅ ⋅ + ℎ

3𝑖
𝐵

𝑙,𝑖
+ ⋅ ⋅ ⋅

+ℎ𝐶

𝑙,0
+ ℎ

4
𝐶

𝑙,1
+ ⋅ ⋅ ⋅ + ℎ

1+3𝑖
𝐶

𝑙,𝑖
+ ⋅ ⋅ ⋅ )].

(18)

Thus, we have

if 𝑗 < 𝑙,

𝑝

𝑗
= 𝐵

𝑗+1,0
+ 𝐵

𝑗−2,1
+ ⋅ ⋅ ⋅ + 𝐵

𝑗−3𝑖+1,𝑖
+ ⋅ ⋅ ⋅ + 𝐶

𝑗,0

+ 𝐶

𝑗−3,1
+ ⋅ ⋅ ⋅ + 𝐶

𝑗−3𝑖,𝑖
+ ⋅ ⋅ ⋅ ,

(19)

if 𝑗 = 𝑙 + 3𝑢 − 1 (𝑢 = 1, 2, 3, . . .),

𝑝

𝑗
= 𝐵

𝑙,𝑢
+ 𝐵

𝑙−3,𝑢+1
+ ⋅ ⋅ ⋅ + 𝐵

𝑙−3𝑖,𝑢+𝑖

+ ⋅ ⋅ ⋅ + 𝐶

𝑙−1,𝑢
+ 𝐶

𝑙−4,𝑢+1
+ ⋅ ⋅ ⋅ + 𝐶

𝑙−3𝑖−1,𝑢+𝑖
+ ⋅ ⋅ ⋅ ,

(20)

if 𝑗 = 𝑙 + 3𝑢 (𝑢 = 0, 1, 2, ⋅ ⋅ ⋅ ),

𝑝

𝑗
= 𝐵

𝑙−2,𝑢+1
+ 𝐵

𝑙−5,𝑢+2
+ ⋅ ⋅ ⋅ + 𝐵

𝑙−3𝑖−2,𝑢+𝑖+1

+ ⋅ ⋅ ⋅ + 𝐶

𝑙,𝑢
+ 𝐶

𝑙−3,𝑢+1
+ ⋅ ⋅ ⋅ + 𝐶

𝑙−3𝑖,𝑢+𝑖
+ ⋅ ⋅ ⋅ ,

(21)

if 𝑗 = 𝑙 + 3𝑢 − 2 (𝑢 = 1, 2, 3, . . .),

𝑝

𝑗
= 𝐵

𝑙−1,𝑢
+ 𝐵

𝑙−4,𝑢+2
+ ⋅ ⋅ ⋅ + 𝐵

𝑙−3i−1,𝑢+𝑖 + ⋅ ⋅ ⋅

+ 𝐶

𝑙−2,𝑢
+ 𝐶

𝑙−5,𝑢+1
+ ⋅ ⋅ ⋅ + 𝐶

𝑙−3𝑖−2,𝑢+𝑖
+ ⋅ ⋅ ⋅ ,

(22)

where 𝑖 = 0, 1, 2, . . . and 𝐵
𝑖,𝑗
= 𝐶

𝑖,𝑗
= 0 if 𝑖 < 0. The proof is

completed.
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By Lemma 4, we regard 𝑎
2𝑗−1,0

, 𝑎∗
2𝑗−3,2

, . . ., 𝑎∗
1,2𝑗−2

, 𝑏
0,2𝑗−1

,
𝑎

2𝑗−2,0
, 𝑎∗
2𝑗−4,2

, . . ., 𝑎∗
2,2𝑗−4

, 𝑎∗
0,2𝑗−2

(𝑗 ≥ 1) as free parameters,
and denote vectors

𝛼

𝑗
= (𝑎

2𝑗−1,0
, 𝑎

∗

2𝑗−3,2
, . . . , 𝑎

∗

1,2𝑗−2
, 𝑏

0,2𝑗−1
) ,

𝛽

𝑗
= (𝑎

2𝑗−2,0
, 𝑎

∗

2𝑗−4,2
, . . . , 𝑎

∗

2,2𝑗−4
, 𝑎

∗

0,2𝑗−2
)

(23)

and Jacobian matrices

𝐽

𝑗
=

𝜕 (𝑝

𝑗−1
, 𝑝

𝑗+2
, 𝑝

𝑗+5
, . . . , 𝑝

4𝑗−1
)

𝜕𝛼

𝑗

,
(24)

𝐻

𝑗
=

𝜕 (𝑝

𝑗
, 𝑝

𝑗+3
, 𝑝

𝑗+6
, . . . , 𝑝

4j−3)

𝜕𝛽

𝑗

,
(25)

𝐼𝑙

=
𝜕 (𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑙−2, 𝑝𝑙−1, 𝑝𝑙, . . . , 𝑝4𝑙−5, 𝑝4𝑙−4, 𝑝4𝑙−3, 𝑝4𝑙−1)

𝜕 (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3, . . . , 𝛼𝑙, 𝛽𝑙)
,

(26)

where 𝑗, 𝑙 ≥ 1. Then, 𝐽
𝑗
is (𝑗 + 2) × (𝑗 + 2)matrix,𝐻

𝑗
is 𝑗 × 𝑗

matrix, and 𝐼
𝑙
is (4𝑙 − 1) × (𝑙2 + 2𝑙)matrix.

For matrices 𝐽
𝑗
, 𝐻
𝑗
and 𝐼

𝑙
, we have Lemmas 5 and 6,

respectively.

Lemma 5. For 𝑗 ≥ 1, det(𝐽
𝑗
) ̸= 0 and det(𝐻

𝑗
) ̸= 0. That is,

rank(𝐽
𝑗
) = 𝑗 + 1, rank(𝐻

𝑗
) = 𝑗.

Proof. According to Lemma 4 and (24), we can obtain that

𝐽

𝑗
=

(

(

(

(

(

(

(

(

Γ2𝑗 𝐴1,𝑗−1 𝐴2,𝑗−2 ⋅ ⋅ ⋅ 𝐴𝑗−2,2 𝐴𝑗−1,1 𝐴𝑗,0

Γ2𝑗+6 𝐴1,𝑗+2 𝐴2,𝑗+1 ⋅ ⋅ ⋅ 𝐴𝑗−2,5 𝐴𝑗−1,4 𝐴𝑗,3

Γ2𝑗+12 𝐴1,𝑗+5 𝐴2,𝑗+4 ⋅ ⋅ ⋅ 𝐴𝑗−2,8 𝐴𝑗−1,7 𝐴𝑗,6

Γ2𝑗+18 𝐴1,𝑗+8 𝐴2,𝑗+7 ⋅ ⋅ ⋅ 𝐴𝑗−2,11 𝐴𝑗−1,10 𝐴𝑗,9

...
...

...
...

...
...

Γ8𝑗−6 𝐴1,4𝑗−4 𝐴2,4𝑗−5 ⋅ ⋅ ⋅ 𝐴𝑗−2,3𝑗−1 𝐴𝑗−1,3𝑗−2 𝐴𝑗,3𝑗−3

Γ8𝑗 𝐴1,4𝑗−1 𝐴2,4𝑗−2 ⋅ ⋅ ⋅ 𝐴𝑗−2,3𝑗+2 𝐴𝑗−1,3𝑗+1 𝐴𝑗,3𝑗

)

)

)

)

)

)

)

)

.

(27)

Define (𝑗 + 1) × (𝑗 + 1)matrix

𝑖th

𝐷

𝑖
=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 (−1)

𝑖−2
𝐶

𝑖−1

𝑖−1

1 (−1)

𝑖−3
𝐶

𝑖−2

𝑖−1

d
...

1 (−1)

1
𝐶

2

𝑖−1

1 (−1)

0
𝐶

1

𝑖−1

1

1

d

1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(28)

Then, we have

𝐽

󸀠

𝑗
≡ 𝐽

𝑗
𝐷

2
𝐷

3
⋅ ⋅ ⋅ 𝐷

𝑗+1

=

(

(

(

(

(

(

(

(

(

(

(

(

(

Γ

2𝑗
Γ

2𝑗−2
Γ

2𝑗−4
⋅ ⋅ ⋅ Γ

4
Γ

2
Γ

0

Γ

2𝑗+6
Γ

2𝑗+4
Γ

2𝑗+2
⋅ ⋅ ⋅ Γ

10
Γ

8
Γ

6

Γ

2𝑗+12
Γ

2𝑗+10
Γ

2𝑗+8
⋅ ⋅ ⋅ Γ

16
Γ

14
Γ

12

Γ

2𝑗+18
Γ

2𝑗+16
Γ

2𝑗+14
⋅ ⋅ ⋅ Γ

22
Γ

20
Γ

18

...
...

...
...

...
...

Γ

8𝑗−6
Γ

8𝑗−8
Γ

8𝑗−10
⋅ ⋅ ⋅ Γ

6𝑗−2
Γ

6𝑗−4
Γ

6𝑗−6

Γ

8𝑗
Γ

8𝑗−2
Γ

8𝑗−4
⋅ ⋅ ⋅ Γ

6𝑗+4
Γ

6𝑗+2
Γ

6𝑗

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(29)

Let Γ𝑗
𝑖
= 𝑗!!/𝑖!!; then Γ

𝑗
= 2𝜋Γ

𝑗−1

𝑗
(𝑗 ≥ 1). Denote

𝑇

𝑗−𝑘

=

(

(

(

(

(

(

Γ
2𝑗+4𝑘−1

2𝑗+6𝑘
Γ
2𝑗+4𝑘−3

2𝑗+6𝑘−2
⋅ ⋅ ⋅ Γ

6𝑘+3

8𝑘+4
Γ
6𝑘+1

8𝑘+2
Γ
6𝑘−1

8𝑘

Γ
2𝑗+4𝑘+5

2𝑗+6𝑘+6
Γ
2𝑗+4𝑘+3

2𝑗+6𝑘+4
⋅ ⋅ ⋅ Γ

6𝑘+9

8𝑘+10
Γ
6𝑘+7

8𝑘+8
Γ
6𝑘+5

8𝑘+6

...
...

...
...

...

Γ
8𝑗−2𝑘−7

8𝑗−6
Γ
8𝑗−2𝑘−9

8𝑗−8
⋅ ⋅ ⋅ Γ

6𝑗−3

6𝑗+2𝑘−2
Γ
6𝑗−5

6𝑗+2𝑘−4
Γ
6𝑗−7

6𝑗+2𝑘−6

Γ
8𝑗−2𝑘−1

8𝑗
Γ
8𝑗−2𝑘−3

8𝑗−2
⋅ ⋅ ⋅ Γ

6𝑗+3

6𝑗+2𝑘+4
Γ
6𝑗+1

6𝑗+2𝑘+2
Γ
6𝑗−1

6𝑗+2𝑘

)

)

)

)

)

)

(0 ≤ 𝑘 ≤ 𝑗) ,

(30)

where 𝑇
𝑗−𝑘

is (𝑗 − 𝑘 + 1) × (𝑗 − 𝑘 + 1)matrix. Then, det(𝐽
𝑗
) =

det(𝐽󸀠
𝑗
) = (2𝜋)

𝑗+1det(𝑇
𝑗
).
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We add entries of the 𝑖 + 1th (0 < 𝑖 ≤ 𝑗 − 𝑘 + 1) column
which times −(2(𝑗 + 2 − 𝑖) − 1)/2(𝑗 + 2 − 𝑖) to the 𝑖th column
and obtain

𝑇

𝑗−𝑘
󳨀→ 𝑇

1

𝑗−𝑘

≡

(

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 ⋅ ⋅ ⋅ 0 Γ

6𝑘−1

8𝑘

6𝑘 + 3

𝑗 + 3𝑘

Γ

2𝑗+4𝑘+3

2𝑗+6𝑘+6

6𝑘 + 3

𝑗 + 3𝑘 − 1

Γ

2𝑗+4𝑘+1

2𝑗+6𝑘+4
⋅ ⋅ ⋅

6𝑘 + 3

4𝑘 + 1

Γ

6𝑘+5

8𝑘+8
Γ

6𝑘+5

8𝑘+6

12𝑘 + 6

𝑗 + 3𝑘

Γ

2𝑗+4𝑘+9

2𝑗+6𝑘+12

12𝑘 + 6

𝑗 + 3𝑘 − 1

Γ

2𝑗+4𝑘+7

2𝑗+6𝑘+10
⋅ ⋅ ⋅

12𝑘 + 6

4𝑘 + 1

Γ

6𝑘+11

8𝑘+14
Γ

6𝑘+11

8𝑘+12

...
...

...
...

(6𝑘 + 3) (𝑗 − 𝑘 − 1)

𝑗 + 3𝑘

Γ

8𝑗−2𝑘−9

8𝑗−6

(6𝑘 + 3) (𝑗 − 𝑘 − 1)

𝑗 + 3𝑘 − 1

Γ

8𝑗−2𝑘−11

8𝑗−8
⋅ ⋅ ⋅

(6𝑘 + 3) (𝑗 − 𝑘 − 1)

4𝑘 + 1

Γ

6𝑗−7

6𝑗+2𝑘−4
Γ

6𝑗−7

6𝑗+2𝑘−6

(6𝑘 + 3) (𝑗 − 𝑘)

𝑗 + 3𝑘

Γ

8𝑗−2𝑘−3

8𝑗

(6𝑘 + 3) (𝑗 − 𝑘)

𝑗 + 3𝑘 − 1

Γ

8𝑗−2𝑘−5

8𝑗−2
⋅ ⋅ ⋅

(6𝑘 + 3) (𝑗 − 𝑘)

4𝑘 + 1

Γ

6𝑗−1

6𝑗+2𝑘+2
Γ

6𝑗−1

6𝑗+2𝑘

)

)

)

)

)

)

)

)

)

)

)

)

)

)

≡ (

0
1×(𝑗−𝑘)

Γ

6𝑘−1

8𝑘

𝑇

0

𝑗−𝑘−1
𝑎

𝑘

) ,

(31)

where 𝑎
𝑘
= (Γ

6𝑘+5

8𝑘+6
, Γ

6𝑘+11

8𝑘+12
, . . . , Γ

6𝑗−7

6𝑗+2𝑘−6
, Γ

6𝑗−1

6𝑗+2𝑘
)

𝑇. We can write
𝑇

0

𝑗−𝑘−1
as follows:

𝑇

0

𝑗−𝑘−1

= (

6𝑘 + 3

12𝑘 + 6

d
(6𝑘 + 3) (𝑗 − 𝑘)

)

× 𝑇

𝑗−𝑘−1

(

(

(

1

𝑗 + 3𝑘

1

𝑗 + 3𝑘 − 1

d
1

4𝑘 + 1

)

)

)

;

(32)

then det(𝑇
𝑗−𝑘
) = (−1)

𝑗−𝑘+2
Γ

6𝑘−1

8𝑘
(6𝑘 + 3)

𝑗−𝑘
(𝑗 − 𝑘)!((4𝑘)!/(𝑗 +

3𝑘)!)det(𝑇
𝑗−𝑘−1

).
Summarizing above results, we have

det (𝐽
𝑗
) = (2𝜋)

𝑗+1
(−1)

(𝑗+2)+(𝑗+1)+⋅⋅⋅+3
3

𝑗
9

𝑗−1
15

𝑗−2

⋅ ⋅ ⋅ (6𝑗 − 9)

2
(6𝑗 − 3) 𝑗! (𝑗 − 1)! ⋅ ⋅ ⋅ 2!

× Γ

5

8
Γ

11

16
Γ

17

24
⋅ ⋅ ⋅ Γ

6𝑗−1

8𝑗

1

𝑗!

4!

(𝑗 + 3)!

8!

(𝑗 + 6)!

⋅ ⋅ ⋅

(4𝑗 − 4)!

(4𝑗 − 3)!

̸= 0;

(33)

therefore, rank(𝐽
𝑗
) = 𝑗 + 1.

According to Lemma 4 and (25), we have

𝐻

𝑗−1

=

(

(

(

(

(

(

Γ2𝑗 𝐴1,𝑗−1 𝐴2,𝑗−2 ⋅ ⋅ ⋅ 𝐴𝑗−3,3 𝐴𝑗−2,2

Γ2𝑗+6 𝐴1,𝑗+2 𝐴2,𝑗+1 ⋅ ⋅ ⋅ 𝐴𝑗−3,6 𝐴𝑗−2,5

Γ2𝑗+12 𝐴1,𝑗+5 𝐴2,𝑗+4 ⋅ ⋅ ⋅ 𝐴𝑗−3,9 𝐴𝑗−2,8

...
...

...
...

...

Γ8𝑗−18 𝐴1,4𝑗−10 𝐴2,4𝑗−11 ⋅ ⋅ ⋅ 𝐴𝑗−3,3𝑗−6 𝐴𝑗−2,3𝑗−7

Γ8𝑗−12 𝐴1,4𝑗−7 𝐴2,4𝑗−8 ⋅ ⋅ ⋅ 𝐴𝑗−3,3𝑗−3 𝐴𝑗−2,3𝑗−4

)

)

)

)

)

)

.

(34)

By the above proof procedure, we can obtain rank(𝐻
𝑗−1
) =

𝑗 − 1 in a similar way. That is rank(𝐻
𝑗
) = 𝑗. The proof is

completed.

Lemma 6. For 𝑙 ≥ 1, rank(𝐼
𝑙
) = 4𝑙 − 1.

Proof. Firstly, if 𝑙 = 1,

𝐼

1
=

𝜕 (𝑝

0
, 𝑝

1
, 𝑝

3
)

𝜕 (𝛼

1
, 𝛽

1
)

= (

Γ

2
𝐴

1,0
0

0 0 Γ

4

Γ

8
𝐴

1,3
0

) 󳨀→(

Γ

2
𝐴

1,0
0

Γ

8
𝐴

1,3
0

0 0 Γ

4

),

(35)

it is easy to know that rank(𝐼
1
) = 3.
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If 𝑙 = 2, we have

𝐼

2
=

𝜕 (𝑝

0
, 𝑝

1
, 𝑝

2
, 𝑝

3
, 𝑝

4
, 𝑝

5
, 𝑝

7
)

𝜕 (𝛼

1
, 𝛽

1
, 𝛼

2
, 𝛽

2
)

=

(

(

(

(

Γ

2
𝐴

1,0
0 0 0 0 0 0

0 0 Γ

4
𝐴

1,1
𝐴

2,0
Γ

4
0 0

0 0 0 0 0 0 Γ

6
𝐴

1,2

Γ

8
𝐴

1,3
0 0 0 0 0 0

0 0 Γ

10
𝐴

1,4
𝐴

2,3
Γ

10
0 0

0 0 0 0 0 0 Γ

12
𝐴

1,5

0 0 Γ

16
𝐴

1,7
𝐴

2,6
Γ

16
0 0

)

)

)

)

,

󳨀→

(

(

(

(

Γ

2
𝐴

1,0
0 0 0 0 0 0

Γ

8
𝐴

1,3
0 0 0 0 0 0

0 0 Γ

4
𝐴

1,1
𝐴

2,0
0 0 0

0 0 Γ

10
𝐴

1,4
𝐴

2,3
0 0 0

0 0 Γ

16
𝐴

1,7
𝐴

2,6
0 0 0

0 0 0 0 0 0 Γ

6
𝐴

1,2

0 0 0 0 0 0 Γ

12
𝐴

1,5

)

)

)

)

󳨀→ (

𝐽

1

𝐽

2

𝐻

2
0
2 × 1

) .

(36)

Then, by Lemma 5, rank(𝐼
2
) = rank(𝐽

1
) + rank(𝐽

2
) +

rank(𝐻
2
) = 7.

For 𝑙 ≥ 3, let 𝛾1
𝑙
= (𝑝

0
, 𝑝

1
, . . . , 𝑝

𝑙−3
), 𝛾2
𝑙
= (𝑝

𝑙−2
, 𝑝

𝑙+1
,

. . . , 𝑝

4𝑙−5
), 𝛾3
𝑙
= (𝑝

𝑙−1
, 𝑝

𝑙+2
, . . . , 𝑝

4𝑙−1
), 𝛾4
𝑙
= (𝑝

𝑙
, 𝑝

𝑙+3
, . . . ,

𝑝

4𝑙−3
); we have

𝐼

𝑙
󳨀→ 𝐼

∗

𝑙
=

𝜕 (𝛾

1

𝑙
, 𝛾

2

𝑙
, 𝛾

3

𝑙
, 𝛾

4

𝑙
)

𝜕 (𝛼

1
, 𝛽

1
, 𝛼

2
, 𝛽

2
, . . . , 𝛼

𝑙
, 𝛽

𝑙
)

.

(37)

According to Lemma 4 and the definitions of 𝐽
𝑗
and 𝐻

𝑗
,

simplifying it by elementary transformation of matrix, we
obtain

𝐼

∗

𝑙
󳨀→(

𝐸

𝑙−2

𝐽

𝑙−1

𝐽

𝑙

𝐻

𝑙
0
𝑙×(𝑙
2
−2𝑙+1)

). (38)

Therefore, rank(𝐼
𝑙
) = rank(𝐸l−2) + rank(𝐽

𝑙−1
) + rank(𝐽

𝑙
) +

rank(𝐻
𝑙
) = 4𝑙 − 1. The proof is completed.

By Lemma 6, it is obvious that 𝑝
0
, 𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑙−2
,

𝑝

𝑙−1
, 𝑝

𝑙
, . . . , 𝑝

4𝑙−4
, 𝑝

4𝑙−3
, 𝑝

4𝑙−1
are independent. Now, we have

the following lemma.

Lemma 7. For 𝑙 ≥ 1, one can write 𝑝
𝑗
as follows:

𝑝

𝑙+3𝑢−1
= 𝑥

1
𝑝

𝑙−1
+ 𝑥

2
𝑝

𝑙+2
+ ⋅ ⋅ ⋅ + 𝑥

𝑙+1
𝑝

4𝑙−1
,

𝑢 > 𝑙,

𝑝

𝑙+3𝑢−2
= 𝑦

1
𝑝

𝑙−2
+ 𝑦

2
𝑝

𝑙+1
+ ⋅ ⋅ ⋅ + 𝑦

𝑙
𝑝

4𝑙−5
,

𝑢 > 𝑙 − 1,

𝑝

𝑙+3𝑢
= 𝑧

1
𝑝

𝑙+1
+ 𝑧

2
𝑝

𝑙+4
+ ⋅ ⋅ ⋅ + 𝑧

𝑙
𝑝

4𝑙−3
,

𝑢 > 𝑙 − 1,

(39)

where (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑙+1
), (𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑙
) and (𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑙
) are

nonzero vectors.

Proof. According to Lemma 4, if 𝑗 = 𝑙+3𝑢−1 (𝑢 = 1, 2, 3, . . .),

𝑝

𝑗
=

[𝑙/3]

∑

𝑠=0

(𝐵

𝑙−3𝑠,𝑢+𝑠
+ 𝐶

𝑙−3𝑠−1,𝑢+𝑠
) . (40)

Substituting 𝑝
𝑙−1
, 𝑝

𝑙+2
, . . . , 𝑝

4𝑙−1
into the first equation, we

obtain a linear equation

𝑑

𝑙+3𝑢−1
= 𝐽

𝑇

𝑙
𝑋 (𝑢 > 𝑙) ,

(41)

where 𝑋 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑙+1
)

𝑇, 𝑑
𝑙+3𝑢−1

= (Γ

2𝑙+6𝑢
, 𝐴

1,𝑙+3𝑢
,

𝐴

2,𝑙+3𝑢−2
, . . . , 𝐴

𝑙−1,3𝑢+1
, 𝐴

𝑙,3𝑢
)

𝑇. According to Lemma 5,
det(𝐽𝑇

𝑙
) ̸= 0, (41) has unique solution 𝑋 = (𝑥

󸀠

1
, 𝑥

󸀠

2
, . . . ,

𝑥

󸀠

𝑙+1
)

𝑇
̸= 0. That is, the first formula holds.

If 𝑗 = 𝑙 + 3𝑢 − 2 (𝑢 = 1, 2, 3, . . .), in a similar way, we can
prove that the second formula holds.

If 𝑗 = 𝑙 + 3𝑢 (𝑢 = 0, 1, 2, . . .), we have

𝑝

𝑗
=

[(𝑙−2)/3]

∑

𝑠=0

𝐵

𝑙−3𝑠−2,𝑢+𝑠+1
+

[𝑙/3]

∑

𝑠=0

𝐶

𝑗−3𝑠,𝑢+𝑠
, (42)

substituting 𝑝
𝑙+1
, 𝑝

𝑙+4
, . . . , 𝑝

4𝑙−3
into the third equation, we

obtain a linear equation

𝑐

𝑙+3𝑢
= 𝐻

𝑇

𝑙
𝑍 (𝑢 > 𝑙 − 1) ,

(43)

where𝑍 = (𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑙
)

𝑇, 𝑐
𝑙+3𝑢

= (Γ

2𝑙+6𝑢+2
, 𝐴

1,𝑙+3𝑢
, 𝐴

2,𝑙+3𝑢−1
,

. . . , 𝐴

𝑙−2,3𝑢+3
, 𝐴

𝑙−1,3𝑢+2
)

𝑇. According to Lemma 5,
det(𝐻𝑇

𝑙
) ̸= 0, (43) has unique solution 𝑍 = (𝑧

󸀠

1
, 𝑧

󸀠

2
, . . . ,

𝑧

󸀠

𝑙
)

𝑇
̸= 0. That is, the third formula also holds. The proof is

completed.

Now, we proveTheorem 1.

Proof. For ℎ ∈ (0, 1), Abelian integral Φ(ℎ) has an expansion
of the following form:

Φ (ℎ) = ℎ (𝑝

0
+ 𝑝

1
ℎ + 𝑝

2
ℎ

2
+ ⋅ ⋅ ⋅ + 𝑝

4𝑙−3
ℎ

4𝑙−3

+𝑝

4𝑙−2
ℎ

4𝑙−2
+ 𝑝

4𝑙−1
ℎ

4𝑙−1
+ 𝑜 (ℎ

4𝑙−1
)) .

(44)

According to Lemma 6, for 𝑙 ≥ 1, 𝑝
0
, 𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑙−2
, 𝑝

𝑙−1
,

𝑝

𝑙
, . . . , 𝑝

4𝑙−4
, 𝑝

4𝑙−3
, 𝑝

4𝑙−1
are independent.

Let 𝑝
0
= 𝑝

1
= 𝑝

2
= ⋅ ⋅ ⋅ = 𝑝

4𝑙−1
= 𝑝

4𝑙−3
= 0 and 𝑝

4𝑢−1
=

1; then, by Lemma 7, 𝑝
4𝑙−2

= 0. Thus (44) becomes Φ(ℎ) =
ℎ

4𝑙
+ 𝑜(ℎ

4𝑙
), and Φ(ℎ) > 0 if ℎ ∈ (0, 1). Furthermore, we take

𝑝

0
= 𝑝

1
= 𝑝

2
= ⋅ ⋅ ⋅ = 𝑝

4𝑙−5
= 𝑝

4𝑙−4
= 0, then 𝑝

4𝑙−2
= 0

still holds. Choosing proper 𝑝
4𝑙−3

∈ (−1, 0) such that Φ(ℎ) =
𝑝

4𝑙−3
ℎ

4𝑙−2
+ ℎ

4𝑙
+ 𝑜(ℎ

4𝑙
) < 0, by Descartes’ rule of signs, (44)

has a root ℎ
1
on interval (0, 1).

Let 𝑝
0
= 𝑝

1
= 𝑝

2
= ⋅ ⋅ ⋅ = 𝑝

4𝑙−6
= 𝑝

4𝑙−5
= 0,

and choose proper 𝑝
4𝑙−4

(𝑝

4𝑙−4
∈ (0, 1)) so that Φ(ℎ) =

𝑝

4𝑙−4
ℎ

4𝑙−3
+ 𝑝

4𝑙−3
ℎ

4𝑙−2
+ ℎ

4𝑙
+ 𝑜(ℎ

4𝑙
) > 0; then (44) has the

second root ℎ
2
on interval (0, 1). In a similar way, we take

proper 𝑝
𝑖
(𝑖 = 4𝑙 − 6, 4𝑙 − 7, . . . , 2, 1, 0) in turn such that
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𝑝

𝑖
𝑝

𝑖−1
< 0 and |𝑝

𝑖
| ∈ (0, 1). According to Descartes’ rule

of signs, we can obtain 4𝑙 − 4 zeros ℎ
3
, ℎ

4
, . . . , ℎ

4𝑙−3
, ℎ

4𝑙−2
on

interval (0, 1).
Applying the Poincaré-Pontryagin theorem, the system

(5) with 𝐶(𝑥, 𝑦) = 1 − 𝑥3 can have at least 4[(𝑛 + 1)/2] − 2
limit cycles for suitable 𝑎

𝑘,𝑗
and 𝑏

𝑘,𝑗
(0 ≤ 𝑘+𝑗 ≤ 𝑛).The proof

of Theorem 1 is completed.

3. The proof of Theorem 2

In this section, we will prove Theorem 2. At first, all the
primary computations to express the Abelian integral Φ(ℎ)
and some concerned lemmas are presented.

Taking the change of variable 𝑥 = √ℎ cos 𝜃, 𝑦 = √ℎ sin 𝜃
(0 < ℎ < 1), then by (4) we have

Φ (ℎ) = ∮

𝛾ℎ

∑

0≤𝑘+𝑗≤𝑛
𝑎

𝑘,𝑗
𝑥

𝑘+1
𝑦

𝑗
+ ∑

0≤𝑘+𝑗≤𝑛
𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗+1

1 − 𝑥

4
d𝜃

=

1

2

(Φ

1
+ Φ

2
) ,

(45)

where

Φ

1
= ∮

𝛾ℎ

∑

0≤𝑘+𝑗≤𝑛
𝑎

𝑘,𝑗
𝑥

𝑘+1
𝑦

𝑗
+ ∑

0≤𝑘+𝑗≤𝑛
𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗+1

1 − 𝑥

2
d𝜃,

Φ

2
= ∮

𝛾ℎ

∑

0≤𝑘+𝑗≤𝑛
𝑎

𝑘,𝑗
𝑥

𝑘+1
𝑦

𝑗
+ ∑

0≤𝑘+𝑗≤𝑛
𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗+1

1 + 𝑥

2
d𝜃.

(46)

Denote

Φ

1

𝑘,𝑗
= ∮

𝛾ℎ

𝑥

𝑘
𝑦

𝑗

1 − 𝑥

2
d𝜃 = ∮

𝛾ℎ

𝑥

𝑘
𝑦

𝑗

(1 − 𝑥) (1 + 𝑥)

d𝜃,

Φ

2

𝑘,𝑗
= ∮

𝛾ℎ

𝑥

𝑘
𝑦

𝑗

1 + 𝑥

2
d𝜃 = ∮

𝛾ℎ

𝑥

𝑘
𝑦

𝑗

(1 − 𝑖𝑥) (1 + 𝑖𝑥)

d𝜃,

(47)

where 𝑖2 = −1; then we have

Φ

1
= ∑

0≤𝑘+𝑗≤𝑛

(𝑎

𝑘,𝑗
Φ

1

𝑘+1,𝑗
+ 𝑏

𝑘,𝑗
Φ

1

𝑘,𝑗+1
) ,

Φ

2
= ∑

0≤𝑘+𝑗≤𝑛

(𝑎

𝑘,𝑗
Φ

2

𝑘+1,𝑗
+ 𝑏

𝑘,𝑗
Φ

2

𝑘,𝑗+1
) .

(48)

Lemma 8. Let 𝜔
1
= 1, 𝜔

2
= −1, 𝜔

3
= 𝑖, 𝜔

4
= −𝑖; then

Ψ

𝑠
= ∮

𝛾ℎ

d𝜃
1 − 𝜔

𝑠
𝑥

=

2𝜋

√1 − 𝜔

2

𝑠
ℎ

, (49)

where 𝑠 = 1, 2, 3, 4. And

Φ

1

0,0
= ∮

𝛾ℎ

d𝜃
(1 − 𝑥) (1 + 𝑥)

=

2𝜋

√

1 − ℎ

,

Φ

1

1,0
= ∮

𝛾ℎ

𝑥d𝜃
(1 − 𝑥) (1 + 𝑥)

= 0,

Φ

2

0,0
= ∮

𝛾ℎ

d𝜃
(1 − 𝑖𝑥) (1 + 𝑖𝑥)

=

2𝜋

√

1 + ℎ

,

Φ

2

1,0
= ∮

𝛾ℎ

𝑥d𝜃
(1 − 𝑖𝑥) (1 + 𝑖𝑥)

= 0.

(50)

Proof. We use the residue theorem to compute the Ψ
𝑠
(𝑠 =

1, 2, 3, 4).
When 𝑥 = √ℎ cos 𝜃, we have

Ψ

𝑠
= ∮

𝛾ℎ

d𝜃
1 − 𝜔

𝑠
𝑥

= ∫

2𝜋

0

d𝜃
1 − 𝜔

𝑠
√

ℎ cos 𝜃
. (51)

Let 𝑒𝑖𝜃 = 𝑧; then cos 𝜃 = (𝑧2 + 1)/2𝑧, d𝜃 = d𝑧/𝑖𝑧. The
previous formula becomes

Ψ

𝑠
= ∮

|𝑧|=1

1

1 − 𝜔

𝑠
√

ℎ ⋅ ((𝑧

2
+ 1) /2𝑧)

d𝑧
𝑖𝑧

= −

2

𝑖

∮

|𝑧|=1

d𝑧
𝜔

𝑠
√

ℎ𝑧

2
− 2𝑧 + 𝜔

𝑠
√

ℎ

= − 4𝜋Re 𝑠[
[

[

1

𝜔

𝑠
√

ℎ𝑧

2
− 2𝑧 + 𝜔

𝑠
√

ℎ

, 𝑧

1
=

1 − √1 − 𝜔

2

𝑠
ℎ

𝜔

𝑠
√

ℎ

]

]

]

= − 4𝜋 lim
𝑧→𝑧1

𝑧 − 𝑧

1

𝜔

𝑠
√

ℎ𝑧

2
− 2𝑧 + 𝜔

𝑠
√

ℎ

=

2𝜋

√1 − 𝜔

2

𝑠
ℎ

;

(52)

hence (49) holds. For the first formula of (50),

Φ

1

0,0
=

1

2

(∮

𝛾ℎ

d𝜃
1 − 𝜔

1
𝑥

+ ∮

𝛾ℎ

d𝜃
1 + 𝜔

2
𝑥

)

=

1

2

(

2𝜋

√

1 − ℎ

+

2𝜋

√

1 − ℎ

) =

2𝜋

√

1 − ℎ

,

(53)

and the others can be proved in a similar way. The proof is
completed.

Lemma 9. If 𝑗 is odd, the integrands in Φ1
𝑘,𝑗

and Φ2
𝑘,𝑗

are odd
functions with respect to the variable 𝜃; therefore,Φ1

𝑘,𝑗
= 0 and

Φ

2

𝑘,𝑗
= 0.
Define

Φ

𝑘,𝑗
= ∮

𝛾ℎ

𝑎

𝑘,𝑗
𝑥

𝑘+1
𝑦

𝑗
+ 𝑏

𝑘,𝑗
𝑥

𝑘
𝑦

𝑗+1

1 − 𝑥

4
d𝜃; (54)

then, according to Lemmas 8 and 9 and the definition ofΦ(ℎ),
one knows that Φ

0,0
= 0.
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Lemma 10. If 𝑗 is even, then

Φ

1

𝑘,𝑗
=

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/(2−𝑠)
𝐶

𝑠

𝑗/2
Φ

1

𝑘+2𝑠,0
,

(55)

Φ

2

𝑘,𝑗
=

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/(2−𝑠)
𝐶

𝑠

𝑗/2
Φ

2

𝑘+2𝑠,0
.

(56)

Proof. If 𝑗 is even, then

Φ

1

𝑘,𝑗
= ∮

𝛾ℎ

𝑥

𝑘
𝑦

𝑗

1 − 𝑥

2
d𝜃 = ∮

𝛾ℎ

𝑥

𝑘
(ℎ − 𝑥

2
)

𝑗/2

1 − 𝑥

2
d𝜃

= ∮

𝛾ℎ

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/2−𝑠
𝐶

𝑠

𝑗/2

𝑥

𝑘+2𝑠

1 − 𝑥

2
d𝜃

=

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/2−𝑠
𝐶

𝑠

𝑗/2
Φ

1

𝑘+2𝑠,0
.

(57)

Similarly, (56) also holds. The proof is completed.

Lemma 11. (i) If 𝑘 is odd, Φ1
𝑘,0
= 0.

(ii) If 𝑘 is even, then

Φ

1

𝑘,0
=

2𝜋

√

1 − ℎ

×

[

[

[

1 −

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
√

1 − ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

.

(58)

Proof. When 𝑘 > 1,

Φ

1

𝑘,0
= ∮

𝛾ℎ

𝑥

𝑘

1 − 𝑥

2
d𝜃 = 1

2

(∮

𝛾ℎ

𝑥

𝑘

1 − 𝑥

d𝜃 + ∮
𝛾ℎ

𝑥

𝑘

1 + 𝑥

d𝜃)

≡

1

2

(𝑀

1
+𝑀

2
) .

(59)

We use the residue theorem to compute the integrals𝑀
1

and𝑀
2
. Denote 𝑒𝑖𝜃 = 𝑧; thus, cos 𝜃 = (𝑧2+1)/2𝑧, d𝜃 = d𝑧/𝑖𝑧.

We have

𝑀

1

= ∮

𝛾ℎ

𝑥

𝑘

1 − 𝑥

d𝜃 = ∮
|𝑧|=1

(

√

ℎ ⋅ ((𝑧

2
+ 1) /2𝑧))

𝑘

1 −

√

ℎ ⋅ ((𝑧

2
+ 1) /2𝑧)

⋅

1

𝑖𝑧

d𝑧

= −

2

1−𝑘
⋅ ℎ

𝑘/2

𝑖

∮

𝛾ℎ

(𝑧

2
+ 1)

𝑘

𝑧

𝑘
⋅ (

√

ℎ𝑧

2
− 2𝑧 +

√

ℎ)

d𝑧

= −2

2−𝑘
𝜋ℎ

𝑘/2
[Re 𝑠 (𝑀

1
, 0) + Re 𝑠(𝑀

1
, 𝑧

1
=

1 −

√

1 − ℎ

√

ℎ

)] .

(60)

Since 𝑧
1
= (1 −

√

1 − ℎ)/

√

ℎ is the first-order zero of the
equation√ℎ𝑧2 − 2𝑧 + √ℎ = 0, the residue of𝑀

1
at 𝑧
1
is

Re 𝑠 (𝑀
1
, 𝑧

1
) = lim

𝑧→𝑧1

(𝑧

2
+ 1)

𝑘

𝑧

𝑘
⋅ (

√

ℎ𝑧

2
− 2𝑧 +

√

ℎ)

⋅ (𝑧 − 𝑧

1
)

=

−2

𝑘−1

ℎ

𝑘/2
⋅

√

1 − ℎ

.

(61)

For the residue at 𝑧 = 0, we have the expansion of𝑀
1
in the

form

𝑀

1
=

(𝑧

2
+ 1)

𝑘

𝑧

𝑘
⋅ (

√

ℎ𝑧

2
− 2𝑧 +

√

ℎ)

=

1

2𝑧

⋅

((𝑧

2
+ 1)/𝑧)

𝑘

(

√

ℎ/2) ⋅ ((𝑧

2
+ 1) /𝑧) − 1

=

∞

∑

𝑙=1

2

𝑙−1
ℎ

−𝑙/2
𝑧

−1
(

𝑧

2
+ 1

𝑧

)

𝑘−𝑙

;

(62)

the coefficient of 𝑧−1 is corresponding to the residue of𝑀
1
at

𝑧 = 0; therefore,

Re 𝑠 (𝑀
1
, 0) =

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−1
ℎ

−𝑙/2
𝐶

(𝑘−𝑙)/2

𝑘−𝑙
. (63)

Substituting them into (60), we have

𝑀

1

= −2

2−𝑘
𝜋ℎ

𝑘/2 [

[

[

−2

𝑘−1

ℎ

𝑘/2
⋅

√

1 − ℎ

+

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−1
ℎ

−𝑙/2
𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

=

2𝜋

√

1 − ℎ

[

[

[

1 −

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
√

1 − ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

.

(64)

We can compute𝑀
2
in a similar way and obtain

𝑀

2

=

2𝜋

√

1 − ℎ

×

[

[

[

(−1)

𝑘
+

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

(−1)

𝑙−1
2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
√

1 − ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

.

(65)
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By the formulas (64) and (65), Φ1
𝑘,0

becomes

Φ

1

𝑘,0
=

𝜋

√

1 − ℎ

×

[

[

[

1 −

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
√

1 − ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙
+ (−1)

𝑘

+

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

(−1)

𝑙−1
2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
√

1 − ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

,

(66)

from the previous formula, it is easy to know that, if 𝑘 is odd,
Φ

1

𝑘,0
= 0, and if 𝑘 is even, formula (58) is obtained. The proof

is completed.

In a similar way, we can prove the following lemma.

Lemma 12. (i) If 𝑘 is odd, Φ2
𝑘,0
= 0.

(ii) If 𝑘 is even, then

Φ

2

𝑘,0
=

2𝜋𝑖

𝑘

√

1 + ℎ

×

[

[

[

1 −

𝑘

∑

𝑙=1

𝑙≡𝑘(mod2)

2

𝑙−𝑘
ℎ

(𝑘−𝑙)/2
𝑖

−𝑘−𝑙
√

1 + ℎ𝐶

(𝑘−𝑙)/2

𝑘−𝑙

]

]

]

.

(67)

Using Lemmas 11 and 12, it is easy to see that, if 𝑘 is even,
Φ

𝑘,0
= 0. Therefore, by Lemma 10 and the definition of Φ

𝑘,𝑗
,

if 𝑛 is even, Σ
𝑘+𝑗=𝑛

Φ

𝑘,𝑗
= 0.

Lemma 13. Consider a function of the form

𝐹 (𝑥) = 𝑃

0
(𝑥) +

𝑃

1 (
𝑥)

√
1 + 𝑥

+

𝑃

2 (
𝑥)

√
1 − 𝑥

, (68)

where 𝑃
𝑗
(𝑥) (𝑗 = 1, 2) are real polynomials of degree n and the

degree of 𝑃
0
is 𝑛
0
. Then the numberZ(𝐹) of real zeros of 𝐹(𝑥)

in 𝑈 = [0, 1), taking into account their multiplicities, satisfies
Z(𝐹) ≤ 2𝑛 + 𝑛

0
+ 2; here deg(0) = −1.

To prove Lemma 13, we need the following lemma and a
known principle, the Derivation-division algorithm.

Lemma 14. For any 𝑛 ≥ 0,𝑚 ≥ 1 and the real constants 𝛼,

D (𝑝
𝑛
(𝑥) (𝑥 + 1)

𝛼
) = 𝑞

𝑛
(𝑥) (𝑥 + 1)

𝛼−1
,

D(𝑝
𝑛
(𝑥) (

1 + 𝑥

1 − 𝑥

)

𝛼

) = 𝑞

𝑛+1
(𝑥)

(1 + 𝑥)

𝛼−1

(1 − 𝑥)

𝛼+1
,

D
𝑚
(𝑝

𝑛
(𝑥) (

1 + 𝑥

1 − 𝑥

)

𝛼

) = 𝑞

𝑛+𝑚
(𝑥)

(1 + 𝑥)

𝛼−𝑚

(1 − 𝑥)

𝛼+𝑚
.

(69)

In particular, when 𝑚 = 𝑛 + 1, formula (69) becomes in the
following form:

D
𝑛+1
(𝑝

𝑛
(𝑥) (

1 + 𝑥

1 − 𝑥

)

𝛼

) = 𝑞

𝑛
(𝑥)

(1 + 𝑥)

𝛼−(𝑛+1)

(1 − 𝑥)

𝛼+(𝑛+1)
, (70)

where 𝑝
𝑛
(𝑥), 𝑞

𝑛
(𝑥) are polynomials of degree 𝑛,D𝑛 = d𝑛/ d𝑥𝑛

with 𝑛 ≥ 1.

The previous lemma has been proved in [14] and [19].
Now, we will prove Lemma 13.

Proof. Differentiating 𝐹(𝑥) in formula (68) 𝑛
0
+ 1 times,

D𝑛0+1𝑃
0
(𝑥) = 0. According to Lemma 14 and dividing the

expression (1 + 𝑥)−1/2−(𝑛0+1), which does not vanish in 𝑈 =

[0, 1), let 𝑎 = −1/2 − (𝑛
0
+ 1); we can obtain

𝐹

1
(𝑥) ≡ (1 + 𝑥)

1/2+𝑛0+1D
𝑛0+1
𝐹 (𝑥)

= 𝑃

11 (
𝑥) + 𝑃12 (

𝑥) (

1 − 𝑥

1 + 𝑥

)

𝑎

,

(71)

where 𝑃
11
(𝑥), 𝑃

12
(𝑥) are suitable polynomials of degree 𝑛.

Applying Rolle’s theorem, it follows that Z(𝐹) ≤ Z(𝐹
1
) +

𝑛

0
+ 1.
Differentiating 𝐹

1
(𝑥) in formula (71) 𝑛 + 1 times and

applying Lemma 14 again and dividing the expression (1 −
𝑥)

𝑎−(𝑛+1)
/(1 + 𝑥)

𝑎+(𝑛+1), which does not vanish in interval
𝑈 = [0, 1), we have

𝐹

2
(𝑥) ≡ (1 − 𝑥)

−𝑎+𝑛+1
(1 + 𝑥)

𝑎+𝑛+1
D
𝑛+1
𝐹

1
(𝑥) , (72)

where𝐹
2
(𝑥) is a polynomials of degree 𝑛.Therefore according

to Rolle’s theorem, taking into account theirmultiplicities, the
total numberZ(𝐹) of real zeros of 𝐹(𝑥) in interval𝑈 = [0, 1)
satisfiesZ(𝐹) ≤ 2𝑛 + 𝑛

0
+ 2. The proof is completed.

Now, we proveTheorem 2.

Proof. From Lemma 9, we have

Φ (ℎ) =

1

2

[

[

∑

0≤𝑘+𝑗≤𝑛

𝑎

𝑘,𝑗
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)

+ ∑

0≤𝑘+𝑗≤𝑛

𝑏

𝑘,𝑗
(Φ

1

𝑘,𝑗+1
+ Φ

2

𝑘,𝑗+1
)

]

]

=

1

2

[

[

[

[

∑

0≤𝑘+𝑗≤𝑛

𝑗 even

𝑎

𝑘,𝑗
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)

+ ∑

0≤𝑘+𝑗≤𝑛

𝑗 odd

𝑏

𝑘,𝑗
(Φ

1

𝑘,𝑗+1
+ Φ

2

𝑘,𝑗+1
)

]

]

]

]

.

(73)
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By Lemmas 11 and 12, the previous formula becomes

Φ (ℎ) =

1

2

[

[

[

[

[

[

∑

0≤𝑘+𝑗≤𝑛

𝑘 odd
𝑗 even

𝑎

𝑘,𝑗
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)

+ ∑

0≤𝑘+𝑗≤𝑛

𝑘 even
𝑗 odd

𝑏

𝑘,𝑗
(Φ

1

𝑘,𝑗+1
+ Φ

2

𝑘,𝑗+1
)

]

]

]

]

]

]

.

(74)

According to Lemma 10, we have that, if 𝑗 is even,

Φ

𝜎

𝑘+1,𝑗
=

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/2−𝑠
𝐶

𝑠

𝑗/2
Φ

𝜎

𝑘+1+2𝑠,0
;

(75)

if 𝑗 is odd,

Φ

𝜎

𝑘,𝑗+1
=

(𝑗+1)/2

∑

𝑠=0

(−1)

𝑠
ℎ

(𝑗+1)/2−𝑠
𝐶

𝑠

(𝑗+1)/2
Φ

𝜎

𝑘+2𝑠,0
,

(76)

where 𝜎 = 1, 2.
According to (75) and (76), we can obtain that, if 𝑘 is odd,

𝑗 is even,

1

2

(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)

=

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/2−𝑠
𝐶

𝑠

𝑗/2

× [

𝜋

√

1 − ℎ

+

𝜋𝑖

𝑘+1+2𝑠

√

1 + ℎ

−

𝑘+1+2𝑠

∑

𝑙=1

𝑙≡𝑘+1+2𝑠(mod2)

2

𝑙−𝑘−1−2𝑠
𝜋

⋅ ℎ

(𝑘+1+2𝑠−𝑙)/2
𝐶

(𝑘+1+2𝑠−𝑙)/2

𝑘+1+2𝑠−𝑙

−

𝑘+1+2𝑠

∑

𝑙=1

𝑙≡𝑘+1+2𝑠(mod2)

2

𝑙−𝑘−1−2𝑠
𝜋

⋅ ℎ

(𝑘+1+2𝑠−𝑙)/2
𝑖

−𝑘−1−2𝑠−𝑙
𝐶

(𝑘+1+2𝑠−𝑙)/2

𝑘+1+2𝑠−𝑙
] ,

(77)

and if 𝑘 is even, 𝑗 is odd,

1

2

(Φ

1

𝑘,𝑗+1
+ Φ

2

𝑘,𝑗+1
)

=

(𝑗+1)/2

∑

𝑠=0

(−1)

𝑠
ℎ

(𝑗+1)/2−𝑠
𝐶

𝑠

(𝑗+1)/2

× [

𝜋

√

1 − ℎ

+

𝜋𝑖

𝑘+2𝑠

√

1 + ℎ

−

𝑘+2𝑠

∑

𝑙=1

𝑙≡𝑘+2𝑠(mod2)

2

𝑙−𝑘−2𝑠
𝜋

⋅ ℎ

(𝑘+2𝑠−𝑙)/2
𝐶

(𝑘+2𝑠−𝑙)/2

𝑘+2𝑠−𝑙

−

𝑘+2𝑠

∑

𝑙=1

𝑙≡𝑘+2𝑠(mod2)

2

𝑙−𝑘−2𝑠
𝜋

⋅ ℎ

(𝑘+2𝑠−𝑙)/2
𝑖

−𝑘−2𝑠−𝑙
𝐶

(𝑘+2𝑠−𝑙)/2

𝑘+2𝑠−𝑙
] .

(78)

From (77) and (78), we have, if 𝑘 is odd, 𝑗 is even,

1

2

[𝑎

𝑘,𝑗
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
) + 𝑏

𝑘+1,𝑗−1
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)]

= (𝑎

𝑘,𝑗
+ 𝑏

𝑘+1,𝑗−1
)

×

𝑗/2

∑

𝑠=0

(−1)

𝑠
ℎ

𝑗/2−𝑠
𝐶

𝑠

𝑗/2

× [

𝜋

√

1 − ℎ

+

𝜋𝑖

𝑘+1+2𝑠

√

1 + ℎ

−

𝑘+1+2𝑠

∑

𝑙=1

𝑙≡𝑘+1+2𝑠(mod2)

2

𝑙−𝑘−1−2𝑠
𝜋

⋅ ℎ

(𝑘+1+2𝑠−𝑙)/2
𝐶

(𝑘+1+2𝑠−𝑙)/2

𝑘+1+2𝑠−𝑙

−

𝑘+1+2𝑠

∑

𝑙=1

𝑙≡𝑘+1+2𝑠(mod2)

2

𝑙−𝑘−1−2𝑠
𝜋

⋅ ℎ

(𝑘+1+2𝑠−𝑙)/2
𝑖

−𝑘−1−2𝑠−𝑙
𝐶

(𝑘+1+2𝑠−𝑙)/2

𝑘+1+2𝑠−𝑙
] .

(79)

Let𝑚 = [(𝑛 + 1)/2] and

Ψ

𝑘,𝑗
=

1

2

[𝑎

𝑘,𝑗
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
) + 𝑏

𝑘+1,𝑗−1
(Φ

1

𝑘+1,𝑗
+ Φ

2

𝑘+1,𝑗
)] ,

(80)

where 𝑘 is odd, 𝑗 is even.



12 Abstract and Applied Analysis

According to (79), the Abelian integralΦ(ℎ) of system (5)
with 𝐶(𝑥, 𝑦) = 1 − 𝑥4 has the following form:

Φ (ℎ) = ∑

0≤𝑘+𝑗≤𝑛

Φ

𝑘,𝑗

=

𝑚

∑

𝑢=1

∑

𝑘+𝑗=2𝑢−1

𝑘 odd

Ψ

𝑘,𝑗
+

1

2

𝑛

∑

𝑗=1

𝑗 odd

𝑏

0,𝑗
(Φ

1

0,𝑗+1
+ Φ

2

0,𝑗+1
)

=

𝑚

∑

𝑢=0

(𝑃

𝑢−1
(ℎ) +

𝑄

𝑢−1
(ℎ)

√

1 − ℎ

+

𝑅

𝑢−1
(ℎ)

√

1 + ℎ

)

≡ 𝑃

𝑚−1 (
ℎ) +

𝑄

𝑚−1 (
ℎ)

√

1 − ℎ

+

𝑅

𝑚−1 (
ℎ)

√

1 + ℎ

,

(81)

where 𝑃
𝑚
(ℎ), 𝑄

𝑚
(ℎ), and 𝑅

𝑚
(ℎ) denote a polynomial of vari-

able ℎ of degree𝑚, whose coefficients are linear combinations
of 𝑎

𝑘,𝑗
, 𝑏
𝑘,𝑗
(0 ≤ 𝑘 + 𝑗 ≤ 𝑛).

According to Lemma 13, taking into account their multi-
plicities, themaximumnumber of real zeros of (81) in interval
𝑈 = [0, 1) is 3𝑚 − 1. From (73), (75), and (76), we know that
Φ(0) = 0. Hence, Φ(ℎ) has at least 3𝑚 − 2 real zeros in the
open interval (0, 1).

Applying the Poincaré-Pontryagin theorem, the upper
bound of number of limit cycles for the system (5) with
𝐶(𝑥, 𝑦) = 1 − 𝑥

4 is 3𝑚 − 2. That is, the maximum number
of limit cycles bifurcating from the period orbits of system
(5) with 𝜀 = 0 is 3[(𝑛 + 1)/2] − 2. The proof of Theorem 2 is
completed.

Acknowledgments

The second author is partially supported by the National
Natural Science Foundation of China, Grants no. 11171309
and no. 11172269, and the Zhejiang Provincial Natural Science
Foundation of China Grant no. Y6110195.

References

[1] W. A. Coppel, “Some quadratic systems with at most one
limit cycle,” in Dynamics Reported, vol. 2, pp. 61–88, Wiley,
Chichester, UK, 1989.

[2] X. D. Xie and S. L. Cai, “The planar quadratic system with an
invariant parabola has at most one limit cycle,” Chinese Science
Bulletin, vol. 17, pp. 1540–1542, 1993.

[3] A. Zegeling and R. E. Kooij, “Uniqueness of limit cycles in
polynomial systems with algebraic invariants,” Bulletin of the
Australian Mathematical Society, vol. 49, no. 1, pp. 7–20, 1994.

[4] S. L. Shui, “The planar quadratic system with an invariant
cubic curve has at most one limit cycle,” Acta Mathematicae
Applicatae Sinica, vol. 24, no. 4, pp. 590–595, 2001.

[5] J. Llibre, R. Ramı́rez, and N. Sadovskaia, “On the 16th Hilbert
problem for algebraic limit cycles,” Journal of Differential Equa-
tions, vol. 248, no. 6, pp. 1401–1409, 2010.

[6] X. Zhang, “The 16th Hilbert problem on algebraic limit cycles,”
Journal of Differential Equations, vol. 251, no. 7, pp. 1778–1789,
2011.

[7] C. Christopher and C. Li, Limit Cycles of Differential Equa-
tions, Advanced Courses in Mathematics. CRM Barcelona,
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