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We present optimal convergence results for themth derivative of a function by sequences of linear operators.The usual convergence
is replaced by A-summability, with A being a sequence of infinite matrices with nonnegative real entries, and the operators
are assumed to be m-convex. Saturation results for nonconvergent but almost convergent sequences of operators are stated as
corollaries.

1. Introduction

The notion of almost convergence of a sequence introduced
by Lorentz [1] in 1948 entered the Korovkin-type approxima-
tion theory (see [2]) through the papers of King and Swetits
[3] and Mohapatra [4]. A step forward was given by Swetits
[5] in 1979 who applied in the theory themore general notion
of A-summability that Bell [6] had introduced a few years
earlier.

After Swetits, within a shape preserving approximation
setting and using as well A-summability, one finds in the
literature two recent papers of the authors, [7, 8], where they
studied, on one hand, qualitative and quantitative Korovkin-
type results, and on the other, results on asymptotic formulae.
In this paper we continue this line of work which naturally
takes us to the topic of saturation. Indeed, after having
established an asymptotic formula, a natural way to keep
on is to study optimal results to control the goodness of
the approximation errors. Here saturation enters the picture.
Now, before detailing our specific aim, we present the general
framework of the paper which includes the definition of A-
summability.

Let A := {𝐴
(𝑛)
} = {𝑎

(𝑛)

𝑘𝑗
} be a sequence of infinite matri-

ces with nonnegative real entries; then a sequence of real

numbers {𝑥𝑗} is said to beA-summable to ℓ if (whenever the
series below converges for all 𝑘 and 𝑛)

lim
𝑘→∞

∞

∑

𝑗=1

𝑎
(𝑛)

𝑘𝑗
𝑥𝑗 = ℓ uniformly for 𝑛 ∈ N = {1, 2, . . .} . (1)

Notice that A-summability extends classical convergence,
matrix summability, the Cesaro summability, and almost
convergence amongst others.

Now, let 𝑚 ∈ N ∪ {0}, let 𝐶𝑚[𝑎, 𝑏] denote the space
of all 𝑚-times continuously differentiable functions on the
real interval [𝑎, 𝑏], let 𝐷𝑚 denote the usual 𝑚th differential
operator, and finally, let L = {𝐿𝑗 : 𝐶

𝑚
[𝑎, 𝑏] → 𝐶

𝑚
[𝑎, 𝑏]}

be a sequence of linear operators fulfilling the following
properties:

(P0) for each 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏] and 𝑥 ∈ [𝑎, 𝑏], 𝐷𝑚𝐿𝑗𝑓(𝑥) is

A-summable to𝐷𝑚𝑓(𝑥), or equivalently

A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) :=

∞

∑

𝑗=1

𝑎
(𝑛)

𝑘𝑗
𝐷
𝑚
𝐿𝑗𝑓 (𝑥) (2)

converges to 𝐷𝑚𝑓 as 𝑘 tends to infinity, uniformly in
𝑛,
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(P1) each 𝐿𝑗 is 𝑚-convex; that is, it maps 𝑚-convex func-
tions onto 𝑚-convex functions; recall that a function
𝑓 ∈ 𝐶

𝑚
[𝑎, 𝑏] is said to be 𝑚-convex whenever

𝐷
𝑚
𝑓(𝑡) ≥ 0 for all 𝑡 ∈ [𝑎, 𝑏],

(P2) there exist a sequence of real positive numbers 𝜆𝑘 →
+∞ and three strictly positive functions 𝑤0, 𝑤1, and
𝑤2 defined on (𝑎, 𝑏) with 𝑤𝑖 ∈ 𝐶

2−𝑖
(𝑎, 𝑏) such that

for 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏], 𝑚 + 2-times differentiable in some

neighborhood of a point 𝑥 ∈ (𝑎, 𝑏),

lim
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥))

=

1

𝑤2

𝐷
1
(

1

𝑤1

𝐷
1
(

1

𝑤0

𝐷
𝑚
𝑓)) (𝑥)

(3)

uniformly in 𝑛.

The asymptotic formula (3) informs us that the order of
convergence of A𝑘,𝑛

𝐷𝑚∘L
𝑓(𝑥) towards 𝐷𝑚𝑓(𝑥) is not better

than 𝜆
−1
𝑘 if the right-hand side of (3) is different from 0.

Thus, 𝜆−1𝑘 is called the optimal order of convergence, and
those functions that possess it form the saturation class. As for
our specific aim with this paper, the results of Section 2 give
us information about this saturation class, while Section 3
is devoted to state a sort of converse result of asymptotic
formulae. We follow the line of two respective papers of two
of the authors, namely [9, 10], which at the same time have
their foundations on two outstanding papers of Lorentz and
Schumaker [11] and Berens [12]. The last section of the paper
contains some applications. Now we close this one with some
remarks and notation that we will use throughout the paper.

Firstly we point out that if (P1) fulfills and 𝐷
𝑚
𝑓 ≤ 𝐷

𝑚
𝑔

on [𝑎, 𝑏], then for all 𝑡 ∈ [𝑎, 𝑏],A𝑘,𝑛
𝐷𝑚∘L

𝑓(𝑡) ≤ A𝑘,𝑛
𝐷𝑚∘L

𝑔(𝑡).
Secondly, if we consider a bounded subinterval 𝐽 ⊂ [𝑎, 𝑏]

and fix a point 𝑐 ∈ 𝐽, it is well known that the functions
𝑢0(𝑡) = 𝑤0(𝑡), 𝑢1(𝑡) = 𝑤0(𝑡) ∫

𝑡

𝑐
𝑤1(𝑠)𝑑𝑠, and 𝑢2(𝑡) = 𝑤0(𝑡)

∫

𝑡

𝑐
𝑤1(𝑡1) ∫

𝑡
1

𝑐
𝑤2(𝑡2)𝑑𝑡2𝑑𝑡1 form in 𝐽 an extended complete

Tchebychev system 𝑇 = {𝑢0, 𝑢1, 𝑢2} (see [13]). Moreover
{𝑢0, 𝑢1} is a fundamental system of solutions of the second-
order differential equation in the unknown V (see the right-
hand side of (3)) that follows:

DV := 𝑤
−1

2 𝐷
1
(𝑤
−1

1 𝐷
1
(𝑤
−1

0 V)) ≡ 0. (4)

BesidesD𝑢2 ≡ 1.
In this respect, we refer the reader to [11] to recall the class

Lip𝑇𝑀1,𝑀 ≥ 0, formed by those functions𝑓, differentiable on
(𝑎, 𝑏), fulfilling

󵄨
󵄨
󵄨
󵄨
Δ𝑇𝑓 (𝑡2) − Δ𝑇𝑓 (𝑡1)

󵄨
󵄨
󵄨
󵄨
≤ 𝑀∫

𝑡
2

𝑡
1

𝑤2 (𝑠) 𝑑𝑠, (5)

where Δ𝑇𝑓 = (1/𝑤1)𝐷
1
((1/𝑤0)𝑓). Notice that if 𝑤2 ≡ 1,

then 𝑓 ∈ Lip𝑇𝑀1 amounts to the fact that Δ𝑇𝑓 belongs to the
classical class Lip𝑀1.

Finally, if 𝛼(𝑛)
𝑘

is a double sequence of real numbers such
that lim𝑘→+∞𝛼

(𝑛)

𝑘
= 0 uniformly in 𝑛 ∈ N and 𝛽𝑘 is another

sequence of real numbers with lim𝑘→+∞𝛽𝑘 = 0, then we use
the notation 𝛼(𝑛)

𝑘
= 𝑜
(𝑛)
(𝛽𝑘) to indicate that

lim
𝑘→+∞

𝛼
(𝑛)

𝑘

𝛽𝑘

= 0 unifomly in 𝑛 ∈ N. (6)

2. Saturation Results

In this section we obtain local saturation results in the
approximation process of A𝑘,𝑛

𝐷𝑚∘L
𝑓(𝑥) towards 𝐷

𝑚
𝑓(𝑥).

Firstly we state without proof three lemmas; Lemma 1 coin-
cides with [10, Lemma 1], Lemma 2 follows the same pattern
as [10, Lemma 2], and finally Lemma 3 is a very direct
consequence of (P1).

Lemma 1. Let 𝐽 be a bounded open subinterval of [𝑎, 𝑏]. Let
𝑔, ℎ ∈ 𝐶(𝐽) and 𝑡0, 𝑡1, 𝑡2 ∈ 𝐽 such that 𝑡0 ∈ (𝑡1, 𝑡2), 𝑔(𝑡1) =
𝑔(𝑡2) = 0 and 𝑔(𝑡0) > 0. Then there exist a real number 𝜖 < 0,
a solution of the differential equation (4) on 𝐽, say 𝑧, and a
point 𝑥 ∈ (𝑡1, 𝑡2) such that 𝜖ℎ(𝑥) + 𝑧(𝑥) = 𝑔(𝑥) and, for all
𝑡 ∈ (𝑡1, 𝑡2), 𝜖ℎ(𝑡) + 𝑧(𝑡) ≥ 𝑔(𝑡).

Lemma 2. Let 𝑓, 𝑔 ∈ 𝐶
𝑚
[𝑎, 𝑏] and let 𝑥 ∈ (𝑎, 𝑏). Assume that

there exists a neighborhood𝑁𝑥 of 𝑥 where𝐷𝑚𝑓 ≤ 𝐷
𝑚
𝑔. Then

A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) ≤ A
𝑘,𝑛

𝐷𝑚∘L𝑔 (𝑥) + 𝑜
(𝑛)

(𝜆
−1

𝑘 ) . (7)

Lemma 3. 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏] is a solution of the differential

equation (4) in some neighborhood of 𝑥 ∈ (𝑎, 𝑏) if and only
if

A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥) = 𝑜

(𝑛)
(𝜆
−1

𝑘 ) . (8)

The following two propositions, of interest by themselves,
prepare the way to prove the announced results. An impor-
tant role is played by the notion of convexity with respect to
the extended complete Tchebychev system {𝑢0, 𝑢1} that here
we relate to the monotonic convergence of the process and
allows us to compare the degree of approximation for two
different functions.

Proposition 4. Let 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏]; then

(a) 𝐷𝑚𝑓 is convex with respect to {𝑢0, 𝑢1} on (𝑎, 𝑏) if and
only if for each 𝑥 ∈ (𝑎, 𝑏)

A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) ≥ 𝐷
𝑚
𝑓 (𝑥) + 𝑜

(𝑛)
(𝜆
−1

𝑘 ) , (9)

(b) if A𝑘,𝑛
𝐷𝑚∘L

𝑓(𝑥) ≥ A𝑘+1,𝑛
𝐷𝑚∘L

𝑓(𝑥) + 𝑜
(𝑛)
(𝜆
−1
𝑘 ) for all 𝑥 ∈

(𝑎, 𝑏), then 𝐷
𝑚
𝑓 is convex with respect to {𝑢0, 𝑢1} on

(𝑎, 𝑏).

Proof. (a) Let 𝑥 ∈ (𝑎, 𝑏). Assume that 𝐷𝑚𝑓 is convex with
respect to {𝑢0, 𝑢1} on (𝑎, 𝑏) and let 𝑧 ∈ ⟨𝑢0, 𝑢1⟩ such that

𝑧 (𝑥) = 𝐷
𝑚
𝑓 (𝑥) , 𝐷

1
𝑧 (𝑥) = 𝐷

1

+ (𝐷
𝑚
𝑓) (𝑥) (10)

(here 𝐷1+ denotes the right first derivative operator). Then,
from [11, Lemma 2.2], we have that 𝑧(𝑡) ≤ 𝐷

𝑚
𝑓(𝑡) for all
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𝑡 ∈ (𝑎, 𝑏), and directly from Lemma 2, if we take𝑍 ∈ 𝐶
𝑚
[𝑎, 𝑏]

such that𝐷𝑚𝑍(𝑡) = 𝑧(𝑡) for all 𝑡 ∈ (𝑎, 𝑏), we derive that

A
𝑘,𝑛

𝐷𝑚∘L𝑍 (𝑥) ≤ A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) + 𝑜
(𝑛)

(𝜆
−1

𝑘 ) , (11)

or equivalently

A
𝑘,𝑛

𝐷𝑚∘L𝑍 (𝑥) − 𝐷
𝑚
𝑍 (𝑥) ≤ A

𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)

+ 𝑜
(𝑛)

(𝜆
−1

𝑘 ) .

(12)

Finally we apply Lemma 3 to the fuction 𝑍 and obtain the
required inequality as follows:

A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) ≥ 𝐷
𝑚
𝑓 (𝑥) + 𝑜

(𝑛)
(𝜆
−1

𝑘 ) . (13)

To prove the conversewe assume the contrary; that is, that
𝐷
𝑚
𝑓 is not convexwith respect to {𝑢0, 𝑢1} on (𝑎, 𝑏); then there

exist three points 𝑥1, 𝑥2, and 𝑠 such that

𝑎 < 𝑥1 < 𝑠 < 𝑥2 < 𝑏, 𝑆 (𝐷
𝑚
𝑓, 𝑥1, 𝑥2) (𝑠) < 𝐷

𝑚
𝑓 (𝑠) ,

(14)

where 𝑆(𝐷
𝑚
𝑓, 𝑥1, 𝑥2) is the unique function of the space

⟨𝑢0, 𝑢1⟩ which interpolates𝐷𝑚𝑓 at 𝑥1 and 𝑥2.
Now we apply Lemma 1 with ℎ = 𝑢2 and 𝑔 = 𝐷

𝑚
𝑓 −

𝑆(𝐷
𝑚
𝑓, 𝑥1, 𝑥2) and derive the existence of 𝜖 < 0, a solution 𝑧̂

ofD𝑧 ≡ 0 and 𝑠1 ∈ [𝑥1, 𝑥2] satisfying

𝜖𝑢2 (𝑡) + 𝑧̂ (𝑡)≥𝐷
𝑚
𝑓 (𝑡) − 𝑆 (𝐷

𝑚
𝑓, 𝑥1, 𝑥2) (𝑡) , 𝑡 ∈ (𝑥1, 𝑥2),

(15)

𝜖𝑢2 (𝑠1) + 𝑧̂ (𝑠1) = 𝐷
𝑚
𝑓 (𝑠1) − 𝑆 (𝐷

𝑚
𝑓, 𝑥1, 𝑥2) (𝑠1) . (16)

Let us take 𝑈2,
̂
𝑍,

̂
𝑆 ∈ 𝐶

𝑚
[𝑎, 𝑏] such that 𝐷𝑚𝑈2 = 𝑢2,

𝐷
𝑚̂
𝑍 = 𝑧̂ and𝐷𝑚̂𝑆 = 𝑆(𝐷

𝑚
𝑓, 𝑥1, 𝑥2) on (𝑎, 𝑏) and apply then

Lemma 2 taking into account (15). This yields that

𝜖A
𝑘,𝑛

𝐷𝑚∘L𝑈2 (𝑠1) +A
𝑘,𝑛

𝐷𝑚∘L
̂
𝑍 (𝑠1)

≥ A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑠1) −A
𝑘,𝑛

𝐷𝑚∘L
̂
𝑆 (𝑠1) + 𝑜

(𝑛)
(𝜆
−1

𝑘 ) .

(17)

After introducing equality (16) we get

𝜖 (A
𝑘,𝑛

𝐷𝑚∘L𝑈2 (𝑠1) − 𝐷
𝑚
𝑈2 (𝑠1)) +A

𝑘,𝑛

𝐷𝑚∘L
̂
𝑍 (𝑠1) − 𝐷

𝑚
̂
𝑍 (𝑠1)

≥ A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑠1) − 𝐷
𝑚
𝑓 (𝑠1) − (A

𝑘,𝑛

𝐷𝑚∘L
̂
𝑆 (𝑠1) − 𝐷

𝑚
̂
𝑆 (𝑠1))

+ 𝑜
(𝑛)

(𝜆
−1

𝑘 ) .

(18)

Finally, multiplying by 𝜆𝑘 and applying (P2) we obtain the
following inequality which contradicts our assumption:

𝜖 ≥ A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑠1) − 𝐷
𝑚
𝑓 (𝑠1) + 𝑜

(𝑛)
(𝜆
−1

𝑘 ) . (19)

(b) If A𝑘,𝑛
𝐷𝑚∘L

𝑓(𝑥) ≥ A𝑘+1,𝑛
𝐷𝑚∘L

𝑓(𝑥) + 𝑜
(𝑛)
(𝜆
−1
𝑘 ) for 𝑥 ∈ (𝑎, 𝑏),

then directly from (P0) we have thatA𝑘,𝑛
𝐷𝑚∘L

𝑓(𝑥) ≥ 𝐷
𝑚
𝑓(𝑥)+

𝑜
(𝑛)
(𝜆
−1
𝑘 ) and it suffices to use (a) to complete the proof.

Proposition 5. Let 𝑀 ≥ 0 and let 𝑓,𝑤 ∈ 𝐶
𝑚
[𝑎, 𝑏]. Then the

following items are equivalent

(i) 𝑀𝐷
𝑚
𝑤 ± 𝐷

𝑚
𝑓 are convex with respect to {𝑢0, 𝑢1} on

(𝑎, 𝑏),
(ii) for each 𝑥 ∈ (𝑎, 𝑏)

󵄨
󵄨
󵄨
󵄨
󵄨
A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀(A

𝑘,𝑛

𝐷𝑚∘L𝑤 (𝑥) − 𝐷
𝑚
𝑤 (𝑥))

+ 𝑜
(𝑛)
(𝜆
−1

𝑘 ) .

(20)

Proof. It suffices to apply Proposition 4 replacing 𝑓 by𝑀𝑤±

𝑓.

With appropriate choices of the function 𝑤 and applying
the results of [11], we give two saturation results; the first one
is stated in terms of classic Lipschitz spaces, while the second
one puts across the relationship with the asymptotic formula.

Theorem 6. Let 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏]. Then

𝜆𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑀

𝑤2 (𝑥)
+ 𝑜
(𝑛)

(1) ,

𝑥 ∈ (𝑎, 𝑏)

(21)

if only if, on (𝑎, 𝑏),

Δ𝑇𝐷
𝑚
𝑓 = 𝑤

−1

1 𝐷
1
(𝑤
−1

0 (𝐷
𝑚
𝑓)) ∈ Lip 𝑀1. (22)

Proof. Take 𝑤 ∈ 𝐶
𝑚
[𝑎, 𝑏] such that𝐷𝑚𝑤(𝑡) = 𝑤0(𝑡) ∫

𝑡

𝑐
𝑤1(𝑡1)

∫

𝑡
1

𝑐
𝑑𝑡2𝑑𝑡1 and then apply Proposition 5. Thus the result

follows directly after using (P2) and [11, Theorem 3.2] taking
into account thatD(𝐷

𝑚
𝑤) = 𝑤

−1
2 .

Theorem 7. Let 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏]. Then

𝜆𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 + 𝑜

(𝑛)
(1) , 𝑥 ∈ (𝑎, 𝑏)

(23)

if and only if, almost everywhere on (𝑎, 𝑏),

1

𝑤2

𝐷
1
(

1

𝑤1

𝐷
1
(

1

𝑤0

𝐷
𝑚
𝑓)) ≤ 𝑀. (24)

Proof. Take 𝑤 ∈ 𝐶
𝑚
[𝑎, 𝑏] such that𝐷𝑚𝑤(𝑡) = 𝑤0(𝑡) ∫

𝑡

𝑐
𝑤1(𝑡1)

∫

𝑡
1

𝑐
𝑤2(𝑡2)𝑑𝑡2𝑑𝑡1 and then apply Proposition 5.Thus the result

follows directly after using (P2) and [11, Theorem 3.2] taking
into account thatD(𝐷

𝑚
𝑤) ≡ 1.

3. Converse Result of the Asymptotic Formula

This section is devoted to give a converse result of the
asymptotic formula stated in (3). It turns to be an extension
of the results of [12]. A rough statement of the problem
would read as follows: under the general framework of the
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paper, assume the existence of a function 𝑔 such that for
𝑓 ∈ 𝐶

𝑚
[𝑎, 𝑏],

lim
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥))=𝑔 (𝑥) uniformly in 𝑛.

(25)

Is𝑓𝑚+2-times differentiable at𝑥? is it true thatD(𝐷
𝑚
𝑓) = 𝑔?

The answer, affirmative in certain sense, represents the
content of this section. We will make use of two lemmas.
We state them without proof as they resemble closely [10,
Lemmas 3, 4].

Lemma 8. Let 𝑓 ∈ 𝐶
𝑚
[𝑎, 𝑏]. If

lim sup
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)) ≥ 0, 𝑥 ∈ (𝑎, 𝑏) ,

(26)

then𝐷𝑚𝑓 is convex with respect to {𝑢0, 𝑢1} on (𝑎, 𝑏).

Lemma 9. Let 𝑥 ∈ (𝑎, 𝑏) and let 𝐻 ∈ 𝐶
𝑚
[𝑎, 𝑏] such that for

all 𝑡 ∈ (𝑎, 𝑏) 𝐷𝑚𝐻(𝑡) = 𝑤0(𝑡) ∫
𝑡

𝑎
ℎ(𝑠)𝑤1(𝑠)𝑑𝑠; then

lim inf
𝑡→𝑥

ℎ (𝑡) − ℎ (𝑥)

𝑊2 (𝑡) − 𝑊2 (𝑥)

≤ lim inf
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝐻(𝑥) − 𝐷
𝑚
𝐻(𝑥)) ,

lim sup
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝐻(𝑥) − 𝐷
𝑚
𝐻(𝑥))

≤ lim sup
𝑡→𝑥

ℎ (𝑡) − ℎ (𝑥)

𝑊2 (𝑡) − 𝑊2 (𝑥)
.

(27)

Theorem 10. Let 𝑓 ∈ 𝐶
𝑘
[𝑎, 𝑏] and let 𝜓 a finitely valued

function in 𝐿1(𝑎, 𝑏) such that for 𝑥 ∈ (𝑎, 𝑏)

lim inf
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥))

≤ 𝜓 (𝑥) ≤ lim sup
𝑘→+∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑓 (𝑥) − 𝐷
𝑚
𝑓 (𝑥)) ;

(28)

then almost everywhere on (𝑎, 𝑏), 𝜓 = D(𝐷
𝑚
𝑓).

Proof. It follows the same pattern as [10, Theorem 1]. We
detail it however for the sake of completeness. Let Ψ(𝑡) =

𝑤0(𝑡) ∫
𝑡

𝑎
𝑤1(𝑠) ∫

𝑠

𝑎
𝜓(])𝑤2(V)𝑑] 𝑑𝑠, and let 𝐺 ∈ 𝐶

𝑚
[𝑎, 𝑏] such

that for all 𝑡 ∈ (𝑎, 𝑏)

𝐷
𝑚
𝐺 (𝑡) = 𝐷

𝑚
𝑓 (𝑡) − Ψ (𝑡) . (29)

For 𝑞 ∈ N, let 𝑚𝑞 and 𝑀𝑞 be, respectively, the minor and
major functions of 𝜓 with respect to 𝑤2 such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚𝑞 (𝑡) − ∫

𝑡

𝑎

𝜓 (𝑠) 𝑤2 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

1

𝑞

, 𝑡 ∈ (𝑎, 𝑏) ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑀𝑞 (𝑡) − ∫

𝑡

𝑎

𝜓 (𝑠) 𝑤2 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

1

𝑞

, 𝑡 ∈ (𝑎, 𝑏) ,

(30)

whose existence is guaranteed from the theory of Lebesgue
integration (see e.g., [14]). In particular it follows that

lim sup
𝑡→𝑥

𝑚𝑞 (𝑡) − 𝑚𝑞 (𝑥)

𝑊2 (𝑡) − 𝑊2 (𝑥)
≤ 𝜓 (𝑥) ≤ lim inf

𝑡→𝑥

𝑀𝑞 (𝑡) − 𝑀𝑞 (𝑥)

𝑊2 (𝑡) − 𝑊2 (𝑥)
.

(31)

From the assumptions and Lemma 9, if we consider 𝑚𝑞 ∈

𝐶
𝑚
[𝑎, 𝑏] such that for all 𝑡 ∈ (𝑎, 𝑏) 𝐷

𝑚
𝑚𝑞(𝑡) = 𝑤0(𝑡)

∫

𝑡

𝑎
𝑚𝑞(𝑠)𝑤1(𝑠)𝑑𝑠, we have that

lim sup
𝑘→∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝑚𝑞 − 𝐷
𝑚
𝑚𝑞) (𝑥)

≤ lim sup
𝑡→𝑥

𝑚𝑞 (𝑡) − 𝑚𝑞 (𝑥)

𝑊2 (𝑡) − 𝑊2 (𝑥)

≤ 𝜓 (𝑥) ≤ lim sup
𝑘→∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L𝐿𝑛𝑓 − 𝑓) (𝑥) ,

(32)

hence

lim sup
𝑘→∞

𝜆𝑘 (A
𝑘,𝑛

𝐷𝑚∘L (𝑓 − 𝑚𝑞) − 𝐷
𝑚
(𝑓 − 𝑚𝑞)) (𝑥) ≥ 0.

(33)

Now Lemma 8 yields that for each 𝑞 ∈ N, 𝐷𝑚(𝑓 − 𝑚𝑞)

is convex with respect to {𝑢0, 𝑢1} on (𝑎, 𝑏). Letting 𝑞 tend
to infinity we derive that 𝐷𝑚𝐺 is convex respect to {𝑢0, 𝑢1}

on (𝑎, 𝑏). If we proceed this way with 𝑀𝑞, we conclude that
−𝐷
𝑚
𝐺 is convex respect to {𝑢0, 𝑢1} on (𝑎, 𝑏) as well. Hence,

in this interval D(𝐷
𝑚
𝐺) = 0 and consequently, almost

everywhere on (𝑎, 𝑏)

D (𝐷
𝑚
𝑓) = D (Ψ) , (34)

from where the proof follows recalling the definition of Ψ at
the top of the proof, the one of D in (4), and finally using
(P2).

4. Applications

In this section we illustrate the use of some of the results
of the paper. We will make use of the asymptotic formulae
obtained in [8, Section 3] to state some saturation results for
the classical Bernstein operators and for a modification of
them. Here we consider almost convergence, as a particular
case ofA-summability.We refer the reader to [8, Subsections
3.1, 3.2] for further details.

4.1. Saturation of Bernstein Operators and Almost Convexity.
Let 𝑝𝐵(𝑥) = 𝑥(1 − 𝑥).

Corollary 11. Let𝑀 > 0 and 𝑓 ∈ 𝐶
3
[0, 1]; then

𝑘

log 𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛+𝑘−1

∑

𝑗=𝑛

1

𝑘

𝐷
3
𝐵𝑗𝑓 (𝑥) − 𝐷

3
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

1

2(1 − 𝑥)
2
+ 𝑜
(𝑛)

(1) , 𝑥 ∈ (0, 1)

(35)
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if and only if

𝑝
3

𝐵 (
1

𝑒2

𝐷
4
𝑓 +

2

𝑒3

𝐷
3
𝑓) ∈ Lip 𝑀1 𝑜𝑛 (0, 1) . (36)

Corollary 12. Let𝑀 > 0 and 𝑓 ∈ 𝐶
3
[0, 1]; then

𝑘

log 𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛+𝑘−1

∑

𝑗=𝑛

1

𝑘

𝐷
3
𝐵𝑗𝑓 (𝑥) − 𝐷

3
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀 + 𝑜
(𝑛)

(1) ,

𝑥 ∈ (𝑎, 𝑏)

(37)

if and only if

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
3
(𝑝𝐵𝐷

2
𝑓)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 𝑎.𝑒. 𝑜𝑛 (0, 1) . (38)

4.2. Saturation of Modified Bernstein Operators and Almost
Convexity. Here we consider the sequence of linear operators
𝐿𝑗 given in [8, Subsection 3.2].

Corollary 13. Let𝑀 > 0 and 𝑓 ∈ 𝐶[0, 1]; then

𝑘

log 𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛+𝑘−1

∑

𝑗=𝑛

1

𝑘

𝐿𝑗𝑓 (𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

𝑥 (1 − 𝑥)

2

+ 𝑜
(𝑛)
(1) ,

𝑥 ∈ (0, 1)

(39)

if and only if

𝐷
1
𝑓 ∈ Lip 𝑀1 𝑜𝑛 (0, 1) . (40)

Corollary 14. Let𝑀 > 0 and 𝑓 ∈ 𝐶[0, 1]; then

𝑘

log 𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛+𝑘−1

∑

𝑗=𝑛

1

𝑘

𝐿𝑗𝑓 (𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀 + 𝑜
(𝑛)
(1) , 𝑥 ∈ (0, 1)

(41)

if and only if

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑝𝐵𝐷

2
𝑓)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 𝑎.𝑒. 𝑜𝑛 (0, 1) . (42)
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