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Using bifurcation methods and the Abelian integral, we investigate the number of the limit cycles that bifurcate from the period
annulus of the singular point when we perturb the planar ordinary differential equations of the form x = —yC(x, y), y = xC(x, y)
with an arbitrary polynomial vector field, where C(x, y) = 1 — x® or C(x, y) = 1 — x™.

1. Introduction and Main Results

In the qualitative theory of real planar differential systems,
one of the main problems is to determine the existence and
number of the limit cycles of the polynomial differential
system. In the general case, this is a very difficult task.
Therefore, the researchers consider the weak Hilbert 16th
problem. In addition, the existence of invariant algebraic
curves in polynomial systems may influence the number of
limit cycles. For example, the planar quadratic systems with
one invariant line or conic curve or cubic curve can have at
most one limit cycle [1-4]. In [3], the authors proved that
the cubic systems with four invariant lines have at most one
limit cycle. In [5, 6], the authors proved that a real polynomial
system of degree m with irreducible invariant algebraic curves
has at most 1 + (m — 1)(m — 2)/2 limit cycles if m is even and
(m —1)(m — 2)/2 limit cycles if m is odd.

In this paper, we consider the weak Hilbert 16th problem
that the unperturbed systems have a linear center and an
invariant algebraic curve

x=-yC(x,y) +eP(x, y),
@
y=xC(xy)+eQ(x,y),

where P(x, y) and Q(x, y) are polynomials of degree 1 in R?,
the algebraic curve C(x, y) satisfies C(0,0) #0,and € € Risa
sufficient small parameter.

It is obvious that, on the region Q = {(x, y) | C(x, y) # 0},
the system (1) is equivalent to the following form:

. P(xy)
X y+£c(x)y),
(2)
y:x+eQ(x’y).
C(x,y)

When ¢ = 0, system (2) is a Hamilton system with a family of
ovals

Yh:{(x’y) € IRZIH(x,y):xZ+y2:h, h>0}. (3)
Define the Abelian integral

P(x,y)dy-Q(x,y)dx
O (h) =
m=$ =20

which is also called first-order Melnikov function of (2).
According to the Poincaré-Pontryagin theorem [7], the num-
ber of isolated real zeros of ®(h) controls the number of limit
cycles of system (1) that bifurcate from the periodic annulus
of the perturbed system (1) with ¢ = 0. That is to say, when
the ®(h) does not vanish exactly, the maximum number of
the isolated real zeros of ®(h) is corresponding to the upper
bound of the number of limit cycles which bifurcate from
periodic annulus of unperturbed systems.

For the arbitrary polynomials P(x, ), Q(x, y) of given
degree n, the number of limit cycles of (2) depends on

, (4)



the different choices of C(x, y). At present, several works have
figured out this problem for the particular choices of C(x;, y).
In [8], the authors studied the system (1) with C(x, y) = 1+ x
and proved that the number of limit cycles that bifurcate
from the period orbits is at most #n. The authors in [9, 10]
studied the number of limit cycles which bifurcate from (1)
when ¢ = 0 with C(x,y) = 1 + Bx + Ax? and C(x, y) =
1 + ax + by + cx(x* + y?), respectively. The authors in [11
studied the number of limit cycles of system (1) with C(x, y)
y2 + Ax* + Bx + C. In [12], the authors studied the number
of limit cycles of system (1) with C(x, y) = (x + a)(x + b)
and obtain that the system can have at most 3[(n — 1)/2] + 2
limit cycles if a #b and 2[(n — 1)/2] + 1 if a = b, respectively.
In [13], the authors studied the case the curves C(x,y) = 0
are three lines, two of them parallel and one perpendicular,
and [14, 15] studied the case the curves are k (k > 3) lines,
and any two of them are parallel or perpendicular directions.
The authors in [16] studied the case the curves are consistent
by k nonzero points. The authors in [17] considered system
(1) with C(x, y) = 1 + x* and proved that 3[(n + 1)/2] — 2
limit cycles can at most bifurcate from the periodic orbits of
the unperturbed system. In [18], the authors proved that the
system (1) with C(x, y) = (1 — x)™ has at most n+ m — 1 limit
cycles.

The aim of this paper is to investigate the upper bound
of the number of limit cycles bifurcate from the periodic
annulus of the center of the unperturbed system (1) (¢ =
0) with the perturbed polynomials P(x, y), Q(x, y) of given
degreen,and C(x, y) =1 - x” or C(x, y) = 1 — x*.

Consider the planar differential system

—

x=-yC(x,y)+e Z ak)jxkyj,

0<k+j<n

y=xC(x,y)+e z bk)jxkyj,

0<k+j<n

©)

where ¢ € R is a sufficient small parameter. Applying the
Abelian integral, we obtain the following two main theorems.

Theorem 1. If C(x,y) = 1 — x°, the lower bound of the
maximum number of limit cycles bifurcating from the period
orbits of system (5) with e = 0is 4[(n + 1)/2] - 2.

Theorem 2. If C(x,y) = 1 — x* the upper bound of the
maximum number of limit cycles bifurcating from the period
orbits of system (5) with e = 0is 3[(n + 1)/2] - 2.

Our primary purpose is to calculate the concrete expres-
sion of ®(h); then we can obtain the number of limit cycles
of the perturbed system (5) by determining the isolated real
zeros of Abelian integral @ (h). In Sections 2 and 3, we prove
these two theorems with the different methods, respectively.
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2. The proof of Theorem 1

Taking the change of variable x = Vhcos6, y = Vhsin6 (0 <
h < 1), we have

@ (h)
Z . a _xk+1 j+z b ‘xk j+1
_é 0<k+j<n %,j Yy 0<k+jzn Ok, jX Y a0
Y 1-x°
Z e+ r" ak,jcosk+lesinj6+bk)jcoskesinjﬂe
- okt j<n 0 1 — h*2cos’0
= Y (A (1) + b D 1y (),
0<k+j<n
(6)
where
®, . = kD2 J 2 cos*Osin’O @)
ki o 1-Hh32cos0

Firstly, we have the following obvious result.
Lemma 3. If jis odd, @ ; = 0 (k > 0).

According to Lemma 3, we can rewrite the ®(h) as
follows:

@ (h)

n
a0 Dgir0 + Z Z (ak,j + bk+1,j—1) Dy,
s=1k+j=s (8)

M=

Il
—

s

n
+ Z bo,s Qo541+
s=0
sodd

Denote ] = [(n+ 1)/2] and a,ij = & j + bey1,jo1 (j = 1); then
n 1
Zas,O(DHl,O = z (A25-1,0P250 + A2s20P2s-10) >
s=0 s=1

n 1
Z bO,s(DO,erl = ZbO,ZS—l(DO,Zs’
s=0 s=1

sodd

n

> 2 (b i) P )

=0 k+j=s

—

1 s—
;
= D5 2m-1,0m P2s-2m,2m
s=1 1

3
I

m=1

s—1
.
+ Za25—2m72,2mq)25—2m—1,2m .
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Therefore, we have

@ (h)

1 s—1
-
= A5 1,0Po0 + Z s 2m-1,mP 25-2m2m
s=1 m=1

(10)
+ 002521025 + A25-2,0Pas-10
s—1
+ Z a252m2,2m®2$2m1,2m> .
m=1
Let
o Qi-nt
I, = 2m, L, = J- cos”0dl = 2n——— (i>1),
0 2i!!
k
A= Z(—l)rC£F2j+2,,
r=0
(11)
B, = ayi_1002i6j
i-1 (12)
+ Z Dy st pmAmi-mesj T bo2ic1Aisj
m=1
i1
Cij = dig0lhiiej + Z By om-2omAmi-mi3js1> (13)
m=1

*
>,

where a;; = 0ifi < 0. Then, we have the following lemma.
Lemma 4. Abelian integral ®(h) has an expansion in the form
Oh)=nh (Po +piht ph et P31h3l

+P3l+1h3l+1 + P3l+2h3l+2 +o (h3l+2)) , (14)

he(0,1),

where

[(j+1)/3]
(Bj—3s+1,s + Cj—35,5) > lf] <1,
s=0
[1/3]
pj = Z (Bl—3s,u+s + Cl—3s—1,u+s) >
s=0

ifj=1+3u-1 (u=123..),

[(1-2)/3] [1/3]

pj= Z By 3 aupsi1 t ch—3s,u+s’
s=0 s=0

(15)

ifj=1+3u (m=0,12,..),

[(-1)/3]
pj = Z (Bl—3s—1,u+s + Cl—3s—2,u+s) >
s=0

ifj=1+3u-2 (u=123...).

Proof. Firstly, we have
(DZS,O

7 cos®6
=k J ————d6
o 1—h*2cos’0

2
=K J (coszse +hcos®™0 + - -

+h*cos™ %0 + - ) do
=h (r25 + h3r23+6 Tt h3ir25+6i T ) >
cI)Zs—Zm,Zm

hS J»271 coszs_szSinz’"G

o 1-h3¥2cos?0

s < T n 2s—2m+2r
=h Z(—l) C,, L (cos 0

r=0

3 25-2m+6+2
+ h’cos™ Mg

i 25-2m+2 i
+-'-+h3lCOS s—2m+ r+619
+---)do

3
m,s—m + h Am,s—m+3

=h*(A
Tt h3iAm,s—m+3i T ) >
(D(),Zs
m sin**0
=K J ———d6
0o 1-Hh"%cos%0
. o 2 3 246
=h') (-1 rC’J cos”0 + hcos™*°0
;f ree) (

e
+oo 4+ hcos? o0

+--)d6
=1 (A + WAt + h°A 5+ ),

cI)Zs—l,()

2s—1
_ 4 0

EPESTE j cos a0

o 1-Hh2cos%0

2
— hsfl/2 J (h3/2CO825+26 + h9/2COSZS+86 Foeen
0
+h3/2+3iCO325+2+6i9 . ) do

2
=K J (hcoszs+20 + h'cos™*%0

0

143i 2s+2+6i
+ o+ b cos™ 0. ) dB

s 4 143i
=h (hr23+2 +h g+t h "Dt



(D25—2m—1,2m

_ i J 7 cos® ¥ 10sin*™Q
0 1 - h32cos%0

— hS—l/Z

m 21
o Z(_l)rC:nJ (h3/zcoszs—2m+2+2r6
r=0 0

2 25—2 2
+h9/ COSS m+8+ r9+_“

+h3/2+3iCOSZS—2m+2+2r+6i . ) d6

= hs (hAm,s—m+1 + h4Am,s—m+4

1+3i
+oth Am,s—m+1+3i+"')'

(16)
Substituting the previous formulas into (10), we have

@ (h)
1
:ZW
s=1

s—1
*
X [(%S—I,OFZS + Z a25—2m—1,2mAm,s—m

m=1

+by2s1 As,())

s—1
3 *
+h <a25—1,0r23+6 + Z Dyg am12mAms—m+3

m=1

+b0,251As,3) LI

s—1
3i *
+h <a25—1,0r25+6i + Z Bys rmtomAms-m3i

m=1

+b0,251As,3i) +oee

s—1
*
+ h <a252,0r25+2 + Z azs—zm—z,zmAm,s—erl >

m=1

s—1
4 *
+h <a’2$2,0r25+8 + Z a252m2,2mAm,sm+4) toee

m=1

1+3i
+h <a25—2,0 Dogreiva

s—1
*
+Za2s—2m—2,2mAm,s—m+3i+l e

m=1

17)
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Using (12) and (13), (17) can be written as follows:

@ (h)
l .
= Zhs (BS’O + h3BS,1 +oo 4 h3’BS’,~
s=1

+ -+ hCyy + H*Cyy + -+ C +)

=h [(BLO + h3BL1 +ee h3iBl,i +-+hCyy

+h*'Cyy 4+ HC )

+h (Bz,o + h3Bz)1 et h3"B2’i

+++hCyy +h4C2,1 +---+h1+3iC2,i +)

+ 1 (B3,0 + h3B3,1 +ot h3iB3)i +.- +hCy

+h4C3)1 +een +h1+3iC3,i + ) +oen
+H! (Bl)o + h3Bl,1 +t h3iB,’,- + -

+hCpo + K*Cpy + -+ KC 4 - )]

(18)
Thus, we have
ifj <1,
Pj=Bjao+Bjo ++ B+ +Cjy
(19)
+Cia -+ Cg -,
ifj=1+3u-1w=123..),
Pj =B+ B s+ Bl
(20)
ot Gy + Gy o A G
iftj=1+3u u=012,---),
Pi=Bioun tBisu t o+ Biai g i
(21)
+o G+ G+ + G+
ifj=1+3u-2wu=123,..)
Pi=Biiut B gyt + Bt
(22)

+CutCsyn + +C it

wherei = 0,1,2,...and B;; = C; ; = 0if i < 0. The proof is
completed. O
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* *
By Lemma 4, we regard ay; ), @y; 35, @155 byoj 1>
, a, a, a’ (j = 1) as free parameters
A2j-2,00 Bajapr-+ o ypja> Gopjn \J 2 p )
and denote vectors

* %
&; = (‘12;'—1,0’“2]'—3,2’ s 0150 bo,Zj—l) J

(23)
Bj= (a2j—2,0’a2*j—4,2’ e ’a;,zj—4>ag,2j-z)
and Jacobian matrices
o (Pj—1’Pj+2’Pj+5> e ’P4j—1)
J;= , (24)
aocj
H. - a(Pj’pj+3’Pj+6"'"P4j—3) (25)
] a/)’j >
I
_ 0 (Po> P1> Pa>+++> Pi=2> Pi=1> Pi> -+ > Pai=5> Pai—4> Pai=3> Pai—1)
0 (ay, Brs %, Brs 043, B3> o> s fBy) ’
(26)

where j,I > 1. Then, J; is (j + 2) x (j + 2) matrix, H; is j X j
matrix, and I; is (4] — 1) x (% + 21) matrix.

For matrices J., H f and I;, we have Lemmas 5 and 6,
respectively.

Lemma 5. For j > 1, det(]j)qEO and det(Hj);EO. That is,
rank(]j) =j+1, rank(Hj) =j.

Proof. According to Lemma 4 and (24), we can obtain that

r2j Al,j—l Az,j—z e Aj*Z,Z Ajfl,l AJ',O

r2j+6 Al,j+2 Az,j+1 Aj—Z,S Aj—1,4 Aj,s

r2j+12 Al,j+5 A2,j+4 o Aj—2,8 Aj—1,7 Aj,s

]' _ 1"zj+1:3 Al,j+8 A2,j+7 Ajfz,n Aj—l,lO Aj,9
]

Igje Argjoa Azgjs o+ Ajaszin Ajisjia Ajsjs

Lj  Avgja Asgjo o Ajasjen Ajazin Ajsj

(27)

5
Define (j + 1) x (j + 1) matrix
ith
i-2 ~i-1
1 (-1) Ci—l
1 (-nc
1,2
1 -1 Ci—l (28)
D, = o .
1 (-1)°C.,
1
1
1
Then, we have
I _
]j = ]jD2D3'”Dj+1
l"2j r2j—2 r2]'—4 IRV I, Iy
r2;’+6 1“2]‘+4 r2j+2 T Iy I
lﬂzj+12 l"2]'+10 r2j+8 o T Ty I
= F2j+18 r2j+16 112]'+14 e Ty Iy Iig
rsj*G r8j—8 r8j—10 ’ r6j—2 r6j—4 1"61-,6
r8j rs;'—z r8]'—4 ’ F6j+4 r6j+2 r6j
(29)
iy -1 /.
Let l"l.] = jl/il; then I = 2711“} (j = 1). Denote
Tj_k
2j+4k-1 2j+4k-3 6k+3 6k+1 6k—1
r2j+6k r2j+6k—2 o T Tski2 Tk
2jtak+5  2j+ak+3 6k+9 6k+7 6k+5
r2j+6k+6 r2j+6k+4 o Tgeno Takes Tgkre
= ; : : } : (30)
8j-2k-7 8j-2k-9 6j-3 6j-5 6j-7
rs;‘—a r8j—8 F6j+zk—2 r6j+2k—4 r6j+2k—6
[8i-2k-1 8j-2k-3 o3 6j+1 61
8j 8j-2 T Yeji2k+d Tejr2k+2 T6j+2k

(0<k<j),

where T;_ is (j — k + 1) x (j = k + 1) matrix. Then, det(J;) =
det(J}) = (27)*" det(T).
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We add entries of the i + 1th (0 < i < j— k + 1) column
which times —(2(j + 2 — i) — 1)/2(j + 2 — i) to the ith column

and obtain
1
Ti — Ty
0 0 0 ot
6k +3 2jrak+3 6k +3  2jrakt1 6k + 3 _6kss [k
j+3k 2j+6k+6 j+3k—-1 2j+6k+4 4 4 1 8k+8 8k+6
12k + 6 _2j1ak+9 12k + 6 _jrak+7 12k + 6 611 pok+11
j+3k 2j+6k+12 j+3k—-1 2j+6k+10 4 4 1 Skr14 8k+12
) . : : (31)
(6k +3) (j— k- l)rsj—zk—9 (6k +3) (j— k- l)r8j—2k—1l (6k +3)(j—k—1) 6j7 657
j+3k 8j-6 j+3k-1 8j-8 4k + 1 6j+2k—4 "6j+2k—6
(6k +3) (j — k) [Bi-2k-3 (6k +3) (j — k) ks (6k+3) (i—k) 61 [6i-1
j+ 3k 8j j+ 3k -1 8j-2 4k +1 6j+2k+2 6j+2k
6k-1
~ <Ol><(j—k) Lok )
= . ,
Tipa &
where g, = (Fg,f:g , Tg,’:llzl s r:j;;kfa’ 1“66 ;:Zlk)T. We can write According to Lemma 4 and (25), we have
T;’_k_l as follows:
0 e
Ti i
6k + 3 L A Ay o Ajss Ajan
B 12k + 6 Dijte  Anjrz Agjn - Ajag Ajos
B ’ . 1—‘2/‘+12 Al,j+5 Az,j+4 Aj73,9 Aj*2,8 (34)
(6k +3) (j — k) -
| (32)
j+ 3k Tgjis Argjr0 Azajrnt 0 Ajazjs Ajasjy
1 Tgjin Avgjr Assjs 0 Ajszjis Ajasja
XTj j+3k-1 ;
1 By the above proof procedure, we can obtain rank(H;_;) =
T 1 j — 1 in a similar way. That is rank(H j) = j. The proof is
completed. O
j—k+216k—1 i~k .
g}]ie)fl)(flle;[((jj:jik) )= GV g (6k +3)75(j = K)N((4k)!/(j + Lemma 6. Forl > 1, rank(l;) = 4] - 1.
Ndet(T; .
j—k-1
Summarizing above results, we have Proof. Firstly, if I = 1,
det(J.) = (27_[)]'+1(_1)(j+2)+(j+1)+~~~+33j9j—115]‘—2
( ]) I = 9 (po» P1> P3)
| =
(6§ -9) (65 =3) jl (j—1)!---2! 0 (e, B1)
U7 ... ot L 4 8! (33) L, Ay 0 I, Ajp 0 (35)
871624 8j '(+3)'(+6)'
A/ -\ :
= 0 0 r4 — FS A1’3 O >
(4j—4)!
"'m%(); I A3 0 0 0 I,

therefore, rank(J j) =j+1. it is easy to know that rank(I;) = 3.
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If I = 2, we have
_ 0 (Po» P1> Pa P3> Pa> P> P7)

I
’ 0 (ay> Br> o, By)
b, AAj, 0 0 0 0 0 ©0
0 0 T, A, A,y I, 0 0
0 0 0 0 0 0 I, A,
=| I, A, 0 0 0 0 0 O ,
0 0 Ty Ay Ay3 Ty 0 0
0 0 0 0 0 0T, A
0 0 Ig Ay AygIig 00
LAy, 0 0 0 00 0 (36)
Ig A,3; 0 0 0 00 O
0 0 I, Aj; A,y 0 0 O
— 0 0 Iy A, A)30 0 0
0 0 T Aj; A,y 0 0 0
0 0 0 0 0 0T3 A,
0 0 0 0 0 0TI, A,

1
— ]2 .
H2 02 X 1

Then, by Lemma 5, rank(l,) =
rank(H,) = 7.

Forl > 3,lety = (py py»---
s Pash Vi = (P P

Pai_3); we have

rank(J;) + rank(J,) +

’Pl—3); le = (P12 P>
sPu1) Vi = (P Prazs---s

o(viovivioni)
0 (o1s Brs s B -5 045 By)
According to Lemma 4 and the definitions of J; and Hj,

simplifying it by elementary transformation of matrix, we
obtain

L — I = (37)

(38)
H; 0025141

Therefore, rank(l;) = rank(E,_,) + rank(J,_,) + rank(J;) +
rank(H;) = 41 - 1. The proof is completed. O

By Lemma6, it is obvious that py, pi, Par---s Przs
Pi1> P>+« > Paj—a> Paj—3> Pay—q are independent. Now, we have
the following lemma.

Lemma 7. Forl > 1, one can write p; as follows:

Prisu-1 = X1 P11 X Prp o X Py

u>l

Prisu-2 = V1Pi2 * Yo2Pri1 + 00+ YViPy-s»

u>Il-1,

(39)

Prisu = Z1P11 T Z2P1sa t 0+ Z1Py35

u>Il-1,

where (x1, x5, . . .
nonzero vectors.

s X101 (V1> Vo oo V1) and (24, 25, . ..., 27) are

Proof. AccordingtoLemma 4,if j = [+3u-1 (u=1,2,3,...),

[1/3]
Pj = Z (Blf3s,u+s + Cl*3571,u+s) : (40)

s=0

Substituting p;_;, P - - -
obtain a linear equation

, py—; into the first equation, we

dser =1 X (w>1), (41)

T
where X' = (x;, %5 x) % disyyr = (Daew Az
A2J+3u_2,...,A1_1,3u+1,A1,3u)T. According to Lemmab5,
det(]lT )#0, (41) has unique solution X = (xi,x;,...,

x| )T #0. That s, the first formula holds.
Ifj=1+3u-2 (u=1,23,...), in a similar way, we can
prove that the second formula holds.
Ifj=1+3u(u=0,1,2,...), we have

[(-2)/3] [1/3]
pj = Z Bl—35—2,u+s+1 + ch—3s,u+s> (42)
s=0 s=0

substituting py, 1, Pregs- -
obtain a linear equation

, Pai_ into the third equation, we

G =H'Z (w>1-1), (43)

_ T _
where Z = (21,2, .. >21) "> Gz = (Dapguszs At s Azisu-1>

s A3 AL +2)T. According to  Lemmas,
det(HlT) #0, (43) has unique solution Z = (z{,zg, ey
z )T #0. That is, the third formula also holds. The proof is
completed. O

Now, we prove Theorem 1.

Proof. For h € (0, 1), Abelian integral ®(h) has an expansion
of the following form:

@ (h) = h(p0 + ph+ pzh2 et p4,_3h41_3
(44)
oy i+ pa W 4o (h‘”*l)).
According to Lemma 6, for [ > 1, py, p1> Pas---> Prozs P15

Di>- -+ > Pai—a> Pai—3» Py~ are independent.

Letpy =py=py =" =Py =pys=0andpy, | =
1; then, by Lemma 7, p,_, = 0. Thus (44) becomes ®(h) =
W + o(h™), and ®(h) > 0if h € (0, 1). Furthermore, we take
Po =P =Py == Pys = Ppyy=0thenpy, =0
still holds. Choosing proper p,_; € (-1,0) such that ®(h) =
p4l_3h4l_2 + '+ o(h™) <0, by Descartes’ rule of signs, (44)
has a root h; on interval (0, 1).

Letpy = pp = pp = -+ = Pygs = Pys = 0
and choose proper py_4 (py_s € (0,1)) so that O(h) =
Pl + pysh*2 + WY 4 o(h") > 0; then (44) has the
second root h, on interval (0, 1). In a similar way, we take
proper p; (i = 4l — 6,4 — 7,...,2,1,0) in turn such that



pipiy < 0and |p;| € (0,1). According to Descartes” rule
of signs, we can obtain 4] — 4 zeros hs, hy, ..., hy_s, hy_, on
interval (0, 1).

Applying the Poincaré-Pontryagin theorem, the system
(5) with C(x, y) = 1 - x° can have at least 4[(n + 1)/2] - 2
limit cycles for suitable @ ; and b ; (0 < k+ j < n). The proof
of Theorem 1 is completed. O

3. The proof of Theorem 2

In this section, we will prove Theorem 2. At first, all the
primary computations to express the Abelian integral ®(h)
and some concerned lemmas are presented.

Taking the change of variable x = Vhcos6, y = Vhsin
(0 < h < 1), then by (4) we have

K+l j k. j
o (h) = Cﬁ Zosk+j5n A, i X HJ’] + ZOSk+an by jx )’JHdG
" 1-—x*
L/ 2
=—-(D +07),
- )
(45)
where
K+l j k. j+l
o - Cﬁ 20§k+an e, j X Tyl 20£k+j£n b jx y* 40
" 1-x? ’
K+l j k. j+l
= 95 ZOSk+an A, i X Tyl ZOSk+j£n bk,jx y 40
" 1+ x2 '
(46)
Denote
k. j k. j
@4=¢ LS S S
BT T, 1 - X2 w(l=-x)(1+x)
s s (47)
@zzé LS S
BT T, 1+ X2 y (1= ix) (1 + ix)
where i* = —1; then we have
1 1 1
o = kz (“k,jq)kn,j +bk,jq)k,j+1)’
0<k+j<n
(48)
= Y (a0 + b P 1)
2 k,j U k+1,j k,j ¥ kj+1) "
0<k+j<n
Lemma 8. Letw, =1, w, = -1, w;y =i, wy = —i; then
do 2m
\}, = # = 5
§ Vi 1- wsx 1-— wzh (49)
S
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wheres =1,2,3,4. And

q)l _ do _ 2
$o T, A-x)(1+x) VI-h
1 xd@ -0
Lo 7 (1 =x)(1+x) ’
(50)
q)z _ do _ 2
00 Y, A—ix)(1+ix)  VI+h
(D2 xd6

= —— =0.
Lo p (L=ix) (1 + ix)

Proof. We use the residue theorem to compute the ¥, (s =
1,2,3,4).
When x = Vh cos 6, we have

do o gg
- - | O
ml-wx Jo 1-wVhcos0

Let €9 = z; then cos@ = (2% + 1)/2z, d§ = dz/iz. The
previous formula becomes
v L e
el=11 - w,Vh- (22 + 1) 22) iz
24 dz
i V=1 0,Vhz? - 2z + w,Vh

1 1- 1-(0?]1
= —4mRes ,Z =
w,Vhz? - 2z + w,Vh w,Vh
z-z
= —4m lim !
=2 Vhz? - 2z + w,Vh
p— 271 .
1 - w?h
(52)

hence (49) holds. For the first formula of (50),

o 3§, d )
00 2 wl—wx 1+ wyx

_l( 2 N 2 )_ 2
2\Vi-h V1-h/) 1-h

and the others can be proved in a similar way. The proof is
completed. O

(53)

Lemma 9. If j is odd, the integrands in CD}() jand CDi) j are odd
; j - . 1
fu;qctzons with respect to the variable 0; therefore, Oy ; = 0 and

o} = 0.
Define

j+1

k+1, j k
a. X + b, .x
(Dk,j _ (j) k, j Y k. j ¥ d@; (54)
Yn

1-x*

then, according to Lemmas 8 and 9 and the definition of ®(h),
one knows that @, = 0.
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Lemma 10. If j is even, then

jl2

1 _ i/(2—s) 1

yj = 2D HEIC 10000 (55)
s=0

jl2

;= Y () RCIC @

j12 7 k+2s,0° (56)
s=0

Proof. If j is even, then

ki x(h - x? e
q>,1(j=<J§ ﬂd@:(ﬁ Gl Ukl S
’ Yh Yn

1 - x? 1 - x?

jl2 ) xk+2$

$ Y vmic, a0 (57)
Vi omb 1-x

jl2 '/2 .

Z(—l)shj SC;/zq)k+2s,0'

s=0

Similarly, (56) also holds. The proof is completed. O

Lemma 11. (i) Ifk is odd, (Di,o =0.
(ii) Ifk is even, then

1 2

ol - ==
T ih
‘ (58)
Z 2l—kh(k—l)/Z mcl((k:ll)/z

I=1
I=k(mod?2)

X|1-

Proof. When k > 1,

k k k
@Dio:ﬂ; x—2d0:1<4> x d6+qg x d6>
’ pl-—x 2 wl—x wlt+x

(M, + M,).

1

T2

(59)

We use the residue theorem to compute the integrals M;

and M,. Denote ¢ = z; thus, cos 0 = (22 +1)/2z,d0 = dz/iz.
We have

M,

& g (D)
) énmde B CJ>IZI=1 1-Vh-((z% +1) /22) ' Edz

_ _21_k~hk/24> (22+1)
B i nzk-(\/ﬁzz—22+\/ﬁ

)dz
= 27 Kppkl? [Res(Ml,O) + Res(Ml,z1 = ﬂ)] .

Vh
(60)

Since z; = (1 - V1 - h)/Vh is the first-order zero of the
equation Vhz® — 2z + Vh = 0, the residue of M, at z, is

ey
Res(M,,z,) = Zh_rglzk . (\/Ezz EPY \/E) (z-27,)
(61)
k-1

For the residue at z = 0, we have the expansion of M, in the
form

@
zk. (\/ﬁzz -2z + \/ﬁ)

R (2 +1)/z) )

2z (\/E/Z) ((2+1)/2) -1

k-1

o0 2
1, -1/2 - +1
:Zzz lhl/Zzl(Z ) :
z

=1

the coefficient of 2™

z = 0; therefore,

is corresponding to the residue of M, at

k
I-1 ~1/2 ~(k=D)/2
RCS(MI,O) = Z 2"h / Cl(c—l ) . (63)
I=k(mbd2)

Substituting them into (60), we have
M,

k-1

_—
KkZ A1 —h

k
— _227kn_hk/2 Z 2lfll/l—l/ZCI(ck_—ll)/Z
=1

I=k(mod2)

k
2n I-kq (k-1)/2 (k=1)/2
= 1- 2"h 1-hC
— D \ e

=1
I=k(mod?2)
(64)

We can compute M, in a similar way and obtain

k
Z (_1)1—1 Hlkpk-D)/2 mcz(ck-_zl)/z

=1
I=k(mod2)

X (—1)k+

(65)
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By the formulas (64) and (65), CD,IC’O becomes

1 T
M VI-h

k
1= Y A FREDENTI RGN 4 (1)t
1

I=
I=k(mod2)

k
+ Z (_1)1—121—kh(k—1)/2mc(k—l)/Z ,

k-1
=1
I=k(mod2)
(66)

from the previous formula, it is easy to know that, if k is odd,
(D,lc,o = 0, and if k is even, formula (58) is obtained. The proof
is completed. O

In a similar way, we can prove the following lemma.

Lemma 12. (i) If k is odd, d)i)o =0.
(ii) If k is even, then

o - 2mik
O T+ h

k
) 1- Y 2RO TR

I=1
I=k(mod2)
(67)

Using Lemmas 11 and 12, it is easy to see that, if k is even,
@, , = 0. Therefore, by Lemma 10 and the definition of ®;_ i
if nis even, 2yt jonPp; = 0.

Lemma 13. Consider a function of the form

B P (x) P(x)
F(x)=Py(x)+ N + N (68)

where P;(x) (j = 1,2) are real polynomials of degree n and the
degree of Py is ny. Then the number Z (F) of real zeros of F(x)
inU = [0, 1), taking into account their multiplicities, satisfies
Z(F) <2n+mny+ 2; here deg(0) = 1.

To prove Lemma 13, we need the following lemma and a
known principle, the Derivation-division algorithm.

Lemma 14. For anyn > 0, m > 1 and the real constants «,

D (p, (x) (x + 1)) = g, (x) (x + 1)*7,

P (p,, (x) (if—i)“) = Gy (%) L (69)

(1 _ x)()H-l ’

g™ <Pn (x)<1i'_i) > =q,., (x) &

(1- x)a+m

Abstract and Applied Analysis

In particular, when m = n + 1, formula (69) becomes in the
following form:

- 1 o 1 a—(n+1)
2 1<pn(x)(1f—fc) >=qn(x) Elfgﬁ (70)

where p,(x), q,(x) are polynomials of degreen, 2" = d"/ dx"
withn > 1.

The previous lemma has been proved in [14] and [19].
Now, we will prove Lemma 13.

Proof. Differentiating F(x) in formula (68) n, + 1 times,
@™ Py(x) = 0. According to Lemma 14 and dividing the
expression (1 + x)_l/ 2-0*1) \which does not vanish in U =
[0,1),leta = —=1/2 — (n, + 1); we can obtain

Fl (x) = (1 + x)1/2+n0+19n0+lp (x)
(71)

=P11(x)+P12(x)<:—i> >

where P;,(x), P,(x) are suitable polynomials of degree n.
Applying Rolle’s theorem, it follows that Z(F) < Z(F,) +
ny + 1.

Differentiating F,(x) in formula (71) n + 1 times and
applying Lemma 14 again and dividing the expression (1 —
x)ck(wrl)/(1 + x)a+(n+1)
U = [0, 1), we have

, which does not vanish in interval

F2 (x) = (1 _ x)—a+n+1(1 + x)a+n+1gn+1F1 (X) , (72)

where F,(x) is a polynomials of degree n. Therefore according
to Rolle’s theorem, taking into account their multiplicities, the
total number & (F) of real zeros of F(x) in interval U = [0, 1)
satisfies Z(F) < 2n + ny + 2. The proof is completed. O

Now, we prove Theorem 2.

Proof. From Lemma 9, we have

1
D (h) = 3 Z A j (®11<+1,j + ®i+l,j)

0<k+j<n

+ Z bk,j ((Dllc,j+1 + CDi,jﬁ-l)

0<k+j<n

(73)
== Z . j (q)llcﬂ,j + (Dliﬂ,j)

0<k+j<n
jeven

+ Z bk,j (q)llc,j+l + q)i,jﬂ)

0<k+j<n
jodd
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By Lemmas 11 and 12, the previous formula becomes

1 1 2
®(h) == Z a j (q)k+1,j + q)k+1,j)
0<k+j<n

kodd
jeven

(74)

+ z bk]( k]+1+®k]+1)

0<k+j<n
k even
jodd

According to Lemma 10, we have that, if j is even,

jl2
o _ s1.j/2=5 s o .
®k+1,j - Z(_l) h Cj/zq)k+1+25,o’
s=0

(75)

if j is odd,

(+/2

(j+1)/2—
z ( 1 hJ SC(]+1)/2 k+2s,0°
s=0

o7 (76)

,]+1

where o = 1, 2.
According to (75) and (76), we can obtain that, if k is odd,

jis even,

L/
E ((Dk+1] + (Dk+1 ])
jl2 e
— J/4=s
- Y,
5=
y T . ﬂik+1+25
Vi-h Vith
k+1+2s
. Z 2l—k—l—ZSn_
& (77)
I=k+14+25(mod2)

(k+142s-1)/2 ~(k+142s-1)/2
+h Ck+1+25 1

k+1+2s Lk
—k—-1-2
2 ‘n

=1
I=k+1+42s(mod2)

(k+1+42s-1)/2 .—k—1-2s—1 ~(k+1+2s-1)/2
- h l Ck+1+25—l 4

and if k is even, j is odd,

1 1 2
5 (q)k T s ]+1)
U (j+1)/2
_ s1.(j+1)/2=s ~s
= ) Dk Cirnp
s=0
y T . ﬂik+25
1-h Vl+h
k+2s
_ Z 2l—k—257_[
=1
I=k+2s(mod?2)
(k+25-1)/2 ~(k+2s-1)/2
-h Ck+23 1
k+2s
_ z 2l—k—257_[
=1
I=k+2s(mod?2)

(k+25-1)/2 i—k=25—1 ~(k+25-1)/2
~h ! Chrast

From (77) and (78), we have, if k is odd, j is even,
1 1 2 1 2
5 [ak,j (q)k+1,j + q)k+1,j) + by 1 ((Dk+1,j + (Dk+1,j)]
= (ak,j + bk+1,j—1)

il "
N —S S
x YHEC),

s=0
P . 7_L,l~k+1+25
Vi-h V1+h
k+1+2s
B Z Ql-k-1-2s
I=1
I=k+142s(mod2)
(k+142s-1)/2 ~(k+142s-1)/2
“h Ck+1+25—l
k+142s
_ Z zl—k—l—an_
=1
I=k+14+2s(mod2)
(k+1+2s— l)/2 —k—1-2s—1 ~(k+1+2s-1)/2
“h Ck+1+25 1
Letm = [(n+1)/2] and

1

(78)

(79)

1
Wi = 5 [ak,j ((DII<+1,j + q)lzc+1,j) + beiy, 1 (®k+1] + ‘Dk+1 ;)]

where k is odd, j is even.

(80)
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According to (79), the Abelian integral @ (h) of system (5)
with C(x, y) = 1 — x* has the following form:

D= Y @

0<k+j<n
m 1 n

DDA SEED N M CHREL I
u=1k+j=2u—1 j=1

k odd jodd (81)

< Q,1(h) R, (h)>

= P, (h)+ +
L;) ( 1) Vi-h  V1+h

Qu.1(h) R, (h)

=P . (h)+ + R

-1 () Vi-h  Vi+h

where P, (h), Q,,(h), and R,,(h) denote a polynomial of vari-
able /1 of degree m, whose coefficients are linear combinations
ofa;, b ; (0<k+j<n).

According to Lemma 13, taking into account their multi-
plicities, the maximum number of real zeros of (81) in interval
U = [0,1) is 3m — 1. From (73), (75), and (76), we know that
®(0) = 0. Hence, ®(h) has at least 3m — 2 real zeros in the
open interval (0, 1).

Applying the Poincaré-Pontryagin theorem, the upper
bound of number of limit cycles for the system (5) with
Cle,y) =1- x* is 3m — 2. That is, the maximum number
of limit cycles bifurcating from the period orbits of system
(5) with € = 01is 3[(n + 1)/2] — 2. The proof of Theorem 2 is
completed. O
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