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This paper is concerned with the blow-up solutions of the critical Gross-Pitaevskii equation, which models the Bose-Einstein
condensate. The existence and qualitative properties of the minimal blow-up solutions are obtained.

1. Introduction and Main Results

In this paper, we deal with the Cauchy problem of the
nonlinear Schrödinger equation with a harmonic potential

𝑖𝜙
𝑡
+ Δ𝜙 − |𝑥|

2
𝜙 +

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨

4/𝑁

𝜙 = 0, 𝑥 ∈ R
𝑁
, 𝑡 ≥ 0, (1)

𝜙 (0, 𝑥) = 𝜙
0
(𝑥) , (2)

where 𝜙 = 𝜙(𝑡, 𝑥): [0, 𝑇) × R𝑁
→ C is the wave function, 𝑁

is the space dimension, and Δ denotes the Laplace operator
on R𝑁. Equation (1) is also called Gross-Pitaevskii equation
(see [1, 2]), which models the Bose-Einstein condensate (see
[3, 4]).Theharmonic potential |𝑥|2 describes amagnetic field.
With the nonlinear term |𝜙|

4/𝑁
𝜙 being replaced by |𝜙|

𝑝−1
𝜙, it

is well known that the exponent 𝑝 = 1 + 4/𝑁 is the minimal
value for the existence of blow-up solutions (see e.g., [5, 6]).
Hence (1) is called critical Gross-Pitaevskii equation.

Let us recall the classical nonlinear Schrödinger equation

𝑖𝜓
𝑡
+ Δ𝜓 +

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

4/𝑁

𝜓 = 0, 𝑥 ∈ R
𝑁
, 𝑡 ≥ 0, (3)

𝜓 (0, 𝑥) = 𝜓
0
(𝑥) . (4)

For Cauchy problem (3)-(4), Ginibre and Velo [7] established
the local existence in𝐻

1
(R𝑁

). Glassey [8],Weinstein [9], and
Zhang [10] proved that, for some initial data, the solutions of
the Cauchy problem (3)-(4) blow up in finite time.

For the Cauchy problem (3)-(4), it is well known that
there exists aminimumof𝐿2 norm for the initial data of blow-
up solutions (see [9]). More precisely, let 𝑄(𝑥) be the ground
state, which is the unique, positive, radially symmetric solu-
tion (see [11]) of the semilinear elliptic equation

−Δ𝑢 + 𝑢 − |𝑢|
4/𝑁

𝑢 = 0, 𝑢 ∈ 𝐻
1
(R

𝑁
) . (5)

Weinstein [9] proved that the solutions of the Cauchy
problem (3)-(4) are globally defined if ‖𝜓

0
‖
𝐿
2 < ‖𝑄‖

𝐿
2 .

On the other hand, for any 𝑙 ≥ ‖𝑄‖
𝐿
2 , there exist blow-

up solutions with ‖𝜓
0
‖
𝐿
2 = 𝑙. Since then, much progress

has been made on the blow-up rate and profile of the blow-
up solutions of the Cauchy problem (3)-(4) (see [12–15]). In
particular, based on the pseudoconformal invariance of (3)
and the variational characterization of the ground, elaborate
and interesting conclusions were established on the existence
and profile of the minimal blow-up solution, which is the
blow-up solution 𝜓(𝑡, 𝑥) such that ‖𝜓

0
‖
𝐿
2 = ‖𝑄‖

𝐿
2 (see

[13, 15, 16]). By using the pseudoconformal invariance of (3),
Weinstein [15] constructed the explicit blow-up solution with
critical mass (‖𝜓

0
‖
𝐿
2 = ‖𝑄‖

𝐿
2) for (3) in the form

(𝑎 + 𝑏𝑡)
−(𝑁/2)

𝑄(
𝑥

𝑎 + 𝑏𝑡
) 𝑒

(𝑖𝑏|𝑥|
2
)/4(𝑎+𝑏𝑡)

𝑒
𝑖(𝑐+𝑑𝑡)/(𝑎+𝑏𝑡)

, (6)
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where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅, 𝑎𝑑 − 𝑏𝑐 = 1, and 𝑎𝑏 < 0. Moreover,
Weinstein proved that, for any minimal blow-up solution
𝜓(𝑡), the following holds:

lim
𝑡→𝑇

𝜆(𝑡)
𝑁/2

𝜓 (𝑡, 𝜆 (𝑡) (𝑥 + 𝑦 (𝑡))) = 𝑄 (𝑥) , (7)

where 𝑇 is the blow-up time and 𝑦(𝑡) ∈ R𝑁 and 𝜆(𝑡) ∈ R are
some suitable functions.

Merle [13, 16] proved that 𝜓(𝑡, 𝑥) is a minimal blow-up
solution of (3) if and only if there exist 𝜃 ∈ R, 𝜔 > 0, 𝑥

0
∈

R𝑁, and 𝑥
1
∈ R𝑁 such that

𝜓 (𝑡, 𝑥) = (
𝜔

𝑇 − 𝑡
)

𝑁/2

𝑒
𝑖𝜃+(𝑖|𝑥−𝑥

1
|
2
/4(−𝑇+𝑡))−(𝑖𝜔

2
/(−𝑇+𝑡))

× 𝑄(
𝜔

𝑇 − 𝑡
((𝑥 − 𝑥

1
) − (𝑇 − 𝑡) 𝑥

0
)) .

(8)

For the Cauchy problem (1)-(2), local well-posedness in
energy space was established in Cazenave [17]. Moreover,
from the result of Carles [18] and Zhang [6, 19], it is known
that 𝜙(𝑡) is globally defined if ‖𝜙

0
‖
𝐿
2 < ‖𝑄‖

𝐿
2 . In other words,

‖𝜙
0
‖
𝐿
2 ≥ ‖𝑄‖

𝐿
2 if 𝜙(𝑡) blows up in finite time.

Let 𝜙(𝑡) and𝜓(𝑡) be the solutions of the Cauchy problems
(1)-(2) and (3)-(4), respectively. Under the condition of
𝜙
0
(𝑥) = 𝜓

0
(𝑥), Carles [18] established a formula, which

reflects the relation between 𝜙(𝑡) and 𝜓(𝑡). According to the
formula, Carles [18] established the following statements.

(1) If 𝜙(𝑡) blows up at a finite time 𝑇
𝜙
, then 𝑇

𝜙
≤ 𝜋/2.

(2) If 𝜙(𝑡) blows up at 𝑇
𝜙

< 𝜋/2, 𝜓(𝑡) blows up at time
𝑇
𝜓

< ∞.
(3) Conversely, 𝜓(𝑡) blows up at time 𝑇

𝜓
< ∞; then 𝜙(𝑡)

blows up at 𝑇
𝜙
< 𝜋/2.

(4) If 𝜙(𝑡) blows up at𝑇
𝜙
= 𝜋/2,𝜓(𝑡) exists globally (𝑇

𝜓
=

∞).

Moreover, Carles studied the qualitative properties of
minimal blow-up solutions 𝜙(𝑡) with 𝑇

𝜙
< 𝜋/2 (see [18, 20]).

As for the minimal blow-up solutions with 𝑇
𝜙
= 𝜋/2, though

the existence was established by the formula in [5], there is no
further information on the qualitative properties obtained by
the formula. Up to our knowledge, there is no result about the
qualitative properties of the minimal blow-up solutions 𝜙(𝑡)

of (1) with 𝑇
𝜙
= 𝜋/2.

The purpose of the present paper is to investigate the
qualitative properties of the minimal blow-up solutions
without any limit to the blow-up time.The formula presented
in [18] is not used to carry out the objective. We follow the
ideas of Merle [13, 16], as well as Weinstein [15], in which the
profile and uniqueness of the minimal blow-up solutions for
(3) were investigated. However, in contrast to (3), (1) loses
the invariance of pseudoconformal invariance, which is very
important in the arguments of [13, 15, 16]. Therefore, some
appropriate modifications will be made in the argument of
this work to reach our goal. In particular, we note that some
techniques developed by Pang et al. [21] are adopted in this
paper.

We state our main results.

Theorem 1. There exist initial data 𝜙
0
with ‖𝜙

0
‖
𝐿
2 = ‖𝑄‖

𝐿
2 for

which the solution of the Cauchy problem (1)-(2) blows up in a
finite time.

Theorem2. Let𝜙(𝑡) be a blow-up solution of (1)with ‖𝜙
0
‖
𝐿
2 =

‖𝑄‖
𝐿
2 . Then there is 𝑦

0
∈ R𝑁 such that

𝜙 (𝑡, 𝑥) 󳨀→ ‖𝑄‖
2

𝐿
2𝛿𝑦
0

(9)

in the sense of distribution as 𝑡 → 𝑇.

Theorem 3. There exists 𝐶 > 0 such that

󵄩󵄩󵄩󵄩∇𝜙 (𝑡)
󵄩󵄩󵄩󵄩𝐿2 ≥

𝐶

𝑇 − 𝑡
, ∀𝑡 ∈ [0, 𝑇) . (10)

Remark 4. For any blow-up solutions of (1), we know that
𝑇 ≤ 𝜋/2 (𝑇 is a blow-up time). When 𝑇 < 𝜋/2, the
formula presented in [18] is valid. For the minimal blow-up
solutions with𝑇 < 𝜋/2, the conclusion of the above theorems
can be found in [18]. However, there exist minimal blow-up
solutions with 𝑇 = 𝜋/2. For example, if the initial 𝜙

0
(𝑥) =

𝜓
0
(𝑥) = 𝑄(𝑥), with 𝑄(𝑥) being the solution of problem (5),

the solution 𝜙(𝑡) of (1) will blow up at 𝑇 = 𝜋/2, while the
corresponding solution of (3) is a solitary wave 𝑒

𝑖𝑡
𝑄(𝑥). The

minimal blow-up solutions with 𝑇 = 𝜋/2 were sensible as
pointed in [18].

In this paper,𝐿𝑞(R𝑁
), ‖ ⋅ ‖

𝐿
𝑞
(R𝑁), and∫

R𝑁
⋅ 𝑑𝑥 are denoted

by 𝐿
𝑞, ‖ ⋅ ‖

𝐿
𝑞 , and ∫ ⋅𝑑𝑥, respectively. The various positive

constants are also denoted by 𝐶.
This paper proceeds as follows. In Section 2, we establish

some preliminaries. In Section 3, we give the proof of the
existence and profile of the minimal blow-up solutions of (1)
(Theorems 1 and 2). In Section 4, we derive the argument of
the lower bound of the blow-up rate of the minimal blow-up
solutions of (1) (Theorem 3).

2. Preliminaries

2.1. Local Wellposedness. The energy space of (1) was defined
as

Σ := {𝑢 ∈ 𝐻
1
, |𝑥| 𝑢 ∈ 𝐿

2
} . (11)

The inner product of the space Σ is defined as

⟨𝑢, V⟩ := ∫∇𝑢∇V + 𝑢V + |𝑥|
2
𝑢V𝑑𝑥. (12)

The norm of Σ is denoted by ‖ ⋅ ‖
Σ
. Moreover, we define an

energy functionalE on Σ by

E (𝑢) := ∫ |∇𝑢|
2
+ |𝑥|

2
|𝑢|

2
−

1

1 + 2/𝑁
|𝑢|

2+4/𝑁
𝑑𝑥. (13)

From Cazenave [17], we have the local well-posedness for
the Cauchy problem of (1) follows.

Proposition 5. For any 𝜙
0
∈ Σ, there exist𝑇 > 0 and a unique

solution 𝜙(𝑡, 𝑥) of the Cauchy problem (1)-(2) in 𝐶([0, 𝑇); Σ)
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such that either 𝑇 = ∞ (global existence) or 𝑇 < ∞ and
lim

𝑡→𝑇
‖𝜙(𝑡)‖

Σ
= ∞ (blowup). Moreover, for any 𝑡 ∈ [0, 𝑇),

it holds the conservation laws of mass
󵄩󵄩󵄩󵄩𝜙(𝑡)

󵄩󵄩󵄩󵄩𝐿2
=

󵄩󵄩󵄩󵄩𝜙0
󵄩󵄩󵄩󵄩𝐿2 (14)

and the energy

E (𝜙 (𝑡)) = E (𝜙
0
) . (15)

2.2. Variational Characterization of the Ground State. Con-
sider the equation

−Δ𝑢 + 𝜔𝑢 − |𝑢|
4/𝑁

𝑢 = 0, 𝑢 ∈ 𝐻
1
(R

𝑁
) . (16)

For (16), we set some notations such asX
𝜔
(the solution set),

G
𝜔
(the ground solution set), andG as follows:

X
𝜔

= {𝑢 ∈ 𝐻
1
; 𝑢 ̸= 0, −Δ𝑢 + 𝜔𝑢 − |𝑢|

4/𝑁
𝑢 = 0} ,

G
𝜔

= {𝑢 ∈ X
𝜔
; 𝑆 (𝑢) ≤ 𝑆 (V) , ∀V ∈ X𝜔} ,

G = ⋃

𝜔∈𝑅
+

G
𝜔
,

(17)

where 𝑆(𝑢) = ∫(1/2)|∇𝑢|
2

+ (𝜔/2)|𝑢|
2

− (1/4/𝑁 +

2)|𝑢|
2+(4/𝑁)

𝑑𝑥.
For any 𝑢 ∈ X

𝜔
, the following two identities hold true:

∫ |∇𝑢|
2
+ 𝜔|𝑢|

2
𝑑𝑥 = ∫ |𝑢|

2+(4/𝑁)
𝑑𝑥,

∫ (𝑁 − 2) |∇𝑢|
2
+ 𝑁𝜔|𝑢|

2
𝑑𝑥

= ∫
𝑁

1 + 2/𝑁
|𝑢|

2+(4/𝑁)
𝑑𝑥 (Pohozaev’s identity) .

(18)

The above two equalities imply

H (𝑢) = 0, ∀𝑢 ∈ X, (19)

where

H (𝑢) := ∫ |∇𝑢|
2
−

1

2/𝑁 + 1
|𝑢|

2+(4/𝑁)
𝑑𝑥. (20)

Naturally, we get

𝑢 ∈ G
𝜔

⇐⇒ {
𝑢 ∈ X

𝜔
,

‖𝑢‖
𝐿
2 ≤ ‖V‖

𝐿
2 , ∀V ∈ X

𝜔
.

(21)

According to Cazenave [17], the set G
𝜔
can be described

as

G
𝜔

= ⋃{𝑒
𝑖𝜃
𝜑
𝜔
(⋅ − 𝑦) ; 𝜃 ∈ 𝑅, 𝑦 ∈ R

𝑁
} , (22)

where𝜑
𝜔
is a positive, spherically symmetric, decreasing, and

real valued function.

It is of importance that Kwong [11] proved the uniqueness
for the solution 𝑄(𝑥) of the problem

−Δ𝑢 + 𝑢 − |𝑢|
4/𝑁

𝑢 = 0, 𝑢 ∈ 𝐻
1
,

𝑢 (𝑥) = 𝑢 (|𝑥|) ,

𝑢 (𝑥) > 0.

(23)

Noticing the fact that 𝑄(𝑥) = 𝜑
𝜔
|
𝜔=1

, it is easy to check that

𝜑
𝜔

= 𝜔
𝑁/4

𝑄(𝜔
1/2

𝑥) ∈ G
𝜔
,

󵄩󵄩󵄩󵄩𝜑𝜔
󵄩󵄩󵄩󵄩𝐿2 = ‖𝑄‖

𝐿
2 . (24)

It follows from (21), (22), and (24) that

𝑢 ∈ G
𝜔

⇐⇒ {
𝑢 ∈ X

𝜔
,

‖𝑢‖
𝐿
2 = ‖𝑄‖

𝐿
2 ,

(25)

G
𝜔

= ⋃{𝑒
𝑖𝜃
𝜑
𝜔
(⋅ − 𝑦) ; 𝜃 ∈ 𝑅, 𝑦 ∈ R

𝑁
} ,

= ⋃{𝑒
𝑖𝜃
𝜔
𝑁/4

𝑄(𝜔
1/2

(⋅ − 𝑦)) ; 𝜃 ∈ 𝑅, 𝑦 ∈ R
𝑁
} .

(26)

With functionalH defined by (20), we now introduce the
following constrained minimization problem

I (‖𝑄‖
𝐿
2) ≡ inf {H (𝑓) | 𝑓 ∈ 𝐻

1
,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿2
= ‖𝑄‖

𝐿
2} . (27)

Now, we claim that

𝑢 ∈ G ⇐⇒ 𝑢

is a solution to the minimization problem (27) .

(28)

In fact, (𝑁/(𝑁 + 2))‖𝑄‖
4/𝑁

𝐿
2

is the minimum of the
functional (see Kwong [11] or Weinstein [9])

𝐼 (𝜓) =

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

4/𝑁

𝐿
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2+4/𝑁

𝐿
2+4/𝑁

, 𝜓 ∈ 𝐻
1
, (29)

which derives the Gagliardo-Nirenberg inequality

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2+4/𝑁

𝐿
2+4/𝑁 ≤

𝑁 + 2

𝑁
(

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐿2

‖𝑄‖
𝐿
2

)

4/𝑁

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2 . (30)

The inequality (30) implies the following lemma on the
functionalH.

Lemma 6 (see Weinstein [9]). For any 𝑓 ∈ 𝐻
1, one has

[1 − (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2

‖𝑄‖
𝐿
2

)

4/𝑁

]
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ H (𝑓) . (31)

Lemma 6 implies that

H (𝑓) ≥ 0, if 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2

≤ ‖𝑄‖
𝐿
2 . (32)

It follows from (19), (27), and (32) that

I (‖𝑄‖
𝐿
2) = 0. (33)
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Hence, from (19) and (25), it holds that

𝑢 ∈ G 󳨐⇒ 𝑢

is a solution to the minimization problem (27) .

(34)

On the other hand, if 𝑢 is a minimizer of the variational
problem of (27), it solves the Euler-Lagrange equation (16).
So 𝑢 ∈ X

𝜔
for some 𝜔 > 0, and by (27) and (25), we know

𝑢 ∈ G
𝜔

⊂ G. This implies that

𝑢 ∈ G ⇐󳨐 𝑢

is a solution to the minimization problem (27) .

(35)

Hence (28) holds true.
Putting together (22), (25), and (28), we summarize the

variational characterization.

Proposition 7. Each of the following three statements is
equivalent:

(i) 𝑢 ∈ ⋃
𝜔∈R+ G𝜔

,
(ii) 𝑢 is a solution to the minimizing problem

min {H(𝑢), ‖𝑢‖
𝐿
2 = ‖𝑄‖

𝐿
2},

(iii) 𝑢 = 𝑒
𝑖𝜃
𝜔
𝑁/4

𝑄(𝜔
1/2

(𝑥 − 𝑥
0
)), for some 𝜃 ∈ R, 𝜔 ∈ R+,

and 𝑥
0
∈ R𝑁.

2.3. Lemmas

Lemma 8 (see Zhang [6]). Let 𝜙
0

̸= 0, the initial datum of
Cauchy problem (1)-(2), satisfy

E (𝜙
0
) ≤ ∫ |𝑥|

2󵄨󵄨󵄨󵄨𝜙0
󵄨󵄨󵄨󵄨

2

𝑑𝑥; (36)

then 𝜙(𝑡) blows up in a finite time.

Consider the constrained minimization problem

𝐼 (𝛼) ≡ min {H (𝑓) | 𝑓 ∈ 𝐻
1
,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿2
= 𝛼} . (37)

For 𝐼(𝛼), we cite a lemma in [15].

Lemma 9 (see Weinstein [15]). (a) Consider 𝐼(𝛼) = 0 or
𝐼(𝛼) = −∞.

(b) Let 𝛼 < ‖𝑄‖
𝐿
2 and 𝑢

𝑛
be a minimizing sequence; then

it holds that 𝐼(𝛼) = 0 and 𝑢
𝑛
⇀ 0 weakly in 𝐻

1.

Now, we recall some lemmas on the compactness.

Lemma 10 (see Brezis and Lieb [22]). Let 𝑓 ∈ 𝐿
1

loc, ‖∇𝑓‖
𝐿
2 ≤

𝐶, and 𝜇(|𝑓| > 𝜀) ≥ 𝛿 > 0. Then there exists a shift 𝑇
𝑦
𝑓(𝑥) =

𝑓(𝑥 + 𝑦) such that, for some constant 𝛼 = 𝛼(𝐶, 𝛿, 𝜀),

𝜇(𝐵 (0, 1) ∩ [𝑇
𝑦
𝑔 >

𝜀

2
]) > 𝛿. (38)

Lemma 11 (see Lieb [23]). Let 𝑓
𝑗
be a uniformly bounded

sequence of functions in𝑊
1,𝑝 with 1 < 𝑝 < ∞. Assume further

that there are positive constant𝐶 and 𝜂 satisfying 𝜇(|𝑓
𝑗
| > 𝜂) ≥

𝐶. Then there exists a sequence 𝑦
𝑗
∈ R𝑁 such that

𝑓
𝑗
(⋅ + 𝑦

𝑗
) ⇀ 𝑓 ̸= 0 weakly in 𝑊

1,𝑝
. (39)

Lemma 12. Let 𝜃 be a real-valued function on R𝑁 and V ∈

𝐻
1
(R𝑁

) with ‖V‖
𝐿
2 ≤ ‖𝑄‖

𝐿
2 . Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I∫ V (𝑥) ∇𝜃 (𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (2H (V) ∫ |V (𝑥)|

2
|∇𝜃 (𝑥)|

2
𝑑𝑥)

1/2

.

(40)

Proof. It follows from (30) and ‖V‖
𝐿
2 ≤ ‖𝑄‖

𝐿
2 that

H (𝑒
𝑖𝛼𝜃V) ≥ 0 (41)

for all real numbers 𝛼. On the other hand, it has

H (𝑒
𝑖𝛼𝜃V) = 𝛼

2
∫ |V|2|∇𝜃|

2
𝑑𝑥 − 𝛼∫I (V∇V) ∇𝜃𝑑𝑥 + H (V) .

(42)

Thus the discriminant of the equation in 𝛼 must be negative
or null and the desired inequality follows.

Lemma 13. There is a constant 𝑐
0
such that

∫ |𝑥|
2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑐
0
. (43)

Proof. Setting 𝐽(𝑡) = ∫ |𝑥|
2
|𝜙(𝑡, 𝑥)|

2
𝑑𝑥, we have

𝐽
󸀠
(𝑡) = 2I∫𝜙∇𝜙𝑑𝑥,

𝐽
󸀠󸀠
(𝑡) = 4E (𝜙) − 4𝐽 (𝑡) .

(44)

It follows that

𝐽 (𝑡) = (𝐽 (0) − E (0)) cos 𝑡 + 𝐽
󸀠
(0) sin 𝑡 + E (0) , (45)

which implies the conclusion.

Lemma 14 (see [16, page 433]). Let 𝑢
𝑛

∈ 𝐻
1, 𝑐

0
> 0, and

𝑅
0
> 0, for arbitrary 𝑛, satisfy

H (𝑢
𝑛
) ≤ 𝑐

0
,

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩𝐿2

≤ ‖𝑄‖
𝐿
2 ,

󵄩󵄩󵄩󵄩∇𝑢
𝑛

󵄩󵄩󵄩󵄩𝐿2 󳨀→ ∞,

∫
|𝑥|>𝑟
0

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝜀 (𝑛) ,

(H)

where 𝜀(𝑛) > 0 depends only on 𝑛. Then, it holds that

∫
|𝑥|>4𝑟

0

󵄨󵄨󵄨󵄨∇𝑢
𝑛

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐴, (46)

with 𝐴 = 𝐴(𝑟
0
, 𝑐
0
> 0).
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3. Profile of the Minimal Blow-Up Solution

Now we prove the existence of the minimal blow-up solu-
tions.

Proof of Theorem 1. Setting 𝜙
0

= 𝜙(𝑐, 𝜆) = 𝑐𝜆
𝑁/2

𝑄(𝜆𝑥) with
𝜆 being arbitrary positive real number and 𝑐 being complex
number satisfying |𝑐| = 1, then

󵄩󵄩󵄩󵄩𝜙0
󵄩󵄩󵄩󵄩𝐿2

= ‖𝑄‖
𝐿
2 . (47)

From (15) and (19), the corresponding energy is

E (𝜙
0
) = (1 − |𝑐|

4/𝑁
) |𝑐|

2
𝜆
2
∫ |∇𝑄|

2
𝑑𝑥

+ ∫ |𝑥|
2󵄨󵄨󵄨󵄨𝜙0

󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫ |𝑥|
2󵄨󵄨󵄨󵄨𝜙0

󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(48)

ThusLemma 8 infers that𝜙(𝑡, 𝑥) blows up in a finite time.

Employing the concentration compactness lemma, we
can prove the following proposition which is crucial to the
study of the blow-up profile (Theorem 2).

Proposition 15. Let 𝜙(𝑡) ∈ 𝐶([0, 𝑇), Σ) be a blow-up solution
of the Cauchy problem (1)-(2) and 𝑇 is the blow-up time. Set
𝜆(𝑡) = ‖∇𝑄‖

𝐿
2/‖∇𝜙(𝑡)‖

𝐿
2 and (𝑆

𝜆
𝜙)(𝑥, 𝑡) = 𝜆

𝑁/2
𝜙(𝜆𝑥, 𝑡). If

󵄩󵄩󵄩󵄩𝜙0
󵄩󵄩󵄩󵄩𝐿2

= ‖𝑄‖
𝐿
2 , (49)

it holds that

𝑆
𝜆(𝑡)

𝜙 (⋅ + 𝑦 (𝑡) , 𝑡) 𝑒
𝑖𝛾(𝑡)

󳨀→ 𝑄 (⋅) in 𝐻
1
, as 𝑡 󳨀→ 𝑇 (50)

with 𝑦(𝑡) ∈ R𝑁 and 𝛾(𝑡) ∈ R.

Proof. Let 𝑡
𝑘

→ 𝑇. We choose 𝜆
𝑘
= 𝜆(𝑡

𝑘
) to satisfy

󵄩󵄩󵄩󵄩󵄩
∇𝑆

𝜆
𝑘

𝜙 (⋅ + 𝑦
𝑘
, 𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩𝐿2

= 𝜆
𝑘

󵄩󵄩󵄩󵄩∇𝜙 (⋅ + 𝑦
𝑘
, 𝑡
𝑘
)
󵄩󵄩󵄩󵄩𝐿2

= ‖∇𝑄‖
𝐿
2 .

(51)

Setting 𝜙
𝑘
≡ 𝑆

𝜆
𝑘

𝜙(⋅ + 𝑦
𝑘
, 𝑡
𝑘
), noticing that ‖𝜙(𝑡

𝑘
)‖
𝐿
2 tends to

∞ as 𝑡
𝑘

→ 𝑇, 𝜆
𝑘

→ 0, and
󵄩󵄩󵄩󵄩𝜙𝑘

󵄩󵄩󵄩󵄩𝐿2
=

󵄩󵄩󵄩󵄩𝜙 (𝑡
𝑘
)
󵄩󵄩󵄩󵄩𝐿2

=
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐿2
, (52)

we know that 𝜙
𝑘
is uniformly bounded in 𝐻

1 and there is a
weakly convergent subsequence 𝜙

𝑘
𝑗

such that

𝜙
𝑘
𝑗

⇀ 𝜙 in 𝐿
2
,

𝜙
𝑘
𝑗

⇀ 𝜙 in 𝐻
1
.

(53)

We note that

H (𝜙
𝑘
𝑗

) = 𝜆
2

𝑘
𝑗

H (𝜙 (𝑡
𝑘
𝑗

)) ≤ 𝜆
2

𝑘
𝑗

E (𝜙
0
) 󳨀→ 0,

𝑗 󳨀→ ∞.

(54)

Since we have assumed ‖𝜙
0
‖
𝐿
2 = ‖𝑄‖

𝐿
2 , by (52), (54), and (31),

we know that 𝜙
𝑘
is a minimizing sequence for the variational

problem (27).

Next, we will prove that the minimizing sequence 𝜙
𝑘

has a subsequence 𝜙
𝑘
𝑗

and a family 𝑦
𝑗
such that 𝜙

𝑘
𝑗

(⋅ − 𝑦
𝑘
)

has a strong limit in 𝐻
1. To see this, we need to make

use of the concentration-compactness lemma (Lions [24])
which means that 𝜙

𝑘
𝑗

has one of three properties: vanishing,
dichotomy, and compactness.

Vanishing. For every 𝑀 < ∞, one has

lim
𝑗→∞

sup
𝑦∈R𝑁

∫
𝑦
𝑗
+𝐵
𝑟
(𝑀)

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0. (55)

Dichotomy. There exist a constant 𝛼 ∈ (0, ‖𝑄‖
𝐿
2) and

sequences 𝜓1

𝑗
and 𝜓

2

𝑗
, bounded in𝐻

1, such that, for all 𝜀 > 0,
there exists 𝑗

0
> 0 such that for 𝑗 > 𝑗

0

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜓
1

𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
− 𝛼

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀,

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜓
2

𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
− (‖𝑄‖

𝐿
2 − 𝛼)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩
𝜙
𝑘
𝑗

− 𝜓
1

𝑗
− 𝜓

2

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐻1
≤ 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩
𝜙
𝑘
𝑗

− 𝜓
1

𝑗
− 𝜓

2

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
≤ 𝜀 for 2 ≤ 𝑝 <

2𝑁

𝑁 − 2
,

distance (supp𝜓
1

𝑗
, supp𝜓

2

𝑗
) 󳨀→ ∞.

(56)

Compactness. There exists 𝑦
𝑗
in R𝑁. For any 𝜀 > 0, we can

find 𝑀 < ∞ such that

∫
𝑦
𝑗
+𝐵
𝑟
(𝑀)

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ ‖𝑄‖
2

𝐿
2 − 𝜀. (57)

Now, we exclude the cases of vanishing and dichotomy.

Exclusion of Vanishing. By (52), (51), and (54) there are𝐶
1
> 0

and 𝐶
2
> 0 such that

󵄩󵄩󵄩󵄩𝜙𝑘
󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝐶

1
,

󵄩󵄩󵄩󵄩𝜙𝑘
󵄩󵄩󵄩󵄩

2+4/𝑁

𝐿
2+4/𝑁 ≥ 𝐶

2
> 0. (58)

By the boundness of ‖𝜙
𝑘
‖
𝐻
1 and the Sobolev inequality, there

exist 𝛾 > 2 + 4/𝑁 and 𝐶
3
> 0 such that

󵄩󵄩󵄩󵄩𝜙𝑘
󵄩󵄩󵄩󵄩

𝛾

𝐿
𝛾 ≤ 𝐶

3
. (59)

Now, we show the existence of positive constants 𝜀 and 𝛿 such
that

𝜇 (
󵄨󵄨󵄨󵄨𝜙𝑘

󵄨󵄨󵄨󵄨 > 𝜀) ≥ 𝛿 > 0. (60)
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Indeed, from (58) and (59), for sufficiently small 𝜀 > 0, we get

𝑐
2
≤ ∫

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥

= ∫

{|𝜙𝑘|<𝜀}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥

+ ∫

{𝜀<|𝜙𝑘|<(1/𝜀)}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥 + ∫

{|𝜙𝑘|>(1/𝜀)}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥

≤
𝐶
2

4𝐶
1

∫

{|𝜙𝑘|<𝜀}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫

{𝜀<|𝜙𝑘|<(1/𝜀)}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥 +
𝐶
2

4𝐶
3

∫

{|𝜙𝑘|>(1/𝜀)}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥

≤
𝐶
2

4𝐶
1

󵄩󵄩󵄩󵄩𝜙𝑘
󵄩󵄩󵄩󵄩

2

𝐿
2 + ∫

{𝜀<|𝜙𝑘|<(1/𝜀)}

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨

2+4/𝑁

𝑑𝑥

+
𝐶
2

4𝐶
3

󵄩󵄩󵄩󵄩𝜙𝑘
󵄩󵄩󵄩󵄩

𝛾

𝐿
𝛾𝑑𝑥

≤
𝐶
2

2
+ 𝜇 (

󵄨󵄨󵄨󵄨𝜙𝑘
󵄨󵄨󵄨󵄨 > 𝜀) (

1

𝜀
)

2+4/𝑁

.

(61)

Thus we know that (60) with 𝛿 = (𝐶
2
/2)𝜀

2+4/𝑁 is valid. From
(60) and Lemma 10, there exist 𝛼 and 𝑦

𝑘
satisfying

𝜇({|𝑥| ≤ 1} ∩ {
󵄨󵄨󵄨󵄨𝜙𝑘 (⋅ + 𝑦

𝑘
)
󵄨󵄨󵄨󵄨} >

𝜀

2
) > 𝛿. (62)

Thus,

∫
|𝑥|≤1

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

(⋅ + 𝑦
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ (
𝜀

2
)

2

𝛿, (63)

which excludes the occurrence of vanishing.

Exclusion of Dichotomy. Suppose by contradiction that
dichotomy occurs. Then, by the same argument as that in the
case of vanishing we can get

0 < 𝜐 < 𝜇 {𝜃 <
󵄨󵄨󵄨󵄨󵄨
𝜓
1

𝑗

󵄨󵄨󵄨󵄨󵄨
} , (64)

where 𝜃 and 𝜐 are two constants and 𝜓
1

𝑗
is bounded in

𝐻
1. Hence, by Lemma 11, there are a subsequence 𝜓

1

𝑗
𝑟

and a
sequence 𝑦

𝑟
such that

𝜓
1

𝑗
𝑟

(⋅ + 𝑦
𝑟
) ⇀ 𝜓 ̸= 0 in 𝐻

1
. (65)

Using (56) gives rise to

0 = 𝐼 (‖𝑄‖
𝐿
2) ≥ lim inf

𝑟→∞
H (𝜓

1

𝑗
𝑟

) + lim inf
𝑟→∞

H (𝜓
2

𝑗
𝑟

)

= lim inf
𝑟→∞

H (𝜓
1

𝑗
𝑟

) .

(66)

On the other hand, the fact ‖𝜓
1

𝑗
𝑟

‖
𝐿
2

< ‖𝑄‖
𝐿
2 implies with

Lemma 6 that

lim inf
𝑟→∞

H (𝜓
1

𝑗
𝑟

) ≥ 0. (67)

Thus, for any fixed 𝑛
∗, it has

0 = 𝐼 (‖𝑄‖
𝐿
2) ≥ lim inf

𝑟→∞
H (𝜓

1

𝑗
𝑟

) = sup
𝑛

inf
𝑟≥𝑛

H (𝜓
1

𝑗
𝑟

)

≥ inf
𝑟≥𝑛
∗

H (𝜓
1

𝑗
𝑟

) .

(68)

We can then extract a minimizing subsequence, which we
rename it by𝜓

1

𝑗
𝑟

; that is, lim
𝑟→∞

H(𝜓
1

𝑗
𝑟

) = 0. Using Lemma 9
yields

𝜓
1

𝑗
𝑟

󳨀→ 0, (69)

which is impossible from (65).

Occurrence of Compactness. It follows from the previous
arguments that compactness occurs. By (57), we get

‖𝑄‖
2

𝐿
2 − 𝜀 ≤ ∫

𝑦
𝑗
+𝐵(𝑀)

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ ∫
󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ ‖𝑄‖
2

𝐿
2 . (70)

For 𝜙
𝑘
𝑗

(⋅ + 𝑦
𝑗
) being bounded in 𝐻

1
(R𝑁

), there exist 𝜙 ∈

𝐻
1
(R𝑁

) and a subsequence, which we again label it by 𝜙
𝑘
𝑗

,
such that

𝜙
𝑘
𝑗

(⋅ + 𝑦
𝑗
) ⇀ 𝜙 in 𝐻

1
. (71)

Given 𝑀 > 0, the embedding 𝐻
1
(R𝑁

) 󳨅→ 𝐿
2
({|𝑥| ≤ 𝑟})

is compact and

∫
|𝑥|≤𝑟

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = lim
𝑗→∞

∫
𝑥
𝑚
+𝐵(𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥. (72)

Making use of (70) derives

∫
R𝑁

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ ‖𝑄‖
2

𝐿
2 − 𝜀 (73)

for any 𝜀 > 0. Hence, it holds that

∫
R𝑁

󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ‖𝑄‖
2

𝐿
2 . (74)

It follows that

𝜙
𝑘
𝑗

(⋅ + 𝑦
𝑗
) 󳨀→ 𝜙 in 𝐿

2
, (75)

which implies with the Gagliardo-Nirenberg inequality (30)
that

𝜙
𝑘
𝑗

(⋅ + 𝑦
𝑗
) 󳨀→ 𝜙 in 𝐿

2+4/𝑁
. (76)

To show 𝜙
𝑘
𝑗

→ 𝜙 in 𝐻
1, we only need to show that

‖∇𝜙‖
𝐿
2 = ‖∇𝑄‖

𝐿
2 .

From (51) and (54), we know that

0 = lim
𝑡→𝑇

H (𝜙
𝜙
𝑘𝑗

)

= ‖∇𝑄‖
𝐿
2 −

1

2/𝑁 + 1
lim
𝑡→𝑇

∫
󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

4/𝑁+2

𝑑𝑥

= ‖∇𝑄‖
𝐿
2 −

1

2/𝑁 + 1
lim
𝑡→𝑇

∫
󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨

4/𝑁+2

𝑑𝑥.

(77)
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Hence, ‖∇𝜙‖
𝐿
2 < ‖∇𝑄‖

𝐿
2 derives E(𝜙) < 0. This contradicts

Lemma 6 and the fact 𝜙 ̸= 0.
Since𝜙 solves theminimizing problem (27), it satisfies the

Euler-Lagrange equation (16). Noticing the fact ‖∇|𝜙|‖
𝐿
2 ≤

‖∇𝜙‖
𝐿
2 , we infer that |𝜙| is also a solution to problem (27).

Thus it is a nonnegative solution of (16). It follows from
‖𝜙‖

𝐿
2 = ‖𝑄‖

𝐿
2 , ‖∇𝜙‖

𝐿
2 = ‖∇𝑄‖

𝐿
2 , and Proposition 7 that

𝜙 = 𝑄 (⋅ + 𝑦
𝑗
) 𝑒

𝑖𝛾 (78)

for some 𝑦 ∈ R𝑁 and 𝛾 ∈ R. By redefining the sequence 𝛾
𝑗
,

we can set 𝛾 = 0.

Proof of Theorem 2. It follows from Proposition 15 that

𝜆
𝑁

(𝑡)
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝜆 (𝑡) (𝑥 + 𝑥 (𝑡)))

󵄨󵄨󵄨󵄨

2

󳨀→ |𝑄 (𝑥)|
2 in 𝐿

1 as 𝑡 󳨀→ 𝑇,

(79)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥 + 𝑥 (𝑡))
󵄨󵄨󵄨󵄨

2

󳨀→ ‖𝑄‖
2

𝐿
2𝛿𝑥=0 as 𝑡 󳨀→ 𝑇. (80)

Using Lemma 13 derives that

lim sup
𝑡→𝑇

|𝑥 (𝑡)| ≤
√𝑐

0

‖𝑄‖
𝐿
2

. (81)

Hence we have a positive constant 𝑟
0
such that

∀𝑡 ∈ [0, 𝑇) , |𝑥 (𝑡)| ≤ 𝑟
0
. (82)

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥

= ∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

(𝑥 − 𝑥 (𝑡)) 𝑑𝑥

+ ∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑥 (𝑡) 𝑑𝑥

= ∫
𝐵(−𝑥(𝑡),𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑦 + 𝑥 (𝑡))
󵄨󵄨󵄨󵄨

2

𝑦𝑑𝑦

+ ∫
𝐵(−𝑥(𝑡),𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑦 + 𝑥 (𝑡))
󵄨󵄨󵄨󵄨

2

𝑥 (𝑡) 𝑑𝑦.

(83)

From (82), for arbitrary 𝑟 > 𝑟
0
, there is a 𝛿 > 0 such that

𝐵(0, 𝛿) ⊂ 𝐵(−𝑥(𝑡), 𝑟). The formula (80) implies that

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥 − ∫ |𝑄 (𝑥)|
2
𝑥 (𝑡) 𝑑𝑥 = 0. (84)

On the other hand, Lemma 13 implies that

∫
|𝑥|>𝑟

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥 ≤
𝑐
0

𝑟
. (85)

Thus

lim
𝑡→𝑇

{∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥 − ∫ |𝑄 (𝑥)|
2
𝑑𝑥𝑥 (𝑡)} = 0. (86)

By Lemma 12, we obtain

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2I∫𝜙 (𝑡, 𝑥) ∇𝜙 (𝑡, 𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 2I
𝑁

∑

𝑗=1

∫
󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡, 𝑥) ∇𝜙 (𝑡, 𝑥) ⋅ ∇𝜃

𝑗
(𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨

≤ 2

𝑁

∑

𝑗=1

(2H (𝜙 (𝑡)) ∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇𝜃

𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

≤ 𝐶,

(87)

where 𝜃
𝑗
(𝑥) = 𝑥

𝑗
. Hence there exists 𝑥

1
∈ R𝑁 such that

lim
𝑡→𝑇

∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑥𝑑𝑥 = −(∫ |𝑄 (𝑥)|
2
𝑑𝑥)𝑥

1
. (88)

Combining (86) with (88), we know that 𝑥(𝑡) → −𝑥
1
as 𝑡 →

𝑇 and we have

|𝑢 (𝑡, 𝑥)| 󳨀→ ‖𝑄‖
2

𝐿
2𝛿𝑥=𝑥

1

. (89)

4. Blow-Up Rate

To establish the lower bound of the blow-up rate, we use the
following proposition.

Proposition 16. Letting 𝑦
0
be the blow-up point determined

in Theorem 2, it has

lim
𝑡→𝑇

∫
󵄨󵄨󵄨󵄨𝑥 − 𝑦

0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0. (90)

Proof. Let us define a positive function ℎ(𝑥) ∈ 𝐶
1
(R𝑁

) such
that

ℎ (𝑥) = ℎ (|𝑥|) =

{{{

{{{

{

= 0, |𝑥| < 1,

> 0, 1 < |𝑥| < 2,

=
|𝑥|

2

4
, |𝑥| > 2,

(91)

and ℎ
𝐴
(𝑥) = 𝐴

2
ℎ(𝑥/𝐴) for 𝐴 > 0 and it is valid that

󵄨󵄨󵄨󵄨∇ℎ
𝐴
(𝑥)

󵄨󵄨󵄨󵄨

2

≤ 𝐶ℎ
𝐴
(𝑥) , ∀𝑥 ∈ R

𝑁
. (92)
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Carrying out direct computation and using Hölder’s inequal-
ity, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2I
𝑁

∑

𝑗=1

∫𝜙 (𝑡, 𝑥) ∇𝜙 (𝑡, 𝑥) ⋅ ∇ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

× (∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

∇ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2

≤ 𝐶(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

× (∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2

,

(93)

which implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

.

(94)

Integrating on both sides gives rise to

sup
𝑡∈[0,𝑇)

(∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2

≤ (∫
󵄨󵄨󵄨󵄨𝜙0 (𝑥)

󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2

+ 𝐶∫

𝑇

0

(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

𝑑𝑠.

(95)

From the fact 𝜙
0
∈ Σ, we have

sup
𝑡∈[0,𝑇)

(∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

ℎ
𝐴
(𝑥 − 𝑦

0
) 𝑑𝑥)

1/2

≤ 𝜀 (𝐴) + 𝐶∫

𝑇

0

(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

𝑑𝑠.

(96)

By the virtue of Lemma 14 and Proposition 16, there exist
𝐴
1
and 𝐶

2
> 0 such that

∫
|𝑥−𝑦
0
|≥𝐴
1

(
󵄨󵄨󵄨󵄨∇𝜙 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥)
1/2

𝑑𝑠 ≤ 𝐶
2
, ∀𝑠 ∈ [0, 𝑇) . (97)

Using the dominated convergence theorem, we infer that

lim
𝐴→∞

∫

𝑇

0

(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨∇𝜙 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

𝑑𝑠 = 0. (98)

Thus, it holds that

lim
𝐴→∞

sup
𝑡∈[0,𝑇)

(∫
|𝑥−𝑦
0
|≥𝐴

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2

𝑑𝑥) = 0, (99)

which implies that there is 𝑎
𝜀
> 0 such that, for ∀𝑡 ∈ [0, 𝑇),

∫
|𝑥−𝑦
0
|≥𝑎
𝜀

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝜀

2
. (100)

The identity ‖𝜙(𝑡)‖
𝐿
2 = ‖𝜙

0
‖
𝐿
2 = ‖𝑄‖

𝐿
2 shows that

∫
|𝑥−𝑦
0
|≤𝑏
𝜀

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑏
2

𝜀
‖𝑄‖

𝐿
2

≤
𝜀

2
, for 𝑏

2

𝜀
=

𝜀

2‖𝑄‖
𝐿
2

.

(101)

In addition, we have

∫
𝑏
𝜀
≤|𝑥−𝑦

0
|≤𝑎
𝜀

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝑎
2

𝜀
∫
𝑏
𝜀
≤|𝑥−𝑦

0
|≤𝑎
𝜀

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(102)

UsingTheorem 2 yields

lim
𝑡→𝑇

∫
𝑏
𝜀
≤|𝑥−𝑦

0
|≤𝑎
𝜀

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0. (103)

In conclusion, for all 𝜀 > 0, we have shown that

lim
𝑡→𝑇

∫
󵄨󵄨󵄨󵄨𝑥 − 𝑦

0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝜀

2
+

𝜀

2
≤ 𝜀. (104)

Now, we establish the lower bound of the blow-up rate.

Proof of Theorem 3. Simple calculation yields

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= 4I∫ (𝑥 − 𝑦
0
) 𝜙 (𝑡, 𝑥) ∇𝜙 (𝑡, 𝑥) .

(105)

Therefore, the inequality (40) in the case 𝜃(𝑥) = |𝑥 − 𝑦
0
|
2

implies that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨𝑥 − 𝑦
0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶. (106)

Integrating from 𝑡 to 𝑇, by Proposition 16, we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(∫
󵄨󵄨󵄨󵄨𝑥 − 𝑦

0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (𝑇 − 𝑡) . (107)

Combining the above inequality and the following
inequality

(∫
󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥)

2

≤ (∫
󵄨󵄨󵄨󵄨𝑥 − 𝑦

0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)(∫
󵄨󵄨󵄨󵄨∇𝜙 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥) ,

(108)
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we get the result

󵄩󵄩󵄩󵄩∇𝜙 (𝑡)
󵄩󵄩󵄩󵄩𝐿2

≥
‖𝑄‖

𝐿
2

𝐶 (𝑇 − 𝑡)
. (109)
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