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Ramanujan proposed additive formulae of theta functions that are related to modular equations about infinite products. Employing
these formulaes, we derived some identities on infinite products. In the same spirit, we also could present elementary and simple
proofs of certain Ramanujan’s modular equations on infinite products.
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Q-theory is undoubtedly one of the most famous and useful
mathematical theorems, such as Andrews-Askey type integral _ 2n(af; q),,(bg; q)m(abcd, pe/d,dq/ (pc), p,q/p; q)oo
(1] a"b™(q, be, bd, ac, ad; q)
d (gt/c,qt/d, ft,rst;q) rbt, < & (g ac,ads q) kq é [ ", be, bd ]
00 _ 4|
J; (at,bt, et, st;q) %2 rst, béq; 59 | dt Z (g af,abed; q), *7* | b abcdq";
2)
d(l- ,c/d, qd/c, abcd, df, rsd;
= (1-4)(q.¢/d,qd/c, abed, df rs q)oo Moment integrals [3]
(ac,be, ad, bd, sd,de; q)
(1) JOO Pn (w> C) Pm (w3 d) (s,t)
i ( f/e ad, sd, bd; q), (ce)* o (awbwg), S W
,df, rsd, abcd,
i (@dfrsdcbcdia),  (acia) (b ), (absta),
- bdd® acdg® a"b™(as, at, bs,bt; q) ., (3)
X 36 »oaq -, g 99| w { -n Kk —m
rsdg, abcdg; y (q" as,at;q),q é [ q " bs, bkt q q]
& (gac,abst;q), > | bd,abstqs T

Askey-R integral [2
skey-Roy type integral 2] (where P(a,b) = (a—b) -+~ (a—bq"")), g-Fractional Calcu-

i lus Equations [4] and g-Calculus [5]. For more information,
J ((Pn (eie,f) P, (eiG’ g) please refer to [1-5].

The theta functions are very useful tool in researching

g-series, especially in dealing with the form of the equation
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theta are one of the important of Ramanujan’s contributions.
Using it, we gave elementary and simple proofs of certain
Ramanujan’s modular equations on infinite products. For
more information, please refer to [1-7].

In his notebook [8, pages 34-38], Ramanujan defines the
following theta functions:
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The infinite products are from the Jacobi triple product
identity [8, page 35].
In the course of deduction, we used the following simple
fact [9, 10]:
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By definition of Ramanujan theta functions one can easily
verify the following identities [8, page 45]:
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Thus when ab = cd, we have
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Similarly we have that
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The special case of these identities can be written as the
following form by using Jacobian theta function [6, 7]:
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The authors of [6, 7] give simple proofs and very important
use of it.

In the above two identities, putting ¢ = a and d = b, we
easily obtain
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2. Main Results

The sums and products of infinite are used in many domains
of mathematics, such as Partition Functions [11-14], Fractal
Geometry [9], Fractional Calculus [10], Fractal Time Series
[4], and so on. Then the equations of it are concentrated
by several mathematicians and engineers [15-18]. At the
same time, it can be used in dynamic equations, differential
equations [19], and partial differential equations [20].

This paper has two main purposes. The first is to derive
the identities as follows: for |g| < 1,
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in which w = exp(2in/3) and { = exp(2in/5). In the same
way, we are able to give the simple and elementary proofs of
the following identities of Ramanujan [8, 11, 12]:
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3. Modular Equations of Infinite Productions

In this section, we first give the two sets refinement about the
identities (18) and (20).

Theorem 1. For |q| < 1,
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Proof. Note that 1+w+w® = 0 and w - w* = iV/3. By (9), we
get that
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Multiplying by (¢ @)oo/ (@3 47) o> Tespectively, we complete
the proofs of (24). O

Proof of (19). Let & = exp(ir/6); then it is easy to know that
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In (16), let a = w and b = gw”* then we have that
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Multiplying (31), combining with (33), and then multiplyed
by (¢:9)2,/(q”;9°)%,, e are able to obtain (19). O

Theorem 2. For |q| < 1,
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Multiplied by (g;9)oo/ (qs; qs)oo, the identities (39) and (40)

become (34) and (35).

Multiplying the two refinements in Theorems 1 and 2,
respectively, we obtain the identities (18) and (20). Using the
same method, we can obtain refinement identities of (21) and
(22) which are similar to Theorems 1 and 2; then we can
deduce (21), (22), and (23) easily. The details of proofs are
omitted. O
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The following conclusion can be obtained easily.
Corollary 3. For |g| <1,
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