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In this paper, we introduce the notion ofmultivalued contractivemappings in complex valuedmetric space and prove commonfixed
point theorems for two multivalued contractive mappings in complex valued metric spaces without using the notion of continuity.
Our results improve and extend the results of Azam et al. (2011).

1. Introduction

The Banach fixed point theorem was used to establish
the existence of a unique solution for a nonlinear integral
equation [1]. Moreover, this theorem plays an important
role in several branches of mathematics. For instance, it has
been used to show the existence of solutions of nonlinear
Volterra integral equations and nonlinear integrodifferential
equations in the Banach spaces and to show the convergence
of algorithms in computational mathematics. Because of its
importance and usefulness for mathematical theory, it has
become a very popular tool of mathematical analysis in many
directions. Nadler [2] introduced the concept of multivalued
contraction mappings and obtained the fixed points results
for multivalued mappings. Huang and Zhang [3] introduced
the notion of cone metric space which is a generalization of
metric spaces.They extendedBanach contraction principle to
cone metric spaces. Since then, Arshad et al. [4], Azam and
Arshad [5], Latif and Shaddad [6], Karapınar [7], and many
others obtained fixed point theorems in cone metric spaces
(see [8]).

The fixed point results regarding rational contractive con-
ditions cannot be extended in conemetric spaces. Azam et al.
[9] introduced the concept of complex valued metric spaces
and obtained sufficient conditions for the existence of com-
mon fixed points of a pair of mappings satisfying contractive

type condition involving rational inequalities. In the same
way, Rouzkard and Imdad [10] established some common
fixed point theorems satisfying certain rational expressions
in complex valued metric spaces which generalize, unify, and
complement the results of Azam et al. [9]. Recently, Sintu-
navarat andKumam [11] obtained commonfixed point results
by replacing constant of contractive condition with control
functions. For more details in the subject, we refer to [12–19].

The aim of this paper is to extend the results of Azam
et al. [9] to multivalued mappings in complex valued metric
spaces.

2. Preliminaries

Let C be the set of complex numbers and 𝑧
1
, 𝑧
2
∈ C. Define a

partial order ≾ on C as follows:

𝑧
1
≾ 𝑧
2

iff Re (𝑧
1
) ⩽ Re (𝑧

2
) ,

Im (𝑧
1
) ⩽ Im (𝑧

2
) .

(1)

It follows that

𝑧
1
≾ 𝑧
2 (2)



2 Abstract and Applied Analysis

if one of the following conditions is satisfied:

(i) Re (𝑧
1
) = Re (𝑧

2
) , Im (𝑧

1
) < Im (𝑧

2
) ,

(ii) Re (𝑧
1
) < Re (𝑧

2
) , Im (𝑧

1
) = Im (𝑧

2
) ,

(iii) Re (𝑧
1
) < Re (𝑧

2
) , Im (𝑧

1
) < Im (𝑧

2
) ,

(iv) Re (𝑧
1
) = Re (𝑧

2
) , Im (𝑧

1
) = Im (𝑧

2
) .

(3)

In particular, we will write 𝑧
1
⋨𝑧
2
if 𝑧
1
̸= 𝑧
2
and one of (i),

(ii), and (iii) is satisfied and we will write 𝑧
1
≺ 𝑧
2
if only (iii)

is satisfied. Note that

0 ≾ 𝑧
1
⋨ 𝑧
2
󳨐⇒
󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
<
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
,

𝑧
1
⪯ 𝑧
2
, 𝑧
2
≺ 𝑧
3
󳨐⇒ 𝑧
1
≺ 𝑧
3
.

(4)

Definition 1. Let 𝑋 be a nonempty set. Suppose that a map-
ping 𝑑 : 𝑋 × 𝑋 → C satisfies

(1) 0 ≾ 𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a complex valued metric on𝑋, and (𝑋, 𝑑)
is called a complex valuedmetric space. A point 𝑥 ∈ 𝑋 is called
interior point of a set 𝐴 ⊆ 𝑋 whenever there exists 0 ≺ 𝑟 ∈ C
such that

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴. (5)

A point 𝑥 ∈ 𝑋 is called a limit point of 𝐴 whenever for
every 0 ≺ 𝑟 ∈ C,

𝐵 (𝑥, 𝑟)⋂ (𝐴 \ {𝑥}) ̸= 𝜙. (6)

𝐴 is called openwhenever each element of𝐴 is an interior
point of 𝐴. Moreover, a subset 𝐵 ⊆ 𝑋 is called closed
whenever each limit point of 𝐵 belongs to 𝐵. The family

𝐹 = {𝐵 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 0 ≺ 𝑟} (7)

is a subbasis for a Hausdorff topology 𝜏 on𝑋.
Let {𝑥

𝑛
} be a sequence in𝑋 and 𝑥 ∈ 𝑋. If for every 𝑐 ∈ C

with 0 ≺ 𝑐 there is 𝑛
0
∈ N such that for all 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥) ≺ 𝑐,

then {𝑥
𝑛
} is said to be convergent, {𝑥

𝑛
} converges to 𝑥, and 𝑥 is

the limit point of {𝑥
𝑛
}. We denote this by lim

𝑛→∞
𝑥
𝑛
= 𝑥, or

𝑥
𝑛
→ 𝑥, as 𝑛 → ∞. If for every 𝑐 ∈ Cwith 0 ≺ 𝑐 there is 𝑛

0
∈

N such that for all 𝑛 > 𝑛
0
, 𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚
) ≺ 𝑐, then {𝑥

𝑛
} is called

a Cauchy sequence in (𝑋, 𝑑). If every Cauchy sequence is
convergent in (𝑋, 𝑑), then (𝑋, 𝑑) is called a complete complex
valued metric space. We require the following lemmas.

Lemma 2 (see [9]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in𝑋. Then {𝑥

𝑛
} converges to 𝑥

if and only if |𝑑(𝑥
𝑛
, 𝑥)| → 0 as 𝑛 → ∞.

Lemma 3 (see [9]). Let (𝑋, 𝑑) be a complex valued metric
space and let {𝑥

𝑛
} be a sequence in 𝑋. Then {𝑥

𝑛
} is a Cauchy

sequence if and only if |𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚
)| → 0 as 𝑛 → ∞.

3. Main Results

Let (𝑋, 𝑑) be a complex valued metric space.
We denote by 𝑁(𝑋) (resp., 𝐶𝐵(𝑋)) the set of nonempty

(resp., closed and bounded) subsets of a complex valued
metric space. Now, we denote 𝑠(𝑧

1
) = {𝑧

2
∈ C : 𝑧

1
⪯ 𝑧
2
}

for 𝑧
1
∈ C, and 𝑠(𝑎, 𝐵) = ∪

𝑏∈𝐵
𝑠(𝑑(𝑎, 𝑏)) = ∪

𝑏∈𝐵
{𝑧 ∈ C :

𝑑(𝑎, 𝑏) ⪯ 𝑧} for 𝑎 ∈ 𝑋 and 𝐵 ∈ 𝐶(𝑋). For 𝐴, 𝐵 ∈ 𝐶(𝑋), we
denote

𝑠 (𝐴, 𝐵) = (⋂

𝑎∈𝐴

𝑠 (𝑎, 𝐵))⋂(⋂

𝑏∈𝐵

𝑠 (𝑏, 𝐴)) . (8)

Remark 4. Let (𝑋, 𝑑) be a complex valuedmetric space. IfC =
𝑅, then (𝑋, 𝑑) is a metric space. Moreover, for 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋),
𝐻(𝐴, 𝐵) = inf 𝑠(𝐴, 𝐵) is the Hausdorff distance induced by 𝑑.

Let (𝑋, 𝑑) be a complex valuedmetric space and let𝐶𝐵(𝑋)
be a collection of nonempty closed subsets of𝑋. Let 𝑇 : 𝑋 →
𝐶𝐵(𝑋) be a multivalued map. For 𝑥 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋),
define

𝑊
𝑥
(𝐴) = {𝑑 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} . (9)

Thus, for 𝑥, 𝑦 ∈ 𝑋

𝑊
𝑥
(𝑇𝑦) = {𝑑 (𝑥, 𝑢) : 𝑢 ∈ 𝑇𝑦} . (10)

Definition 5. Let (𝑋, 𝑑) be a complex valued metric space.
A nonempty subset 𝐴 of 𝑋 is called bounded from below if
there exists some 𝑧 ∈ C, such that 𝑧 ⪯ 𝑎 for all 𝑎 ∈ 𝐴.

Definition 6. Let (𝑋, 𝑑) be a complex valuedmetric space. A
multivalued mapping 𝐹 : 𝑋 → 2

C is called bounded from
below if for 𝑥 ∈ 𝑋 there exists 𝑧

𝑥
∈ C such that

𝑧
𝑥
⪯ 𝑢, ∀𝑢 ∈ 𝐹𝑥. (11)

Definition 7. Let (𝑋, 𝑑) be a complex valuedmetric space.The
multivalued mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to have lower
bound property (l.b. property) on (𝑋, 𝑑) if for any 𝑥 ∈ 𝑋, the
multivalued mapping 𝐹

𝑥
: 𝑋 → 2

C defined by

𝐹
𝑥
(𝑇𝑦) = 𝑊

𝑥
(𝑇𝑦) (12)

is bounded from below. That is, for 𝑥, 𝑦 ∈ 𝑋 there exists an
element 𝑙

𝑥
(𝑇𝑦) ∈ C such that

𝑙
𝑥
(𝑇𝑦) ⪯ 𝑢 (13)

for all 𝑢 ∈ 𝑊
𝑥
(𝑇𝑦), where 𝑙

𝑥
(𝑇𝑦) is called lower bound of 𝑇

associated with (𝑥, 𝑦).

Definition 8. Let (𝑋, 𝑑) be a complex valuedmetric space.The
multivalued mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to have the
greatest lower boundproperty (g.l.b. property) on (𝑋, 𝑑) if the
greatest lower bound of𝑊

𝑥
(𝑇𝑦) exists in C for all 𝑥, 𝑦 ∈ 𝑋.

We denote 𝑑(𝑥, 𝑇𝑦) by the g.l.b of𝑊
𝑥
(𝑇𝑦). That is,

𝑑 (𝑥, 𝑇𝑦) = inf {𝑑 (𝑥, 𝑢) : 𝑢 ∈ 𝑇𝑦} . (14)
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Theorem 9. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings
with g.l.b. property such that

𝜆𝑑 (𝑥, 𝑦) +

𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦) + 𝛾𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑆𝑥, 𝑇𝑦)

(15)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆, 𝜇, and 𝛾 are nonnegative real numbers
with 𝜆 + 𝜇 + 𝛾 < 1. Then 𝑆, 𝑇 have a common fixed point.

Proof. Let 𝑥
0
be an arbitrary point in 𝑋 and 𝑥

1
∈ 𝑆𝑥
0
. From

(15), we have

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑆𝑥
0
, 𝑇𝑥
1
) .

(16)

This implies that

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ ( ⋂

𝑥∈𝑆𝑥0

𝑠 (𝑥, 𝑇𝑥
1
)) ,

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥, 𝑇𝑥
1
) ∀𝑥 ∈ 𝑆𝑥

0
.

(17)

Since 𝑥
1
∈ 𝑆𝑥
0
, we have

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, 𝑇𝑥
1
) ,

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, 𝑇𝑥
1
) = ⋃

𝑥∈𝑇𝑥1

𝑠 (𝑑 (𝑥
1
, 𝑥)) .

(18)

So there exists some 𝑥
2
∈ 𝑇𝑥
1
such that

𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(19)

Therefore,

𝑑 (𝑥
1
, 𝑥
2
)

⪯ 𝜆𝑑 (𝑥
0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝛾𝑑 (𝑥

1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

.

(20)

By using the greatest lower bound property (g.l.b property)
of 𝑆 and 𝑇, we get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝜆𝑑 (𝑥

0
, 𝑥
1
)

+

𝜇𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
) + 𝛾𝑑 (𝑥

1
, 𝑥
1
) 𝑑 (𝑥
0
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

= 𝜆𝑑 (𝑥
0
, 𝑥
1
) +

𝜇𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

,

(21)

which implies that

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+

𝜇
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥

0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

= 𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜇
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥
0
, 𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜇
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
,

(1 − 𝜇)
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤

𝜆

(1 − 𝜇)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

= ℎ
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
, where ℎ = 𝜆

(1 − 𝜇)

< 1.

(22)

Inductively, we can construct a sequence {𝑥
𝑛
} in 𝑋 such that

for 𝑛 = 0, 1, 2, . . .

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)
󵄨
󵄨
󵄨
󵄨
≤ ℎ
𝑛 󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

(23)

with ℎ = 𝜆/(1 − 𝜇) < 1, for 𝑥
2𝑛+1
∈ 𝑆𝑥
2𝑛
and 𝑥

2𝑛+2
∈ 𝑇𝑥
2𝑛+1

.
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Now for𝑚 > 𝑛, we get

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
)
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨

≤ [ℎ
𝑛
+ ℎ
𝑛+1
+ ⋅ ⋅ ⋅ + ℎ

𝑚−1
]
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ [

ℎ
𝑛

1 − ℎ

]
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
.

(24)

Therefore,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨
≤

ℎ
𝑛

1 − ℎ

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(25)

This implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists 𝑢 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑢 as 𝑛 → ∞.

We now show that 𝑢 ∈ 𝑇𝑢 and 𝑢 ∈ 𝑆𝑢. From (15), we have

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ 𝑠 (𝑆𝑥
2𝑘
, 𝑇𝑢) .

(26)

This implies that

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ ( ⋂

𝑥∈𝑆𝑥2𝑘

𝑠 (𝑥, 𝑇𝑢)) ,

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ 𝑠 (𝑥, 𝑇𝑢) ∀𝑥 ∈ 𝑆𝑥
2𝑘
.

(27)

Since 𝑥
2𝑘+1
∈ 𝑆𝑥
2𝑘
, we have

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ 𝑠 (𝑥
2𝑘+1
, 𝑇𝑢) .

(28)

By definition,

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ 𝑠 (𝑥
2𝑘+1
, 𝑇𝑢) = ⋃

𝑢
󸀠
∈𝑇𝑢

𝑠 (𝑑 (𝑥
2𝑘+1
, 𝑢
󸀠
)) .

(29)

There exists some 𝑢
𝑘
∈ 𝑇𝑢 such that

𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

∈ 𝑠 (𝑑 (𝑥
2𝑘+1
, 𝑢
𝑘
)) ;

(30)

that is,

𝑑 (𝑥
2𝑘+1
, 𝑢
𝑘
)

⪯ 𝜆𝑑 (𝑥
2𝑘
, 𝑢)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑢, 𝑇𝑢) + 𝛾𝑑 (𝑢, 𝑆𝑥

2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑢)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

.

(31)

By using the greatest lower bound property (g.l.b. property)
of 𝑆 and 𝑇, we have

𝑑 (𝑥
2𝑘+1
, 𝑢
𝑘
)

⪯ 𝜆𝑑 (𝑥
2𝑘
, 𝑢) + (𝜇𝑑 (𝑥

2𝑘
, 𝑥
2𝑘+1
) 𝑑 (𝑢, 𝑢

𝑘
)

+ 𝛾𝑑 (𝑢, 𝑥
2𝑘+1
) 𝑑 (𝑥
2𝑘
, 𝑢
𝑘
)) (1 + 𝑑 (𝑥

2𝑘
, 𝑢))
−1

.

(32)

Since

𝑑 (𝑢, 𝑢
𝑘
) ⪯ 𝑑 (𝑢, 𝑥

2𝑘+1
) + 𝑑 (𝑥

2𝑘+1
, 𝑢
𝑘
) , (33)

using (32), we get

𝑑 (𝑢, 𝑢
𝑘
)

⪯ 𝑑 (𝑢, 𝑥
2𝑘+1
) + 𝜆𝑑 (𝑢, 𝑥

2𝑘+1
)

+

𝜇𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
) 𝑑 (𝑢, 𝑢

𝑘
) + 𝛾𝑑 (𝑢, 𝑥

2𝑘+1
) 𝑑 (𝑥
2𝑘
, 𝑢
𝑘
)

1 + 𝑑 (𝑥
2𝑘
, 𝑢)

,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑢, 𝑢

𝑘
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑢, 𝑥

2𝑘+1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑢, 𝑥

2𝑘+1
)
󵄨
󵄨
󵄨
󵄨

+(𝜇
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑢, 𝑢

𝑘
)
󵄨
󵄨
󵄨
󵄨

+ 𝛾
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑢, 𝑥

2𝑘+1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑘
, 𝑢
𝑘
)
󵄨
󵄨
󵄨
󵄨
)

×
󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥

2𝑘
, 𝑢)
󵄨
󵄨
󵄨
󵄨

−1

.

(34)
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Taking the limit as 𝑘 → ∞, we get |𝑑(𝑢, 𝑢
𝑘
)| → 0 as 𝑘 →

∞. By [9, lemma 2], we have 𝑢
𝑘
→ 𝑢 as 𝑘 → ∞. Since 𝑇𝑢

is closed, 𝑢 ∈ 𝑇𝑢. Similarly, it follows that 𝑢 ∈ 𝑆𝑢. Thus, 𝑆 and
𝑇 have a common fixed point.

By setting 𝛾 = 0 in Theorem 9, we get the following
corollary.

Corollary 10. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings
with g.l.b property such that

𝜆𝑑 (𝑥, 𝑦) + 𝜇

𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑆𝑥, 𝑇𝑦) (35)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆, 𝜇 are nonnegative real numbers with
𝜆 + 𝜇 < 1. Then 𝑆, 𝑇 have a common fixed point.

By setting 𝑆 = 𝑇 in Theorem 9, we get the following
Corollary.

Corollary 11. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 : 𝑋 → 𝐶B(𝑋) be multivalued mapping with
g.l.b property such that

𝜆𝑑 (𝑥, 𝑦) +

𝜇𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦) + 𝛾𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑇𝑥, 𝑇𝑦)

(36)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆, 𝜇, and 𝛾 are nonnegative real numbers
with 𝜆 + 𝜇 + 𝛾 < 1. Then 𝑇 has a fixed point in𝑋.

By Remark 4, we have the following corollaries from
Theorem 9.

Corollary 12. Let (𝑋, 𝑑) be a complete metric space and let
𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings such that

𝐻(𝑆𝑥, 𝑇𝑦) ≤ 𝜆𝑑 (𝑥, 𝑦)

+

𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦) + 𝛾𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(37)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆, 𝜇, and 𝛾 are nonnegative real numbers
with 𝜆 + 𝜇 + 𝛾 < 1. Then 𝑆, 𝑇 have a common fixed point.

Remark 13. By equating 𝜆, 𝜇, 𝛾 to 0 in all possible combi-
nations, one can derive a host of corollaries which include
the Banach fixed point theorem for multivalued mappings in
complete metric space.

Example 14. Let𝑋 = [0, 1]. Define 𝑑 : 𝑋 × 𝑋 → C by

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
𝑒
𝑖𝜃
, 𝜃 = tan−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦

𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (38)

Then (𝑋, 𝑑) is a complex valued metric space. Consider the
mappings 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) defined by

𝑆𝑥 = [0,

1

5

𝑥] , 𝑇𝑥 = [0,

1

10

𝑥] . (39)

The contractive condition of main theorem is trivial for the
case when 𝑥 = 𝑦 = 0. Suppose without any loss of generality
that all 𝑥, 𝑦 are nonzero and 𝑥 < 𝑦. Then

𝑑 (𝑥, 𝑦) =
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
𝑒
𝑖𝜃
,

𝑑 (𝑥, 𝑆𝑥) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 −

𝑥

5

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖𝜃
,

𝑑 (𝑦, 𝑇𝑦) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 −

𝑦

10

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖𝜃
,

𝑑 (𝑦, 𝑆𝑥) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 −

𝑥

5

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖𝜃
,

𝑑 (𝑥, 𝑇𝑦) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 −

𝑦

10

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖𝜃
,

𝑠 (𝑆𝑥, 𝑇𝑦) = 𝑠 (

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

5

−

𝑦

10

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖𝜃
) .

(40)

Consider,

𝜆
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
+

𝜇 |𝑑 (𝑥, 𝑆𝑥)|
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑦, 𝑇𝑦)

󵄨
󵄨
󵄨
󵄨
+ 𝛾
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑦, 𝑆𝑥)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥, 𝑇𝑦)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

= 𝜆
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨

+

𝜇 |𝑥 − (𝑥/5)|
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨
+ 𝛾
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑥/5)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

= 𝜆
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨

+

𝜇 |𝑥 − (𝑥/5)|
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨
+ 𝛾
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑥/5)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

.

(41)

Clearly, for any value of 𝜇 and 𝛾 and 𝜆 = 1/5, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

5

−

𝑦

10

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

5

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨

+

𝜇 |𝑥 − (𝑥/5)|
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨
+ 𝛾
󵄨
󵄨
󵄨
󵄨
𝑦 − (𝑥/5)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 − (𝑦/10)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

.

(42)

Thus,

𝜆𝑑 (𝑥, 𝑦) +

𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦) + 𝛾𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑆𝑥, 𝑇𝑦) .

(43)

Hence, all the conditions of our main theorem are satisfied
and 0 is a common fixed point of 𝑆 and 𝑇.
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In the following results, we considered the Kannan type
contractive condition involving rational expressions.

Theorem 15. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings
with g.l.b property such that

𝑎𝑑 (𝑥, 𝑆𝑥) + 𝑏𝑑 (𝑦, 𝑇𝑦) + 𝑐

𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑆𝑥, 𝑇𝑦)

(44)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎+𝑏+𝑐 < 1.Then 𝑆 and𝑇 have a common
fixed point.

Proof. Let 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑆𝑥
0
. From (44), we get

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑆𝑥
0
, 𝑇𝑥
1
) .

(45)

This implies that

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ ( ⋂

𝑥∈𝑆𝑥0

𝑠 (𝑥, 𝑇𝑥
1
)) ,

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥, 𝑇𝑥
1
) ∀𝑥 ∈ 𝑆𝑥

0
.

(46)

Since 𝑥
1
∈ 𝑆𝑥
0
, we have

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, 𝑇𝑥
1
) ,

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑥
1
, 𝑇𝑥
1
) = ⋃

𝑥∈𝑇𝑥1

𝑠 (𝑑 (𝑥
1
, 𝑥)) .

(47)

So there exists some 𝑥
2
∈ 𝑇𝑥
1
, such that

𝑎𝑑 (𝑥
0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(48)

That is,
𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

0
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

1
, 𝑇𝑥
1
)

+ 𝑐

𝑑 (𝑥
0
, 𝑆𝑥
0
) 𝑑 (𝑥
1
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

.

(49)

By using the greatest lower bound property (g.l.b property)
of 𝑆 and 𝑇, we get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

0
, 𝑥
1
) + 𝑏𝑑 (𝑥

1
, 𝑥
2
) + 𝑐

𝑑 (𝑥
0
, 𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

(50)

which implies that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+ 𝑏
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

+ 𝑐

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥

0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.

(51)

Since |𝑑(𝑥
0
, 𝑥
1
)| < |1 + 𝑑(𝑥

0
, 𝑥
1
)|, we have

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+ 𝑏
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
+ 𝑐
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
,

(1 − 𝑏 − 𝑐)
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤

𝑎

(1 − 𝑏 − 𝑐)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
.

(52)

Thus,
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤

𝑎

(1 − 𝑏 − 𝑐)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

= 𝑙
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
, where 𝑙 = 𝑎

(1 − 𝑏 − 𝑐)

< 1.

(53)

Inductively, we can construct a sequence {𝑥
𝑛
} in 𝑋 such that

for 𝑛 = 0, 1, 2, . . .
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑙
𝑛 󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

(54)

with 𝑙 = 𝑎/(1−𝑏−𝑐) < 1, for 𝑥
2𝑛+1
∈ 𝑆𝑥
2𝑛
and 𝑥
2𝑛+2
∈ 𝑇𝑥
2𝑛+1

.
Now for𝑚 > 𝑛, we get
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
)
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨

≤ [𝑙
𝑛
+ 𝑙
𝑛+1
+ ⋅ ⋅ ⋅ + 𝑙

𝑚−1
]
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨

≤ [

𝑙
𝑛

1 − 𝑙

]
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
,

(55)

and so

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)
󵄨
󵄨
󵄨
󵄨
≤

𝑙
𝑛

1 − 𝑙

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(56)

This implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists 𝜐 ∈ 𝑋 such that 𝑥
𝑛
→ 𝜐 as 𝑛 → ∞.

We now show that 𝜐 ∈ 𝑇𝜐 and 𝜐 ∈ 𝑆𝜐. So from (44), we get

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑆𝑥
2𝑛
, 𝑇𝜐) .

(57)
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This implies that

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ ( ⋂

𝑥∈𝑆𝑥2𝑛

𝑠 (𝑥, 𝑇𝜐)) ,

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑥, 𝑇𝜐) ∀𝑥 ∈ 𝑆𝑥
2𝑛
.

(58)

Since 𝑥
2𝑛+1
∈ 𝑆𝑥
2𝑛
, we have

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑥
2𝑛+1
, 𝑇𝜐) .

(59)

By definition,

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑥
2𝑛+1
, 𝑇𝜐) = ⋃

𝜐
󸀠
∈𝑇𝜐

𝑠 (𝑑 (𝑥
2𝑛+1
, 𝜐
󸀠
)) .

(60)

There exists some 𝜐
𝑛
∈ 𝑇𝜐 such that

𝑎𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

∈ 𝑠 (𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
)) ;

(61)

that is,

𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
) ⪯ 𝑎𝑑 (𝑥

2𝑛
, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝜐, 𝑇𝜐)

+ 𝑐

𝑑 (𝑥
2𝑛
, 𝑆𝑥
2𝑛
) 𝑑 (𝜐, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

.

(62)

By using the greatest lower bound property (g.l.b property)
of 𝑆 and 𝑇, we get

𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
) ⪯ 𝑎𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1
) + 𝑏𝑑 (𝜐, 𝜐

𝑛
)

+ 𝑐

𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
) 𝑑 (𝜐, 𝜐

𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

.

(63)

Now by using the triangular inequality, we get

𝑑 (𝜐, 𝜐
𝑛
) ⪯ 𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑑 (𝑥

2𝑛+1
, 𝜐
𝑛
)

⪯ 𝑑 (𝜐, 𝑥
2𝑛+1
) + 𝑎𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1
)

+ 𝑏𝑑 (𝜐, 𝜐
𝑛
) + 𝑐

𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
) 𝑑 (𝜐, 𝜐

𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

.

(64)

That is,

(1 − 𝑏)
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝜐

𝑛
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝑥

2𝑛+1
)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
)
󵄨
󵄨
󵄨
󵄨

+ 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
) 𝑑 (𝜐, 𝜐

𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(65)

It follows that

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝜐

𝑛
)
󵄨
󵄨
󵄨
󵄨
≤

1

(1 − 𝑏)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝑥

2𝑛+1
)
󵄨
󵄨
󵄨
󵄨
+

𝑎

(1 − 𝑏)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
)
󵄨
󵄨
󵄨
󵄨

+

𝑐

(1 − 𝑏)

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝜐

𝑛
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 + 𝑑 (𝑥

2𝑛
, 𝜐)
󵄨
󵄨
󵄨
󵄨

.

(66)

By letting 𝑛 → ∞ in the above inequality, we get
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝜐

𝑛
)
󵄨
󵄨
󵄨
󵄨
󳨀→ 0 as 𝑛 󳨀→ ∞. (67)

By [9, Lemma 2], we have 𝜐
𝑛
→ 𝜐 as 𝑛 → ∞. Since 𝑇𝜐

is closed, 𝜐 ∈ 𝑇𝜐. Similarly, it follows that 𝜐 ∈ 𝑆𝜐. Thus, 𝑆 and
𝑇 have a common fixed point.

Corollary 16. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings
with g.l.b property such that

𝛼 (𝑑 (𝑥, 𝑆𝑥) + 𝑑 (𝑦, 𝑇𝑦)) ∈ 𝑠 (𝑆𝑥, 𝑇𝑦) (68)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝛼 < 1/2.Then 𝑆 and𝑇 have a common
fixed point.

By setting 𝑆 = 𝑇 in Theorem 15, we get the following
corollary.

Corollary 17. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings with
g.l.b property such that

𝑎𝑑 (𝑥, 𝑇𝑥) + 𝑏𝑑 (𝑦, 𝑇𝑦) + 𝑐

𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

∈ 𝑠 (𝑇𝑥, 𝑇𝑦)

(69)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎 + 𝑏 + 𝑐 < 1. Then 𝑇 has a fixed point.

By Remark 4 we have the following corollaries.

Corollary 18. Let (𝑋, 𝑑) be a complete metric space and let
𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mappings such that

𝐻(𝑆𝑥, 𝑇𝑦) ≤ 𝑎𝑑 (𝑥, 𝑆𝑥) + 𝑏𝑑 (𝑦, 𝑇𝑦) + 𝑐

𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(70)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎, 𝑏, and 𝑐 are nonnegative real numbers
with 𝑎 + 𝑏 + 𝑐 < 1. Then 𝑆, 𝑇 have a common fixed point.

Remark 19. By writing 𝑎, 𝑏, 𝑐 in all possible combinations,
one can derive a host of corollaries which include the Kannan
fixed point theorem for multivalued mappings in complete
metric space.
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In the following results, we considered theChatterjea type
locally contractive condition involving rational expressions.

Theorem 20. Let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued
mappings with the g.l.b property on complete complex valued
metric space (𝑋, 𝑑), 𝑥

0
∈ 𝑋, and 0 ≺ 𝑟 ∈ C. If 𝑆 and 𝑇 satisfy

𝑎𝑑 (𝑦, 𝑆𝑥) + 𝑏𝑑 (𝑥, 𝑇𝑦) + 𝑐 [

𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

]∈𝑠 (𝑆𝑥, 𝑇𝑦)

(71)

for all 𝑥, 𝑦 ∈ 𝐵(𝑥
0
, 𝑟) and

(1 − 𝑘) 𝑟 ∈ 𝑠 (𝑥
0
, 𝑆𝑥
0
) , (72)

where 𝑎, 𝑏, and 𝑐 are nonnegative real numbers with 𝑘 = 𝑏/(1−
𝑏) < 1, then 𝑆 and 𝑇 have a common fixed point in 𝐵(𝑥

0
, 𝑟).

Proof. Let 𝑥
0
be an arbitrary point in 𝑋. From (72), one can

easily prove that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
≤ (1 − 𝑘) |𝑟| . (73)

Thus, we have 𝑥
1
∈ 𝐵(𝑥

0
, 𝑟). From (71), we get

𝑎𝑑 (𝑥
1
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

0
, 𝑇𝑥
1
) + 𝑐 [

𝑑 (𝑥
1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

]

∈ 𝑠 (𝑆𝑥
0
, 𝑇𝑥
1
) .

(74)

This implies that

𝑎𝑑 (𝑥
1
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

0
, 𝑇𝑥
1
) + 𝑐 [

𝑑 (𝑥
1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

]

∈ 𝑠 (𝑥
1
, 𝑇𝑥
1
) .

(75)

By the definition, we can take 𝑥
2
∈ 𝑇𝑥
1
such that

𝑎𝑑 (𝑥
1
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

0
, 𝑇𝑥
1
) + 𝑐 [

𝑑 (𝑥
1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

]

∈ 𝑠 (𝑑 (𝑥
1
, 𝑥
2
)) .

(76)

By the definition, we get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

1
, 𝑆𝑥
0
) + 𝑏𝑑 (𝑥

0
, 𝑇𝑥
1
)

+ 𝑐 [

𝑑 (𝑥
1
, 𝑆𝑥
0
) 𝑑 (𝑥
0
, 𝑇𝑥
1
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

] .

(77)

By using the g.l.b property of 𝑆 and 𝑇, we get

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑎𝑑 (𝑥

1
, 𝑥
1
) + 𝑏𝑑 (𝑥

0
, 𝑥
2
)

+ 𝑐 [

𝑑 (𝑥
1
, 𝑥
1
) 𝑑 (𝑥
0
, 𝑥
2
)

1 + 𝑑 (𝑥
0
, 𝑥
1
)

] .

(78)

Hence, we have

𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝑏𝑑 (𝑥

0
, 𝑥
2
) (79)

which implies that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
, (80)

where 𝑘 = 𝑏/(1 − 𝑏) < 1. From (73), we get
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘 (1 − 𝑘) |𝑟| . (81)

Note that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨

≤ (1 − 𝑘) |𝑟| + 𝑘 (1 − 𝑘) |𝑟|

= (1 − 𝑘) (1 + 𝑘) |𝑟|

≤ (1 − 𝑘
2
) |𝑟| .

(82)

Thus, we have 𝑥
2
∈ 𝐵(𝑥

0
, 𝑟). From (71), we get

𝑎𝑑 (𝑥
2
, 𝑇𝑥
1
) + 𝑏𝑑 (𝑥

1
, 𝑆𝑥
2
) + [𝑐

𝑑 (𝑥
2
, 𝑇𝑥
1
) 𝑑 (𝑥
1
, 𝑆𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

]

∈ 𝑠 (𝑇𝑥
1
, 𝑆𝑥
2
) .

(83)

This implies that

𝑎𝑑 (𝑥
2
, 𝑇𝑥
1
) + 𝑏𝑑 (𝑥

1
, 𝑆𝑥
2
) + [𝑐

𝑑 (𝑥
2
, 𝑇𝑥
1
) 𝑑 (𝑥
1
, 𝑆𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

]

∈ 𝑠 (𝑥
2
, 𝑆𝑥
2
) .

(84)

By the definition, there exists 𝑥
3
∈ 𝑆𝑥
2
such that

𝑎𝑑 (𝑥
2
, 𝑇𝑥
1
) + 𝑏𝑑 (𝑥

1
, 𝑆𝑥
2
) + [𝑐

𝑑 (𝑥
2
, 𝑇𝑥
1
) 𝑑 (𝑥
1
, 𝑆𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

]

∈ 𝑠 (𝑑 (𝑥
2
, 𝑥
3
)) .

(85)

By the definition, we get

𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝑎𝑑 (𝑥

2
, 𝑇𝑥
1
) + 𝑏𝑑 (𝑥

1
, 𝑆𝑥
2
)

+ [𝑐

𝑑 (𝑥
2
, 𝑇𝑥
1
) 𝑑 (𝑥
1
, 𝑆𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

] .

(86)

By using the g.l.b property of 𝑆 and 𝑇, we get

𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝑎𝑑 (𝑥

2
, 𝑥
2
) + 𝑏𝑑 (𝑥

1
, 𝑥
3
)

+ [𝑐

𝑑 (𝑥
2
, 𝑥
2
) 𝑑 (𝑥
1
, 𝑥
3
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

] .

(87)

Hence, we have

𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝑏𝑑 (𝑥

1
, 𝑥
3
) (88)
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which implies that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2
, 𝑥
3
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
, (89)

where 𝑘 = 𝑏/(1 − 𝑏) < 1. Consider that
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
3
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
1
, 𝑥
2
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2
, 𝑥
3
)
󵄨
󵄨
󵄨
󵄨

≤ (1 − 𝑘) |𝑟| + 𝑘 (1 − 𝑘) |𝑟| + 𝑘
2
(1 − 𝑘) |𝑟|

= (1 − 𝑘
3
) |𝑟| ≤ |𝑟| .

(90)

So 𝑥
3
∈ 𝐵(𝑥

0
, 𝑟). Continuing in this way, we can construct a

sequence {𝑥
𝑛
} in 𝐵(𝑥

0
, 𝑟) such that for each 𝑛 ≥ 1,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘
2𝑛 󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛+1
, 𝑥
2𝑛+2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘
2𝑛+1 󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
,

(91)

where 𝑘 = 𝑏/(1 − 𝑏) < 1, 𝑥
2𝑛+1
∈ 𝑆𝑥
2𝑛
, and 𝑥

2𝑛+2
∈ 𝑇𝑥
2𝑛+1

.
Now, inductively, we can construct a sequence {𝑥

𝑛
} in𝑋 such

that for each 𝑛 ≥ 0,
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑘
𝑛 󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
0
, 𝑥
1
)
󵄨
󵄨
󵄨
󵄨
. (92)

Thus, as in the proof ofTheorem 15, {𝑥
𝑛
} is a Cauchy sequence

in 𝐵(𝑥
0
, 𝑟). Since 𝑋 is complete and 𝐵(𝑥

0
, 𝑟) is a closed

subspace of 𝑋, there exists 𝜐 ∈ 𝐵(𝑥
0
, 𝑟) such that 𝑥

𝑛
→ 𝑢

as 𝑛 → ∞. Now, we show that 𝜐 ∈ 𝑇𝜐 and 𝜐 ∈ 𝑆𝜐. From (71),
we get

𝑎𝑑 (𝜐, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝑥

2𝑛
, 𝑇𝜐) + 𝑐 [

𝑑 (𝜐, 𝑆𝑥
2𝑛
) 𝑑 (𝑥
2𝑛
, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

]

∈ 𝑠 (𝑆𝑥
2𝑛
, 𝑇𝜐) .

(93)

This implies that

𝑎𝑑 (𝜐, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝑥

2𝑛
, 𝑇𝜐) + 𝑐 [

𝑑 (𝜐, 𝑆𝑥
2𝑛
) 𝑑 (𝑥
2𝑛
, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

]

∈ 𝑠 (𝑥
2𝑛+1
, 𝑇𝜐) .

(94)

By the definition, there exists 𝜐
𝑛
∈ 𝑇𝜐 such that

𝑎𝑑 (𝜐, 𝑆𝑥
2𝑛
) + 𝑏𝑑 (𝑥

2𝑛
, 𝑇𝜐) + 𝑐 [

𝑑 (𝜐, 𝑆𝑥
2𝑛
) 𝑑 (𝑥
2𝑛
, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

]

∈ 𝑠 (𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
)) .

(95)

By the definition, we get

𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
) ⪯ 𝑎𝑑 (𝜐, 𝑆𝑥

2𝑛
) + 𝑏𝑑 (𝑥

2𝑛
, 𝑇𝜐)

+ 𝑐 [

𝑑 (𝜐, 𝑆𝑥
2𝑛
) 𝑑 (𝑥
2𝑛
, 𝑇𝜐)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

] .

(96)

By using the g.l.b property of 𝑆 and 𝑇, we get

𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
) ⪯ 𝑎𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑏𝑑 (𝑥

2𝑛
, 𝜐
𝑛
)

+ 𝑐 [

𝑑 (𝜐, 𝑥
2𝑛+1
) 𝑑 (𝑥
2𝑛
, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

] .

(97)

Hence, we have

0 ≺ 𝑑 (𝑥
2𝑛+1
, 𝜐
𝑛
) ⪯ 𝑎𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑏𝑑 (𝑥

2𝑛
, 𝜐
𝑛
)

+ 𝑐 [

𝑑 (𝜐, 𝑥
2𝑛+1
) 𝑑 (𝑥
2𝑛
, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

] .

(98)

Now, by using the triangular inequality, we get

𝑑 (𝜐, 𝜐
𝑛
) ⪯ 𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑑 (𝑥

2𝑛+1
, 𝜐
𝑛
)

⪯ 𝑑 (𝜐, 𝑥
2𝑛+1
) + 𝑎𝑑 (𝜐, 𝑥

2𝑛+1
) + 𝑏𝑑 (𝑥

2𝑛
, 𝜐
𝑛
)

+ 𝑐 [

𝑑 (𝜐, 𝑥
2𝑛+1
) 𝑑 (𝑥
2𝑛
, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

] ,

(99)

and so
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝜐

𝑛
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝑥

2𝑛+1
)
󵄨
󵄨
󵄨
󵄨
+ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜐, 𝑥

2𝑛+1
)
󵄨
󵄨
󵄨
󵄨

+ 𝑏
󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥
2𝑛
, 𝜐
𝑛
)
󵄨
󵄨
󵄨
󵄨
+ 𝑐 [

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝜐, 𝑥
2𝑛+1
) 𝑑 (𝑥
2𝑛
, 𝜐
𝑛
)

1 + 𝑑 (𝑥
2𝑛
, 𝜐)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] .

(100)

By letting 𝑛 → ∞ in the above inequality, we get |𝑑(𝜐, 𝜐
𝑛
)| →

0 as 𝑛 → ∞. By [9, Lemma 2.2], it follows that 𝜐
𝑛
→ 𝜐 as

𝑛 → ∞. Since 𝑇𝜐 is closed, 𝜐 ∈ 𝑇𝜐. Similarly, it follows that
𝜐 ∈ 𝑆𝜐. Thus, 𝑆 and 𝑇 have a common fixed point in 𝑋. This
completes the proof.

By taking 𝑐 = 0 in Theorem 20, we get the following
Corollary.

Corollary 21. Let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued map-
pings with the g.l.b property in complete complex valued metric
space (𝑋, 𝑑), 𝑥

0
∈ 𝑋, and 0 ≺ 𝑟 ∈ C. If 𝑆 and 𝑇 satisfy

𝑎𝑑 (𝑦, 𝑆𝑥) + 𝑏𝑑 (𝑥, 𝑇𝑦) ∈ 𝑠 (𝑆𝑥, 𝑇𝑦) (101)

for all 𝑥, 𝑦 ∈ 𝐵(𝑥
0
, 𝑟) and

(1 − 𝑘) 𝑟 ∈ 𝑠 (𝑥
0
, 𝑆𝑥
0
) , (102)

where 𝑎 and 𝑏 are nonnegative real numbers with 𝑘 = 𝑏/(1 −
𝑏) < 1, then 𝑆 and 𝑇 have a common fixed point in 𝐵(𝑥

0
, 𝑟).

By taking 𝑆 = 𝑇 in Theorem 20, we get the following.

Corollary 22. Let 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be multivalued mapping
with the g.l.b property in complete complex valuedmetric space
(𝑋, 𝑑), 𝑥

0
∈ 𝑋, and 0 ≺ 𝑟 ∈ C. If 𝑇 satisfies

𝑎𝑑 (𝑦, 𝑇𝑥)+𝑏𝑑 (𝑥, 𝑇𝑦)+𝑐 [

𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

]∈ 𝑠 (𝑇𝑥, 𝑇𝑦)

(103)
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for all 𝑥, 𝑦 ∈ 𝐵(𝑥
0
, 𝑟) and

(1 − 𝑘) 𝑟 ∈ 𝑠 (𝑥
0
, 𝑇𝑥
0
) , (104)

where 𝑎, 𝑏, and 𝑐 are nonnegative real numbers with 𝑘 = 𝑏/(1−
𝑏) < 1, then 𝑇 has a fixed point in 𝐵(𝑥

0
, 𝑟).

4. Applications

As an application of the main result (Corollary 22), we prove
the following homotopy result.

Theorem 23. Let (𝑋, 𝑑) be a complete complex valued metric
space and let 𝑈 be an open subset of 𝑋. Let 𝐹 : [0, 1] × 𝑈 →
𝐶𝐵(𝑋) bemultivaluedmappingwith the g.l.b property. Suppose
that there exist

∘

𝜁 ∈ 𝑋 and 0 ≺ 𝑟 ∈ C such that

(a) 𝜁 ∉ [𝐹(𝑡, 𝜁)] for all 𝜁 ∈ 𝜕𝑈 and 𝑡 ∈ [0, 1];

(b) 𝐹(𝑡, ⋅) : 𝑈 → 𝐶𝐵(𝑋) is a multivalued mapping
satisfying

𝑎𝑑 (
́
𝜁, 𝐹 (𝑡, 𝜁)) + 𝑏𝑑 (𝜁, 𝐹 ( ́𝑡,

́
𝜁))

+ 𝑐

𝑑 (
́
𝜁, 𝐹 (𝑡, 𝜁)) 𝑑 (𝜁, 𝐹 ( ́𝑡,

́
𝜁))

1 + 𝑑 (𝜁,
́
𝜁)

∈ 𝑠 (𝐹 (𝑡, 𝜁) , 𝐹 ( ́𝑡,
́
𝜁)) ,

(1 − 𝑘) 𝑟 ∈ 𝑠 (

∘

𝜁, 𝐹 (

∘

𝑡,

∘

𝜁)) ,

(105)

where 𝑘 = 𝑏/(1 − 𝑏) < 1;
(c) there exists a continuous increasing function 𝜑 :

(0, 1] → 𝑃 ∪ {0} such that

𝜑 (𝑠) − 𝜑 (𝑡) ∈ 𝑠 (𝐹 (𝑠, 𝜁) , 𝐹 (𝑡,
́
𝜁)) , 𝜑 (𝑠) ∈ 𝜑 (𝑡) (106)

for all 𝑠, 𝑡 ∈ [0, 1] and 𝜁 ∈ 𝑈, where 𝑃 = {𝑧 ∈ C : 0 ≺
𝑧}.

Then 𝐹(0, ⋅) has a fixed point if and only if 𝐹(1, ⋅) has a fixed
point.

Proof. Suppose that 𝐹(0, ⋅) has a fixed point 𝑧; so 𝑧 ∈ 𝐹(0, 𝑧).
From (a), 𝑧 ∈ 𝑈. Define the following set:

Q := {(𝑡, 𝜁) ∈ [0, 1] × 𝑈 : 𝜁 ∈ 𝐹 (𝑡, 𝜁)} . (107)

Clearly, Q ̸= 0. We define the partial ordering ≾ in Q as
follows:

(𝑡, 𝜁) ≾ (𝑠,
́
𝜁) ⇐⇒ 𝑡 ≤ 𝑠,

𝑑 (𝜁,
́
𝜁) ⪯

2

1 − 𝑘

(𝜑 (𝑠) − 𝜑 (𝑡)) .

(108)

Let M be a totally ordered subset of Q and
∘

𝑡 = sup{𝑡 :
(𝑡, 𝜁) ∈ M}. Consider a sequence {(𝑡

𝑛
, 𝜁
𝑛
)} in M such that

(𝑡
𝑛
, 𝜁
𝑛
) ≾ (𝑡

𝑛+1
, 𝜁
𝑛+1
) and 𝑡

𝑛
→

∘

𝑡 as 𝑛 → ∞. Then, for any
𝑛 ≥ 1 with𝑚 > 𝑛, we have

𝑑 (𝜁
𝑚
, 𝜁
𝑛
) ⪯

2

1 − 𝑘

(𝜑 (𝑡
𝑚
) − 𝜑 (𝑡

𝑛
)) 󳨀→ 0 (109)

as 𝑛,𝑚 → ∞, which implies that {𝜁
𝑛
} is a Cauchy sequence.

Since (𝑋, 𝑑) is a complete complex valued metric space, there
exists

∘

𝜁 ∈ 𝑋 such that 𝜁
𝑛
→

∘

𝜁. From (a), choose 𝑛
0
∈ N such

that for all 𝑛 ≥ 𝑛
0
,

𝑎𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) + 𝑏𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

+ 𝑐

𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) 𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

1 + 𝑑 (𝜁
𝑛
,

∘

𝜁)

∈ 𝑠 (𝐹 (𝑡
𝑛
, 𝜁
𝑛
) , 𝐹 (

∘

𝑡,

∘

𝜁)) ,

𝑎𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) + 𝑏𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

+

𝑐𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) 𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

1 + 𝑑 (𝜁
𝑛
,

∘

𝜁)

∈ 𝑠 (𝜁
𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁)) ,

(110)

since 𝜁
𝑛
∈ 𝐹(𝑡
𝑛
, 𝜁
𝑛
). So there exists 𝜁

𝑘
∈ 𝐹(

∘

𝑡,

∘

𝜁) such that

𝑑 (𝜁
𝑛
, 𝜁
𝑘
) ⪯ 𝑎𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) + 𝑏𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

+

𝑐𝑑 (

∘

𝜁, 𝐹 (𝑡
𝑛
, 𝜁
𝑛
)) 𝑑 (𝜁

𝑛
, 𝐹 (

∘

𝑡,

∘

𝜁))

1 + 𝑑 (𝜁
𝑛
,

∘

𝜁)

.

(111)

By using the g.l.b property of 𝐹, we get

𝑑 (𝜁
𝑛
, 𝜁
𝑘
) ⪯ 𝑎𝑑 (

∘

𝜁, 𝜁
𝑛
) + 𝑏𝑑 (𝜁

𝑛
, 𝜁
𝑘
) +

𝑐𝑑 (

∘

𝜁, 𝜁
𝑛
) 𝑑 (𝜁
𝑛
, 𝜁
𝑘
)

1 + 𝑑 (𝜁
𝑛
,

∘

𝜁)

,

(112)

which implies that

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (

∘

𝜁, 𝜁
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑏
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨

+ 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (

∘

𝜁, 𝜁
𝑛
)

1 + 𝑑 (𝜁
𝑛
,

∘

𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
.

(113)

Since |1 + 𝑑(𝜁
𝑛
,

∘

𝜁)| > |𝑑(𝜁
𝑛
,

∘

𝜁)|, so we have

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (

∘

𝜁, 𝜁
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑏
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
+ 𝑐
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤

𝑎

1 − 𝑏 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
,

∘

𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
.

(114)
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Note that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (

∘

𝜁, 𝜁
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (

∘

𝜁, 𝜁
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
, 𝜁
𝑘
)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (

∘

𝜁, 𝜁
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
+

𝑎

1 − 𝑏 − 𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁
𝑛
,

∘

𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󳨀→ 0

(115)

for all 𝑛 ≥ 𝑛
0
. Thus 𝜁

𝑘
→

∘

𝜁 ∈ 𝐹(

∘

𝑡,

∘

𝜁) and hence
∘

𝜁 ∈ 𝑈,
which implies that (

∘

𝑡,

∘

𝜁) ∈ Q.Thus, (𝑡, 𝜁) ≾ (
∘

𝑡,

∘

𝜁) for all (𝑡, 𝜁) ∈
M; that is, (

∘

𝑡,

∘

𝜁) is an upper bound of M. Hence, by Zorn’s
Lemma, Q has the maximal element (

∘

𝑡,

∘

𝜁).
Now, we claim that

∘

𝑡 = 1. Suppose that
∘

𝑡 ≤ 1. Choose
0 ≺ 𝑟 ∈ C and

∘

𝑡 ≤ 𝑡 such that 𝐵(
∘

𝜁, 𝑟) ⊂ 𝑈, where 𝑟 = (2/(1 −
𝑘))(𝜑(𝑡) − 𝜑(

∘

𝑡)). Using (c), we have

𝜑 (𝑡) − 𝜑 (

∘

𝑡) ∈ 𝑠 (𝐹 (𝑡, 𝜁) , 𝐹 (

∘

𝑡,

∘

𝜁)) ,

𝜑 (𝑡) − 𝜑 (

∘

𝑡) ∈ 𝑠 (

∘

𝜁, 𝐹 (𝑡, 𝜁))

(116)

for all
∘

𝜁 ∈ 𝐹(

∘

𝑡,

∘

𝜁). So there exists 𝜁 ∈ 𝐹(𝑡, 𝜁) such that 𝜑(𝑡) −
𝜑(

∘

𝑡) ∈ 𝑠(𝑑(

∘

𝜁, 𝜁)) and so

𝑑 (𝜁,

∘

𝜁) ⪯ 𝜑 (𝑡) − 𝜑 (

∘

𝑡) ⪯

(1 − 𝑘) 𝑟

2

≺ (1 − 𝑘) 𝑟, (117)

which implies that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑 (𝜁,

∘

𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
≤ (1 − 𝑘) |𝑟| . (118)

Also, by using (b), we conclude that the mapping 𝐹(𝑡, ⋅) :
𝐵(

∘

𝜁, 𝑟) → 𝐶𝐵(𝑋) satisfies all the assumptions ofCorollary 22
for all 𝑡 ∈ [0, 1]. Hence, for all 𝑡 ∈ [0, 1], there exists 𝜁 ∈
𝐵(

∘

𝜁, 𝑟) such that 𝜁 ∈ 𝐹(𝑡, 𝜁). Thus, (𝜁, 𝑡) ∈ Q.
Consider

𝑑 (𝜁,

∘

𝜁) ≺ 𝑟 =

2

1 − 𝑘

(𝜑 (𝑡) − 𝜑 (

∘

𝑡)) , (119)

which implies that (
∘

𝑡,

∘

𝜁) ≾ (𝑡, 𝜁), which is a contradiction.
Thus, we have

∘

𝑡 = 1. Therefore, 𝐹(⋅, 1) has a fixed point.
Conversely, if 𝐹(1, ⋅) has a fixed point, then, in the same

way, we can prove that𝐹(0, ⋅) has a fixed point.This completes
the proof.
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Mathematicae, vol. 3, pp. 133–181, 1922.

[2] S. B. Nadler, “Multi-valued contraction mappings,” Pacific
Journal of Mathematics, vol. 30, pp. 475–488, 1969.

[3] L.-G. Huang and X. Zhang, “Conemetric spaces and fixed point
theorems of contractive mappings,” Journal of Mathematical
Analysis and Applications, vol. 332, no. 2, pp. 1468–1476, 2007.

[4] M. Arshad, A. Azam, and P. Vetro, “Some common fixed
point results in cone metric spaces,” Fixed Point Theory and
Applications, vol. 2009, Article ID 493965, 11 pages, 2009.

[5] A. Azam and M. Arshad, “Common fixed points of generalized
contractive maps in cone metric spaces,” Iranian Mathematical
Society, vol. 35, no. 2, pp. 255–264, 2009.

[6] A. Latif and F. Y. Shaddad, “Fixed point results for multivalued
maps in cone metric spaces,” Fixed Point Theory and Applica-
tions, vol. 2010, Article ID 941371, 2010.

[7] E. Karapınar, “Some nonunique fixed point theorems of Ciric
type on cone metric spaces,” Abstract and Applied Analysis, vol.
2010, Article ID 123094, 14 pages, 2010.

[8] E. Karapinar, P. Kumam, and W. Sintunavarat, “Coupled fixed
point theorems in cone metric spaces with a 𝑐-distance and
applications,” Fixed Point Theory and Applications, vol. 2012,
article 194, 2012.

[9] A. Azam, B. Fisher, and M. Khan, “Common fixed point the-
orems in complex valued metric spaces,” Numerical Functional
Analysis and Optimization, vol. 32, no. 3, pp. 243–253, 2011.

[10] F. Rouzkard and M. Imdad, “Some common fixed point
theorems on complex valued metric spaces,” Computers &
Mathematics with Applications, vol. 64, no. 6, pp. 1866–1874,
2012.

[11] W. Sintunavarat and P. Kumam, “Generalized common fixed
point theorems in complex valued metric spaces and applica-
tions,” Journal of Inequalities and Applications, vol. 2012, article
84, 2012.

[12] M. Abbas, M. Arshad, and A. Azam, “Fixed points of asymp-
totically regular mappings in complex-valued metric spaces,”
GeorgianMathematical Journal, vol. 20, no. 2, pp. 213–221, 2013.

[13] M. Abbas, B. Fisher, and T. Nazir, “Well-Posedness and periodic
point property of mappings satisfying a rational inequality in
an ordered complex valuedmetric space,”Numerical Functional
Analysis and Optimization, vol. 243, 2011.

[14] M. Arshad and J. Ahmad, “Onmultivalued contractions in cone
metric spaces with out normality,”The Scientific World Journal,
vol. 2013, Article ID 481601, 3 pages, 2013.

[15] C. Klin-eam and C. Suanoom, “Some common fixed-point the-
orems for generalized-contractive-type mappings on complex-
valued metric spaces,” Abstract and Applied Analysis, vol. 2013,
Article ID 604215, 6 pages, 2013.

[16] M. A. Kutbi, J. Ahmad, and A. Azam, “On fixed points of 𝛼
-𝜓-contractive multivalued mappings in cone metric spaces,”
Abstract and Applied Analysis, vol. 2013, Article ID 313782, 6
pages, 2013.

[17] M. A. Kutbi, J. Ahmad, N. Hussain, and M. Arshad, “Common
fixed point results for mappings with rational expressions,”
Abstract and Applied Analysis, vol. 2013, Article ID 549518, 11
pages, 2013.

[18] W. Sintunavarat, Y. J. Cho, and P. Kumam, “Urysohn integral
equations approach by common fixed points in complex-valued



12 Abstract and Applied Analysis

metric spaces,” Advances in Difference Equations, vol. 2013,
article 49, 2013.

[19] K. Sitthikul and S. Saejung, “Some fixed point theorems in com-
plex valuedmetric spaces,” Fixed PointTheory and Applications,
vol. 2012, article 189, 2012.


