
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 812125, 11 pages
http://dx.doi.org/10.1155/2013/812125

Research Article
Paratingent Derivative Applied to the Measure of the Sensitivity
in Multiobjective Differential Programming

F. García and M. A. Melguizo Padial
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We analyse the sensitivity of differential programs of the form Min𝑓(𝑥) subject to 𝑔(𝑥) = 𝑏, 𝑥 ∈ 𝐷 where 𝑓 and 𝑔 are C1 maps
whose respective images lie in ordered Banach spaces. Following previous works on multiobjective programming, the notion of
𝑇-optimal solution is used.The behaviour of some nonsingleton sets of 𝑇-optimal solutions according to changes of the parameter
𝑏 in the problem is analysed. The main result of the work states that the sensitivity of the program is measured by a Lagrange
multiplier plus a projection of its derivative. This sensitivity is measured by means of the paratingent derivative.

1. Introduction

The subject of this work is sensitivity analysis in vector
programming. The model problem considered throughout
the paper is of the form

Min 𝑓 (𝑥)
subject to 𝑔 (𝑥) = 𝑏

𝑥 ∈ 𝐷.
(1)

Here, and throughout this work, 𝑓 : 𝐷 ⊂ 𝑋 → 𝑌 and 𝑔 :

𝐷 ⊂ 𝑋 → 𝑍 denote two C1 maps, 𝑋 a Banach space and
𝑌 and 𝑍 two ordered Banach spaces. The sensitivity of the
problem is analysed by studying the quantitative behaviour
of a nonsingleton set of optimal points when the parameter
𝑏 ∈ 𝑍 varies.

As the maps 𝑓 and 𝑔 lie in Banach spaces, the obtained
results provide a general framework in which a wide range of
problems can be studied; see [1].

To perform our analysis we use the so-called 𝑇-optimal
solution; that is, solutions of the program characterized to
become aminimumwhen the objective function is composed
with a positive topological homomorphism 𝑇. For a fixed 𝑇,
we measure the perturbation experienced by the whole set

of the 𝑇-optimal solutions (not necessarily a singleton) when
the right-hand side vector 𝑏 varies.The study is carried out by
means of set-valued derivatives.

Tangent cones are the cornerstone of the notion of
derivative of a set-valued map. There are different notions
of tangency, and each of them provides a different cone.
Experience shows that there are, mainly, four useful kinds of
cones: Bouligand’s contingent, adjacent, Clarke’s tangent (or
circatangent), and Bouligand’s paratingent (see [2, 3]). All the
four correspond to different regularity requirements and they
carry in themselves a wide and particular information about
the local behaviour of sets. Once a concept of tangent cone is
chosen, we can associate with it a notion of the derivative of a
set-valued map. Derivatives obtained with the former cones
play an important role in several branches ofmathematics, for
example, nonsmooth analysis, control theory, viability theory,
and so forth.

The notions of derivative of set-valued maps have been
used in many recent papers in the context of stability and
sensitivity analysis; see, for example, [4–17]. In this paper
we follow this research line, analysing the sensetivity of
the differential program (1) by means of the paratingent
derivative. In previous papers, the study of sensitivity of this
problem has been carried out by using adjacent, contingent,
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and circatangent derivatives (see [18, 19]). Therefore, this
study completes the sensitivity analysis of problem (1) with
the four main derivatives mentioned above.

Our view is that, on the one hand, the main theorem
of this work (Theorem A) measures the specific kind of
sensibility provided by the paratingent cone. On the other
hand, this result measures the sensitivity of the problem in
cases in which previous results do not. Next, we explain
the former claim. Clarke cone has the nice property to be
always a closed convex cone. Then, Clarke derivative is a
closed convex process, that is, the set-valued analogous of
a continuous linear operator. The price of this property,
however, is quite high since this tangent cone may often be
too small or even reduced to the singleton {0}; see [2, Chapters
2 and 4]. In that case, the corresponding derivative does not
provide any information about the sensitivity of the problem.
Paratingent cone is a natural generalization of Clarke cone.
Although its definition is less restrictive, it holds the property
of stability of the tangency with respect to perturbations
around the point where the cone is taken, in the same way
that Clarke cone does. Paratingent cone is bigger than Clarke
cone, then paratingent derivative can measure stability when
Clarke derivative fails. Contingent and adjacent cones are
intermediate cones between Clarke and paratingent ones, but
they lack the above-mentioned tangency’s stability property.
Finally, as the paratingent cone is the biggest one of the
four considered cones, it can provide information about the
sensitivity when the others fail; see Example 2 of Section 2.
Let us note that paratingent derivative is also useful in works
on optimality conditions [20], differential inclusions [21–23],
dynamical systems and ergodic theory [24], differentiable
maps [25], and differentiation theory [26].

Before presenting the main results of the work, it is
necessary to introduce some terminology and notation. Let
us fix an order complete Banach lattice𝑊 and a positive linear
and continuous surjective map 𝑇 : 𝑌 → 𝑊 such that its
kernel has a topological supplement. It is said that a feasible
𝑥
𝑏
∈ 𝐷 is a local 𝑇-optimal solution of (1) when there exists a

neighbourhood 𝑈
𝑥𝑏
⊂ 𝐷 of 𝑥

𝑏
such that 𝑇𝑓(𝑥

𝑏
) ≤ 𝑇𝑓(𝑥) for

every feasible 𝑥 ∈ 𝑈
𝑥𝑏
. It is clear that every local 𝑇-optimal

solution of (1) is a local optimal solution of the program, that
is, 𝑓(𝑥

𝑏
) − 𝑓(𝑥) ∉ 𝑌

+
\ {0} for every feasible 𝑥 ∈ 𝑈

𝑥𝑏
. If 𝑇 is a

topological isomorphism satisfying someweak requirements,
then the set of the𝑇-optimal solutions is dense in the efficient
line (see [27]), and thus, it constitutes a very suitable set to
describe the full efficient line. An element 𝑥 ∈ 𝐷 is said
to be regular with respect to the problem (1) if the Fréchet
differential,𝑔󸀠(𝑥, ⋅), of𝑔 at𝑥 is surjective.B(𝑍, 𝑌)will denote
the Banach space of the continuous linear maps from 𝑍 on 𝑌
with the usual norm and by 𝜋, the natural projection from
𝑌 onto the kernel of 𝑇, Ker 𝑇. Let 𝑥

𝑏
∈ 𝐷 be a regular local

𝑇-optimal solution of (1) is represented, a map 𝐺 ∈ B(𝑍, 𝑌)
is said to be a 𝑇-Lagrange multiplier of (1) associated with 𝑥

𝑏

if 𝑇𝑓󸀠(𝑥
𝑏
, ⋅) = 𝑇𝐺𝑔󸀠(𝑥

𝑏
, ⋅) and 𝜋𝑓(𝑥

𝑏
) = 𝜋𝐺(𝑏). In [6], it is

proved that for every regular local 𝑇-optimal solution 𝑥
𝑏
∈ 𝐷

of (1), there exists a 𝑇-Lagrange multiplier 𝐺
𝑥𝑏

∈ B(𝑌, 𝑍)
associated with it. Now we can define the following key set-
valued maps of the work.

Definition 1. In the context of the precedent paragraph, it is
defined that

(i) 𝑇-perturbation map of (1), Υ : 𝑉 ⊂ 𝑍 󴁄󴀼 𝑌, by

Υ (𝑏) := {𝑓 (𝑥
𝑏
) : 𝑥
𝑏
is a regular local

𝑇-optimal solution of (1)} ;
(2)

(ii) 𝑇-dual perturbation map of (1), Ψ : 𝑉 ⊂ 𝑍 󴁄󴀼
B(𝑍, 𝑌), by

Ψ (𝑏) := {𝐺
𝑥𝑏
: it is a𝑇-Lagrange multiplier of

(1) associated with 𝑥
𝑏
} .

(3)

Now we can state the main result of the work. In this, it is
represented by𝑃𝐿ΥΥ (resp.,𝑃𝐿ΨΨ), the paratingent derivative
of Υ (resp., Ψ) relative to 𝐿

Υ
(resp., 𝐿

Ψ
).

Theorem A. Let one fixes 𝐿
Υ
⊂ Graph(Υ), (𝑏

∗
, 𝑓(𝑥
𝑏∗
)) ∈ 𝐿

Υ
,

and 𝐿
Ψ

= {(𝑏, 𝐺
𝑥𝑏
) ∈ Graph(Ψ) : (𝑏, 𝑓(𝑥

𝑏
)) ∈ 𝐿

Υ
and

𝐺
𝑥𝑏

is associated with 𝑥
𝑏
}. If Ψ is is lower semicontinuous,

paraderivable relative to 𝐿
Ψ

at (𝑏
∗
, 𝐺
𝑥𝑏∗
) ∈ 𝐿

Ψ
and 𝑇Ψ

is continuously Fréchet differentiable at 𝑏
∗
, then Υ is lower

semicontinuous, paraderivable relative to 𝐿
Υ
at (𝑏
∗
, 𝑓(𝑥
𝑏∗
)),

and

𝑃𝐿ΥΥ (𝑏
∗
, 𝑓 (𝑥
𝑏∗
)) (𝑧)

= 𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝑃
𝐿ΨΨ(𝑏

∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
) , ∀𝑧 ∈ 𝑍.

(4)

If 𝐿
Υ
= Graph(Υ), the derivatives of the statement of the

former result are denoted by 𝑃Υ and 𝑃Ψ. In this case, we
obtain a more particular but simpler version.

Corollary B. Let one supposes thatΨ is lower semicontinuous,
paraderivable relative to Graph(Ψ) at (𝑏

∗
, 𝐺
𝑥𝑏∗
) ∈ Graph(Ψ),

𝑇Ψ is continuously Fréchet differentiable at 𝑏
∗
, then Υ is

lower semicontinuous, paraderivable relative to Graph(Υ) at
(𝑏
∗
, 𝑓(𝑥
𝑏∗
)), and

𝑃Υ (𝑏
∗
, 𝑓 (𝑥
𝑏∗
)) (𝑧)

= 𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝑃Ψ (𝑏
∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
) , ∀𝑧 ∈ 𝑍.

(5)

The proof of Theorem A is based on the fact that the set-
valued map Ψ̌, defined by Ψ̌(𝑏) := Ψ(𝑏)(𝑏), is paraderivable
when 𝑇-dual perturbation map Ψ is and 𝑇Ψ is Fréchet dif-
ferentiable.This is stated inTheorem 12 of Section 4. Besides,
on that result, the paratingent derivative of Ψ̌ is expressed in
terms of the paratingent derivative of Ψ, formula (58). This
formula also holds even when Ψ is not paraderivable. The
former fact and the proof of Theorem A allows us to claim
that (4) also holds even when Ψ is not paraderivable. As a
consequence, (4) provides a way to measure sensitivity of
problem (1) when the other derivatives fail.

The paper is organized as follows. In Section 2, the nec-
essary mathematical background is reviewed; mainly, basic
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definitions and characterizations of cones and derivatives
are provided in a precise way. Section 3 is a technical part
devoted to establish some results which will be useful in
Section 5. In particular, condition T is introduced and after
that we proveTheorem 4 which allows us, via propertyT, to
transfer the condition of paraderivability from an arbitrary
set-valued map Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌) to that one Σ̌ : 𝑉 󴁄󴀼 𝑌

defined by Σ̌(𝑏) = Σ(𝑏)(𝑏). After that we obtain some more
technical results. For example, in Lemma 6, it is proved when
the paraderivability can be transferred from Σ̌ to 𝜋Σ̌, and
Proposition 9, which is the paratingent version of the useful
Proposition 5.1.2 of [2], provides the paratingent derivative
of the sum of a set-valued map and a single-valued map.
The objective of Section 4 is to prove the main result of the
work about the sensitivity of the problem (1). After some
technical considerations,Theorem 12 is stated and proved. In
its statement it can be seen that it is possible to transfer the
paraderivability property from the set-valued Ψ to Ψ̌. After
that,TheoremA is proved. At the end of Section 4 an example
that illustrates the main theorem can be seen.

2. Cones and Derivatives

Before introducing the notions of cone and derivative, we
will recall (and will go into details) some definitions which
were scarcely given in the former section. Let us recall that
𝑋 represents a Banach space, 𝑌, 𝑍, and 𝑊 ordered Banach
spaces such that 𝑊 is an order complete Banach lattice (i.e.,
every nonempty bounded from below subset has an infimum
in 𝑊). Let 𝑌

+
, 𝑍
+
, and 𝑊

+
denote the respective positive

convex cones of𝑌, 𝑍, and𝑊, and suppose that𝑌
+
and𝑍

+
are

closed.The dual space of a Banach space𝑍will be denoted by
𝑍∗. The map 𝑇 : 𝑌 → 𝑊 is fixed throughout the paper and
it is a positive (𝑇(𝑌

+
\ {0}) ⊂ 𝑊

+
\ {0}) linear and continuous

surjective map such that Ker 𝑇 has a topological supplement
denoted by 𝑌

𝑇
. The symbol 𝑇̂ represents the restriction of 𝑇

to 𝑌
𝑇
. It follows from the open mapping theorem (Theorem

2.11 in [28]) that the inverse operator 𝑇̂−1 is continuous.
Now let us introduce the notions and characterizations of

cones and derivatives that will be used throughout this work
(see [2, 29] for further details). Let 𝑆 be a normed space,𝐴 ⊂ 𝑆

a nonempty set, 𝐴 its clausure in the norm topology, and 𝑥 ∈

𝐴. the natural distance map from the point 𝑠 ∈ 𝑆 to the set 𝐴
will be denoted by 𝑑(𝐴, 𝑠) and the first infinite ordinal by 𝜔.
The Bouligand contingent cone 𝑇

𝐴
(𝑥) to 𝐴 at 𝑥 is defined by

𝑇
𝐴
(𝑥) := {V ∈ 𝑆 : lim inf

ℎ→0
+

𝑑 (𝐴, 𝑥 + ℎV)

ℎ
= 0} . (6)

Therefore, V ∈ 𝑇
𝐴
(𝑥) if and only if, there exist two sequences:

{ℎ
𝑛
}
𝑛<𝜔

⊂ R converging to 0+ (ℎ
𝑛

→ 0+ for short) and
{V
𝑛
}
𝑛<𝜔

⊂ 𝑆 converging to V (𝑆 ∋ V
𝑛
→ V for short), such

that 𝑥 + ℎ
𝑛
V
𝑛
∈ 𝐴 for every 𝑛 < 𝜔. Let 𝐿 ⊂ 𝑆 a nonempty set

and 𝑥 ∈ 𝐴 ∩ 𝐿. The Bouligand paratingent cone 𝑃𝐿
𝐴
(𝑥) to 𝐴

relative to 𝐿 at 𝑥 is defined by

𝑃𝐿
𝐴
(𝑥) := {V ∈ 𝑆 : lim inf

ℎ→0
+
,𝐿∋𝑥→𝑥

𝑑 (𝐴, 𝑥 + ℎV)

ℎ
= 0} . (7)

When 𝐿 = 𝐴, we set 𝑃
𝐴
(𝑥) := 𝑃𝐴

𝐴
(𝑥). Therefore, V ∈ 𝑃𝐿

𝐴
(𝑥)

if and only if, there exist three sequences: ℎ
𝑛

→ 0+, 𝐿 ∋
𝑥
𝑛
→ 𝑥, and 𝑆 ∋ V

𝑛
→ V such that 𝑥

𝑛
+ ℎ
𝑛
V
𝑛
∈ 𝐴 for

every 𝑛 < 𝜔. Then 𝑃𝐿
𝐴
(𝑥) ⊃ 𝑇

𝐴
(𝑥). Besides, when 𝐿 = {𝑥} we

have 𝑇
𝐴
(𝑥) = 𝑃𝐿

𝐴
(𝑥). Hence, behaviour of paratingent cone

respect to perturbations around the point 𝑥 is stabler than
that of contingent cone.

In Section 1, we noted that paratingent cone is the biggest
cone among all of the cones cited there. The following
example shows a situation inwhich contingent cone vanishes,
whereas paratingent cone does not. On that, we consider the
Banach space of all bounded real sequences, ℓ

∞
= {(𝑥

𝑛
) ∈

R𝜔 : sup
𝑛
|𝑥
𝑛
| < 𝜔}, endowed with the supremum norm,

‖x‖
∞

= sup
𝑛
|𝑥
𝑛
| for every x = (𝑥

𝑛
) ∈ ℓ
∞
. In addition, we

will denote by 0 the real number and by 0
ℓ∞

the zero element
of ℓ
∞
.

Example 2. Define the set-valuedmapΣ : {0}∪{2−𝑖 : 𝑖 < 𝜔} ⊂
R 󴁄󴀼 ℓ

∞
by Σ(0) = {0

ℓ∞
} and, for every 𝑖 < 𝜔,

Σ (2−𝑖) := {(−2−𝑖−1, . . . , −2−𝑖−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖th coordinate

, 0
ℓ∞
) ,

(0, . . . , 0, 2−𝑖⏟⏟⏟⏟⏟⏟⏟
𝑖+1-th coordinate

, 2−𝑖, . . .)} .

(8)

Then

𝑇Graph(Σ) (0, 0ℓ∞) = {(0, 0
ℓ∞
)} , (9)

but

(−
1

2
, (
1

2
,
1

2
, . . .)) ∈ 𝑃Graph(Σ) (0, 0ℓ∞) . (10)

Finally, we now introduce the type of derivatives that we
will handle. Let 𝑆

1
and 𝑆

2
be two normed spaces, 𝐹 : 𝐴 ⊂

𝑆
1
󴁄󴀼 𝑆
2
a set-valued map, and 𝑥

0
∈ Dom(𝐹) := {𝑥 ∈ 𝐴 :

𝐹(𝑥) ̸= 0}. It is said that 𝐹 is lower semicontinuous at 𝑥
0
if for

every 𝑦 ∈ 𝐹(𝑥
0
) and any sequence Dom(𝐹) ∋ 𝑥

𝑛
→ 𝑥
∗
,

there exists a sequence 𝑌 ∋ 𝑦
𝑛
→ 𝑦 such that 𝑦

𝑛
∈ 𝐹(𝑥

𝑛
)

for every 𝑛 < 𝜔. Let us fix (𝑥, 𝑦) ∈ Graph(𝐹) := {(𝑥, 𝑦) ∈
𝑆
1
× 𝑆
2

: 𝑦 ∈ 𝐹(𝑥)}, the contingent derivative of 𝐹 at
(𝑥, 𝑦) ∈ Graph(𝐹) is the set-valued map 𝐷𝐹(𝑥, 𝑦) : 𝑆

1
󴁄󴀼 𝑆
2

defined by Graph(𝐷𝐹(𝑥, 𝑦)) := 𝑇Graph(𝐹)(𝑥, 𝑦). Now let us fix
also a subset 𝐿 ⊂ Graph(𝐹), the paratingent derivative of 𝐹
relative to 𝐿 at (𝑥, 𝑦) ∈ 𝐿 is the set-valued map 𝑃𝐿𝐹(𝑥, 𝑦) :
𝑆
1
󴁄󴀼 𝑆
2
defined by Graph(𝑃𝐿𝐹(𝑥, 𝑦)) := 𝑃𝐿Graph(𝐹)(𝑥, 𝑦). If

𝐿 = Graph(𝐹), then 𝑃𝐿𝐹(𝑥, 𝑦) is written as 𝑃𝐹(𝑥, 𝑦). Finally,
𝐹 is said to be paraderivable relative to 𝐿 ⊂ Graph(𝐹) at
(𝑥, 𝑦) ∈ 𝐿 if 𝐷𝐹(𝑥, 𝑦) = 𝑃𝐿𝐹(𝑥, 𝑦). As can be seen in [11],
if 𝐹 is single-valued and Fréchet differentiable at 𝑥, then 𝐹 is
derivable at (𝑥, 𝐹(𝑥)) and𝐷𝐹(𝑥, 𝐹(𝑥))(𝑢) = 𝐹󸀠(𝑥, 𝑢) for every
𝑢 ∈ 𝑆

1
. However, in our framework, a single-valued map 𝐹

has to be continuously Fréchet differentiable at 𝑥 in order to
be paraderivable relative to 𝐿 ⊂ Graph(𝐹) at (𝑥, 𝐹(𝑥)) ∈ 𝐿; in
this case we have 𝑃𝐿𝐹(𝑥, 𝐹(𝑥))(𝑢) = 𝐹󸀠(𝑥, 𝑢) for every 𝑢 ∈ 𝑆

1
.
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3. Regularity Condition and First
Results on Paraderivability

In this section the regularity conditionT will be established.
It will allow us to transfer the condition of paraderivability
from a set-valued map Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌) to the correspond-
ing Σ̌ : 𝑉 󴁄󴀼 𝑌 defined by Σ̌(𝑏) := Σ(𝑏)(𝑏). It is known that if
Σ is a single-valued and Fréchet differentiable map then Σ̌ is
also Fréchet differentiable (see Lemma 11 in [4]).

From now on, the following notation will be used. Given
a set-valued map Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌), the set-valued map Σ̌ :

𝑉 󴁄󴀼 𝑌 will be defined by Σ̌(𝑏) = Σ(𝑏)(𝑏) for every 𝑏 ∈ 𝑉.
Given a set 𝐿 ⊂ Graph(Σ), the set 𝐿̌ will be defined by 𝐿̌ =

{(𝑏, 𝐺(𝑏)) : (𝑏, 𝐺) ∈ 𝐿} ⊂ Graph(Σ̌).

Definition 3. A set-valued map Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌) is said to
have propertyT(𝐿) at (𝑏

∗
, 𝐺
∗
) ∈ 𝐿 ⊂ Graph(Σ) if after fixing

the following four sequences:

(i) ℎ
𝑛
→ 0+;

(ii) 𝑍 ∋ 𝑏
𝑛
→ 𝑏 ∈ 𝑍;

(iii) 𝐿̌ ∋ (𝑏̂
𝑛
, 𝐺
𝑛
(𝑏̂
𝑛
)) → (𝑏

∗
, 𝐺
∗
(𝑏
∗
));

(iv) {𝐺
𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌) such that each 𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
)

and there exists

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌; (11)

there exist three sequences

(1) 𝑍 ∋ 𝑏
𝑛
→ 𝑏 ∈ 𝑍;

(2) B(𝑍, 𝑌) ∋ 𝐺
𝑛
→ 𝐺
∗
such that each 𝐺

𝑛
∈ Σ(𝑏̂
𝑛
) and

𝐺
𝑛
(𝑏̂
𝑛
) = 𝐺
𝑛
(𝑏̂
𝑛
);

(3) {𝐺
𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌) verifying that each 𝐺
𝑛
∈ Σ(𝑏̂

𝑛
+

ℎ
𝑛
𝑏
𝑛
), in such a way that

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌,

(12)

such that there exits

lim
𝑛→𝜔

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

∈ B (𝑍, 𝑌) . (13)

The interpretation of the former definition can be as
follows. It is not restrictive to suppose that the two sequences
of linear and continuousmaps, {𝐺

𝑛
}
𝑛
and {𝐺

𝑛
}
𝑛
, related by the

pointwise limit (11) are, in fact, related by the uniform version
of this limit. In the next result we will see how, by means of
propertyT, it is possible to transfer the paraderivability from
the set-valued map Σ to the set-valued map Σ̌ defined above.

Theorem 4. Let Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌) be a set-valued map with
propertyT(𝐿) at (𝑏

∗
, 𝐺
∗
) ∈ 𝐿 ⊂ Graph(Σ) and paraderivable

relative to L at (𝑏
∗
, 𝐺
∗
). Then Σ̌ is also paraderivable relative to

𝐿̌ at (𝑏
∗
, 𝐺
∗
(𝑏
∗
)) ∈ 𝐿̌ and

𝑃𝐿̌Σ̌ (𝑏
∗
, 𝐺
∗
(𝑏
∗
)) (𝑧)

= 𝑃𝐿Σ (𝑏
∗
, 𝐺
∗
) (𝑧) (𝑏

∗
) + 𝐺
∗
(𝑧) , ∀𝑧 ∈ 𝑍.

(14)

Proof. The paraderivability of Σ̌ is a direct consequence of
the equality (14). Thus, let us begin the proof by showing the
equality. the inclusion ⊂ will be first proved. For this purpose
we fix 𝑧 ∈ 𝑍 and 𝑦 ∈ 𝑃𝐿̌Σ̌(𝑏

∗
, 𝐺
∗
(𝑏
∗
))(𝑧). Thus (𝑧, 𝑦) ∈

𝑃𝐿̌Graph(Σ̌)(𝑏∗, 𝐺∗(b∗)) and there exist ℎ
𝑛
→ 0+, 𝑍 ∋ 𝑏

𝑛
→ 𝑧,

𝐿̌ ∋ (𝑏̂
𝑛
, 𝐺
𝑛
(𝑏̂
𝑛
)) → (𝑏

∗
, 𝐺
∗
(𝑏
∗
)), and {𝐺

𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌)

such that each 𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) and

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= 𝑦. (15)

Since Σ verifies propertyT(𝐿) at (𝑏
∗
, 𝐺
∗
), we can fix the three

sequences of the second part of Definition 3. Let us recall that
the following equality holds

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

𝐺
𝑛
(𝑏
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

.

(16)

We define

𝐺 := lim
𝑛→𝜔

𝐺
𝑛
− G̃
𝑛

ℎ
𝑛

∈ B (𝑍, 𝑌) . (17)

Hence, 𝐺 ∈ 𝑃𝐿Σ(𝑏
∗
, 𝐺
∗
)(𝑧) because 𝐿 ∋ (𝑏̂

𝑛
, 𝐺
𝑛
) → (𝑏

∗
, 𝐺
∗
),

ℎ
𝑛
→ 0+,

(𝑏
𝑛
,
𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

) 󳨀→ (𝑧, 𝐺) ,

(𝑏̂
𝑛
, 𝐺
𝑛
) + ℎ
𝑛
(𝑏
𝑛
,
𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

)

= (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
, 𝐺
𝑛
) ∈ Graph (Σ) , ∀𝑛 < 𝜔.

(18)

From (15) and (16) we get

𝑦 = lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

[
𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

(𝑏̂
𝑛
) + 𝐺
𝑛
(𝑏
𝑛
)]

= 𝐺 (𝑏
∗
) + 𝐺
∗
(𝑧) .

(19)
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Finally, since 𝐺 ∈ 𝑃𝐿Σ(𝑏
∗
, 𝐺
∗
)(𝑧), then 𝑦 ∈ 𝑃𝐿Σ(𝑏

∗
, 𝐺
∗
)

(𝑧)(𝑏
∗
) + 𝐺
∗
(𝑧).

For the reverse inclusion, ⊃, we fix 𝑧 ∈ 𝑍 and 𝑦 ∈

𝑃𝐿Σ(𝑏
∗
, 𝐺
∗
)(𝑧)(𝑏

∗
)+𝐺
∗
(𝑧). Let us fix now𝐺 ∈ 𝑃𝐿Σ(𝑏

∗
, 𝐺
∗
)(𝑧)

such that 𝑦 = 𝐺(𝑏
∗
) + 𝐺
∗
(𝑧). By definition, there exist 𝐿 ∋

(𝑏̂
𝑛
, 𝐺
𝑛
) → (𝑏

∗
, 𝐺
∗
), ℎ
𝑛
→ 0+, 𝑍 × B(𝑍, 𝑌) ∋ (𝑏

𝑛
, 𝐺
𝑛
) →

(𝑧, 𝐺), such that each

(𝑏̂
𝑛
, 𝐺
𝑛
) + ℎ
𝑛
(𝑏
𝑛
, 𝐺
𝑛
)

= (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
, 𝐺
𝑛
+ ℎ
𝑛
𝐺
𝑛
) ∈ Graph (Σ) .

(20)

Then 𝑅
𝑛
:= 𝐺
𝑛
+ℎ
𝑛
𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ℎ
𝑛
𝑏
𝑛
), for all 𝑛 < 𝜔. Moreover

𝐺 = lim
𝑛→𝜔

𝑅
𝑛
− 𝐺
𝑛

ℎ
𝑛

, (21)

and consequently,

𝑦 = 𝐺 (𝑏
∗
) + 𝐺
∗
(𝑧)

= lim
𝑛→𝜔

𝑅
𝑛
− 𝐺
𝑛

ℎ
𝑛

(𝑏̂
𝑛
) + 𝑅
𝑛
(𝑏
𝑛
)

= lim
𝑛→𝜔

𝑅
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

.

(22)

Therefore, (𝑧, 𝑦) ∈ 𝑃𝐿̌Graph(Σ̌)(𝑏∗, 𝐺∗(𝑏∗)), and consequently 𝑦

belongs to the set 𝑃𝐿̌Σ̌(𝑏
∗
, 𝐺
∗
(𝑏
∗
))(𝑧).

Let us begin now the last part of the proof. In this,
the paraderivability of Σ̌ relative 𝐿̌ at (𝑏

∗
, 𝐺
∗
(𝑏
∗
)) ∈ 𝐿̌

will be shown; that is, it will be proved the inclusion
𝑃𝐿̌Σ̌(𝑏

∗
, 𝐺
∗
(𝑏
∗
))(𝑧) ⊂ 𝐷Σ̌(𝑏

∗
, 𝐺
∗
(𝑏
∗
))(𝑧), for each 𝑧 ∈ 𝑍. For

this goal let us fix (𝑧, 𝑦) ∈ 𝑃𝐿̌Graph(Σ̌)(𝑏∗, 𝐺∗(𝑏∗)), the equality
(14) and the paraderivability of Σ relative to 𝐿 at (𝑏

∗
, 𝐺
∗
) ∈ 𝐿

yield that 𝑦 ∈ 𝐷Σ(𝑏
∗
, 𝐺
∗
)(𝑧)(𝑏

∗
) + 𝐺
∗
(𝑧). Then there exists

𝐺 ∈ 𝐷Σ(𝑏
∗
, 𝐺
∗
)(𝑧) such that 𝑦 = 𝐺(𝑏

∗
) + 𝐺

∗
(𝑧). Hence,

∃𝑍 × B(𝑍, 𝑌) ∋ (𝑏
𝑛
, 𝐺
𝑛
) → (𝑧, 𝐺) and ℎ

𝑛
→ 0+ such

that (𝑏
∗
, 𝐺
∗
) + ℎ
𝑛
(𝑏
𝑛
, 𝐺
𝑛
) ∈ Graph(Σ), for every 𝑛 < 𝜔. Let

us define now 𝐺
𝑛
:= 𝐺
∗
+ ℎ
𝑛
𝐺
𝑛
∈ Σ(𝑏

∗
+ ℎ
𝑛
𝑏
𝑛
), then there

exists lim
𝑛→+𝜔

((𝐺
𝑛
− 𝐺
∗
)/ℎ
𝑛
) = 𝐺 ∈ B(𝑍, 𝑌). Thus, if we

define 𝑦
𝑛
:= (𝐺

𝑛
(𝑏
∗
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
∗
(𝑏
∗
))/ℎ
𝑛
, since 𝐺

𝑛
→ 𝐺,

we have that 𝑦
𝑛

→ 𝑦. Finally (𝑏
∗
, 𝐺
∗
(𝑏
∗
)) + ℎ

𝑛
(𝑏
𝑛
, 𝑦
𝑛
) =

(𝑏
∗
+ℎ
𝑛
𝑏
𝑛
, 𝐺
𝑛
(𝑏
∗
+ℎ
𝑛
𝑏
𝑛
)) ∈ Graph(Σ̌), for all 𝑛 < 𝜔; therefore,

the proof is over.

The following example shows that in the former result
neither assumptions can be dropped.

Example 5. (i) Let one defines Σ
1
: [0, +∞) → B(R,R) by

Σ
1
(𝑥) := 𝑥, thenΣ

1
has propertyT(Graph(Σ)) at (0, 0B(R,R)),

but neither Σ
1
nor Σ̌

1
is paraderivable at (0, 0B(R,R)) and

(0, 0), respectively.

(ii) Let one defines Σ
2
: R
−
∪ {0} ∪ {2−𝑖 : 𝑖 < 𝜔} 󴁄󴀼

B(R, ℓ
∞
) by Σ

2
(𝑡)(𝑥) := 0

ℓ∞
if 𝑡 ∈ R

−
∪ {0} and 𝑥 ∈ R, and

for every 𝑖 < 𝜔,

Σ
2
(2−𝑖) (𝑥) :=

{{
{{
{

(−
𝑥

2
, . . . , −

𝑥

2⏟⏟⏟⏟⏟⏟⏟
𝑖th coordinate

, 0
ℓ∞
),

(0, . . . , 0, 𝑥⏟⏟⏟⏟⏟⏟⏟
𝑖+1-th coordinate

, 𝑥, . . .)
}}
}}
}

,

(23)

for every 𝑥 ∈ R. Then Σ
2
is paraderivable at (0, 0B(R,ℓ∞)), but

it does not have propertyT(Graph(Σ)) at (0, 0B(R,ℓ∞)) and Σ̌2
is not paraderivable at (0, 0

ℓ∞
).

In the statement of the following result, the previously
fixed notation is used and, in addition, wewill consider the set
𝜋𝐿̌ = {(𝑏, 𝜋𝐺(𝑏)) : (𝑏, 𝐺) ∈ 𝐿}which is a subset ofGraph(𝜋Σ̌).

Lemma 6. Let one assumes that 𝑇Σ is a single-valued and
continuously Fréchet differentiable at 𝑏

∗
∈ 𝑉 map. If Σ̌ is

paraderivable relative to 𝐿̌ at (𝑏
∗
, 𝐺(𝑏
∗
)) ∈ 𝐿̌, then 𝜋Σ̌ is

paraderivable relative to 𝜋𝐿̌ at (𝑏
∗
, 𝜋𝐺(𝑏

∗
)) and

𝑃𝜋𝐿̌ (𝜋Σ̌) (𝑏
∗
, 𝜋𝐺
∗
(𝑏
∗
)) (𝑧) = 𝜋𝑃𝐿̌Σ̌ (𝑏

∗
, 𝐺
∗
(𝑏
∗
)) (𝑧) ,

∀𝑧 ∈ 𝑍.

(24)

Proof. In this first stage of the proof we are going to check
that 𝜋Σ̌ is paraderivable relative to 𝜋𝐿̌ at (𝑏

∗
, 𝜋𝐺(𝑏

∗
)). To do

this, we have to show the inclusion 𝑃𝜋𝐿̌Graph(𝜋Σ̌)(𝑏∗, 𝜋𝐺∗(𝑏∗)) ⊂
𝑇Graph(𝜋Σ̌)(𝑏∗, 𝜋𝐺∗(𝑏∗)). For this purpose, let us fix (𝑧, 𝑦) ∈

𝑃𝜋𝐿̌Graph(𝜋Σ̌)(𝑏∗, 𝜋𝐺∗(𝑏∗)) ⊂ 𝑍 × Ker 𝑇, then there exists ℎ
𝑛
→

0+, 𝜋𝐿̌ ∋ (𝑏̂
𝑛
, 𝜋𝐺
𝑛
(𝑏
𝑛
)) → (𝑏

∗
, 𝜋𝐺
∗
(𝑏
∗
)), and 𝑍 × Ker 𝑇 ∋

(𝑧
𝑛
, 𝑦
𝑛
) → (𝑧, 𝑦) such that

(𝑏̂
𝑛
, 𝜋𝐺
𝑛
(𝑏
𝑛
)) + ℎ

𝑛
(𝑧
𝑛
, 𝑦
𝑛
) ∈ Graph (𝜋Σ̌) , ∀𝑛 < 𝜔.

(25)

Therefore, for any 𝑛 < 𝜔, there exists 𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) such

that

𝑦
𝑛
=
𝜋𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝜋𝐺

𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ Ker 𝑇, ∀𝑛 < 𝜔.

(26)

Besides, for all 𝑛 < 𝜔, the following equality holds:

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

=
𝜋𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝜋𝐺

𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

+ 𝑇̂−1 [
𝑇𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑇𝐺

𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

] .

(27)
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Now, Lemma 11 of [4] yields that 𝑇Σ̌ is continuously Fréchet
differentiable at 𝑏

∗
, which provides that

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= 𝑦 + 𝑇̂−1(𝑇Σ̌)
󸀠

(𝑏
∗
, 𝑧) ∈ Ker 𝑇 ⊕ 𝑌

𝑇
= 𝑌.

(28)

Also, since for all 𝑛 < 𝜔, we have 𝐺
𝑛
(𝑏̂
𝑛
) = 𝜋𝐺

𝑛
(𝑏̂
𝑛
) +

𝑇̂−1(𝑇Σ̌(𝑏
𝑛
)), it is followed that lim

𝑛→𝜔
𝐺
𝑛
(𝑏̂
𝑛
) = 𝐺

∗
(𝑏
∗
), and

then

(𝑧, 𝑦 + 𝑇̂−1(𝑇Σ̌)
󸀠

(𝑏
∗
, 𝑧)) ∈ 𝑃𝐿̌Graph(Σ̌) (𝑏∗, 𝐺∗ (𝑏∗)) . (29)

Paraderivability of Σ̌ yields

(𝑧, 𝑦 + 𝑇̂−1(𝑇Σ̌)
󸀠

(𝑏
∗
, 𝑧)) ∈ 𝑇Graph(Σ̌) (𝑏∗, 𝐺∗ (𝑏∗)) . (30)

Hence, there exist ℎ
𝑛
→ 0+ and 𝑍 × 𝑌 ∋ (𝑧

𝑛
, 𝑦
𝑛
) → (𝑧, 𝑦 +

𝑇̂−1(𝑇Σ̌)
󸀠

(𝑏
∗
, 𝑧)) such that

(𝑏
∗
, 𝐺
∗
(𝑏
∗
)) + ℎ

𝑛
(𝑧
𝑛
, 𝑦
𝑛
) ∈ Graph (Σ̌) , ∀𝑛 < 𝜔. (31)

Therefore,

(𝑏
∗
, 𝜋𝐺
∗
(𝑏
∗
)) + ℎ

𝑛
(𝑧
𝑛
, 𝜋𝑦
𝑛
) ∈ Graph (𝜋Σ̌) , ∀𝑛 < 𝜔.

(32)

Now, 𝑦 ∈ Ker 𝑇 implies lim
𝑛→𝜔

𝜋𝑦
𝑛
= 𝜋𝑦 + 𝜋𝑇̂−1(𝑇Σ̌)

󸀠

(𝑏
∗
, 𝑧) = 𝜋𝑦 = 𝑦, and then (𝑧, 𝑦) ∈ 𝑇Graph(𝜋Σ̌)(𝑏∗, 𝜋𝐺∗(𝑏∗)).
At this point, we have shown the paraderivability of 𝜋Σ̌

and the inclusion

𝑃𝜋𝐿̌ (𝜋Σ̌) (𝑏
∗
, 𝜋𝐺
∗
(𝑏
∗
)) (𝑧) ⊂ 𝜋𝑃𝐿̌Σ̌ (𝑏

∗
, 𝐺
∗
(𝑏
∗
)) (𝑧) ,

∀𝑧 ∈ 𝑍.

(33)

The proof of the lemma will be over by showing the
reverse of the former inclusion. Let us fix now 𝑦 ∈

𝜋𝑃𝐿̌Σ̌(𝑏
∗
, 𝐺
∗
(𝑏
∗
))(𝑧) ⊂ Ker 𝑇 and 𝑦 ∈ 𝑃𝐿̌Σ̌(𝑏

∗
, 𝐺
∗
(𝑏
∗
))(𝑧) ⊂

𝑌 such that 𝑦 = 𝜋𝑦. Let us consider ℎ
𝑛

→ 0+, 𝐿̌ ∋
(𝑏
𝑛
, 𝐺
𝑛
(𝑏
𝑛
)) → (𝑏

∗
, 𝐺
∗
(𝑏
∗
)) and 𝑍 × 𝑌 ∋ (𝑧

𝑛
, 𝑦
𝑛
) → (𝑧, 𝑦)

such that

(𝑏
𝑛
, 𝐺
𝑛
(𝑏
𝑛
)) + ℎ

𝑛
(𝑧
𝑛
, 𝑦
𝑛
) ∈ Graph (Σ̌) , ∀𝑛 < 𝜔. (34)

Hence,

(𝑏
𝑛
, 𝜋𝐺
𝑛
(𝑏
𝑛
)) + ℎ

𝑛
(𝑧
𝑛
, 𝜋𝑦
𝑛
) ∈ Graph (𝜋Σ̌) , ∀𝑛 < 𝜔,

(35)

and lim
𝑛→𝜔

𝜋𝑦
𝑛
= 𝜋𝑦 = 𝑦. Then 𝑦 ∈ 𝑃𝜋𝐿̌(𝜋Σ̌)(𝑏

∗
, 𝜋𝐺
∗
(𝑏
∗
))

(𝑧) which finishes the proof.

Now we begin the second part of this section with a
consequence of the medium value theorem. It shows the
advantage of working withC1-class maps.

Lemma 7. Let 𝑓 : 𝑉 ⊂ 𝑍 → 𝑌 be a continuously Fréchet
differentiable map, 𝑉 ∋ 𝑏

𝑛
→ 𝑏
∗
∈ 𝑉, 𝑍 ∋ 𝑧

𝑛
→ 𝑧
∗

̸= 0, and
ℎ
𝑛
→ 0+. Then

lim
𝑛→𝜔

𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓 (𝑏

𝑛
)

ℎ
𝑛

= 𝑓󸀠 (𝑏
∗
, 𝑧
∗
) . (36)

Proof. Firstly let us define the auxiliary map 𝑔(V) := 𝑓(V) −
𝑓󸀠(𝑏
∗
, V), for every V ∈ 𝑉.Then it is also continuously Fréchet

differentiable and 𝑔󸀠(𝑏
∗
, 𝑧) = 0, for every 𝑧 ∈ 𝑍. Hence, given

𝜖 > 0, there exists a neighbourhood 𝑈 of 𝑏
∗
such that

󵄩󵄩󵄩󵄩󵄩𝑔
󸀠
(𝑢, ⋅)

󵄩󵄩󵄩󵄩󵄩 ≤
𝜖

󵄩󵄩󵄩󵄩𝑧∗
󵄩󵄩󵄩󵄩
, ∀𝑢 ∈ 𝑈. (37)

Now, applying the medium value theorem, we can write

0 ≤ lim
𝑛→𝜔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑔 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑔 (𝑏

𝑛
)

ℎ
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ lim
𝑛→𝜔

𝜖
󵄩󵄩󵄩󵄩𝑧∗

󵄩󵄩󵄩󵄩

ℎ
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

ℎ
𝑛

= 𝜖.

(38)

Since 𝜖 > 0 was previously arbitrarily fixed, then

lim
𝑛→𝜔

𝑔 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑔 (𝑏

𝑛
)

ℎ
𝑛

= 0. (39)

In fact, the former limit allows us to compute the limit of the
statement because

lim
𝑛→𝜔

[
𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓 (𝑏

𝑛
)

ℎ
𝑛

− 𝑓󸀠 (𝑏
∗
, 𝑧
∗
)]

= lim
𝑛→𝜔

𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓 (𝑏

𝑛
)

ℎ
𝑛

− lim
𝑛→𝜔

𝑓󸀠 (𝑏
∗
, 𝑧
𝑛
)

= lim
𝑛→𝜔

𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓 (𝑏

𝑛
)

ℎ
𝑛

− lim
𝑛→𝜔

𝑓󸀠 (𝑏
∗
, 𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓󸀠 (𝑏

∗
, 𝑏
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

𝑔 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑔 (𝑏

𝑛
)

ℎ
𝑛

= 0,

(40)

and the proof is over.

In the following result we see how a condition in form of
inclusion for a set-valued map Σ : 𝑉 ⊂ 𝑍 󴁄󴀼 B(𝑍, 𝑌) allows
us to turn some pointwise limits, of linear and continuous
maps, into uniform ones in a stronger way than property T
does. It will be useful in the proof of the main theorem of the
work, in Section 4.

Proposition 8. Let 𝛼 : 𝑉 ⊂ 𝑍 → B(𝑍, 𝑌) and 𝛽 : 𝑉 ⊂
𝑍 → 𝑍∗ be two continuously Fréchet differentiable maps
such that 𝛽(𝑏)(𝑏) = 1 for every 𝑏 ∈ 𝑉. Let one fixes also
a set-valued map Σ : 𝑉 󴁄󴀼 B(𝑍, 𝑌) such that for every
𝑏 ∈ 𝑉 Σ(𝑏) ⊂ {𝛼(𝑏) + 𝑦𝛽(𝑏) : 𝑦 ∈ 𝑌}, a point (𝑏

∗
, 𝐺
∗
) ∈ 𝐿 ⊂

Graph(Σ), and four sequences: 𝑍 ∋ 𝑏
𝑛

→ 𝑧, ℎ
𝑛

→ 0+,
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𝐿̌ ∋ (𝑏̂
𝑛
, 𝐺
𝑛
(𝑏̂
𝑛
)) → (𝑏

∗
, 𝐺
∗
(𝑏
∗
)), and {𝐺

𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌)

such that each 𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
). Now, if there exists

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌, (41)

then there exists

lim
𝑛→𝜔

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

∈ B (𝑍, 𝑌) 𝑎𝑠 𝑤𝑒𝑙𝑙. (42)

Proof. In the first place, the inclusion of Σ(𝑏) in the statement
yields that there are 𝑦

∗
∈ 𝑌 and two sequences {𝑦

𝑛
}
𝑛<𝜔

and
{𝑦
𝑛
}
𝑛<𝜔

of elements of 𝑌 such that 𝐺
∗
= 𝛼(𝑏

∗
) + 𝑦
∗
𝛽(𝑏
∗
),

𝐺
𝑛
= 𝛼(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) + 𝑦
𝑛
𝛽(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
), and 𝐺

𝑛
= 𝛼(𝑏̂
𝑛
) + 𝑦
𝑛
𝛽(𝑏̂
𝑛
)

for every 𝑛 < 𝜔.
Now, on the one hand,

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

=
𝛼 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛼 (𝑏̂

𝑛
) (𝑏̂
𝑛
)

ℎ
𝑛

+
𝑦
𝑛
− 𝑦
𝑛

ℎ
𝑛

,

∀𝑛 < 𝜔.

(43)

On the other hand, since 𝛼 is continuously Fréchet
differentiable, the former lemma and Lemma 10 of [6] yield

lim
𝑛→𝜔

𝑦
𝑛
− 𝑦
𝑛

ℎ
𝑛

= 𝑦 − 𝛼󸀠 (𝑏
∗
, 𝑧) (𝑏
∗
) − 𝛼 (𝑏

∗
) (𝑧) , (44)

where 𝑧 = lim
𝑛→𝜔

𝑏
𝑛
∈ 𝑍 and 𝑦 = lim

𝑛→𝜔
((𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) −

𝐺
𝑛
(𝑏̂
𝑛
))/ℎ
𝑛
) ∈ 𝑌.

To conclude, for every 𝑛 < 𝜔, we decompose

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

=
𝛼 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) + 𝑦
𝑛
𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛼 (𝑏̂

𝑛
) − 𝑦
𝑛
𝛽 (𝑏̂
𝑛
)

ℎ
𝑛

=
𝛼 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛼 (𝑏̂

𝑛
)

ℎ
𝑛

+ 𝑦
𝑛

𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛽 (𝑏̂

𝑛
)

ℎ
𝑛

+
𝑦
𝑛
− 𝑦
𝑛

ℎ
𝑛

𝛽 (𝑏̂
𝑛
) .

(45)

The former decomposition allows us to arrive at

lim
𝑛→𝜔

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

= 𝛼󸀠 (𝑏
∗
, 𝑧) + 𝑦

∗
𝛽󸀠 (𝑏
∗
, 𝑧)

+ [𝑦 − 𝛼󸀠 (𝑏
∗
, 𝑧) (𝑏
∗
) − 𝛼 (𝑏

∗
) (𝑧)] 𝛽 (𝑏

∗
) ,

(46)

and thus, the proof is over.

Let us compute now the formula for the paratingent
derivative of the sum of a set-valued map and a single-valued
map. For the formula of the sum with other derivatives, we
refer the reader to [2].

Proposition 9. Let𝑓 : 𝑉 ⊂ 𝑍 → 𝑌 be a continuously Fréchet
differentiable map, 𝐹 : 𝑉 ⊂ 𝑍 󴁄󴀼 𝑌 a set-valued map, 𝐿 ⊂
Graph(𝐹), (𝑏

∗
, 𝑦
∗
) ∈ 𝐿, and 𝐿󸀠 = {(𝑏, 𝑓(𝑏) + 𝑦) ∈ 𝑉 × 𝑌 :

(𝑏, 𝑦) ∈ 𝐿}. Then

𝑃𝐿
󸀠

(𝑓 + 𝐹) (𝑏
∗
, 𝑓 (𝑏
∗
) + 𝑦
∗
) (𝑧)

= 𝑓󸀠 (𝑏
∗
, 𝑧) + 𝑃𝐿𝐹 (𝑏

∗
, 𝑦
∗
) (𝑧) , ∀𝑧 ∈ 𝑍.

(47)

Proof. Let us begin by checking the inclusion ⊂. For this
purpose we fix arbitrary elements 𝑧 ∈ 𝑍 and 𝑦 ∈ 𝑃𝐿

󸀠

(𝑓 +
𝐹)(𝑏
∗
, 𝑓(𝑏
∗
) + 𝑦
∗
)(𝑧). Now, by the usual characterization of

the paratingent cone we have three sequences: ℎ
𝑛

→ 0+,
𝑍 × 𝑌 ∋ (𝑧

𝑛
, 𝑦
𝑛
) → (𝑧, 𝑦), and 𝐿󸀠 ∋ (𝑏

𝑛
, 𝑓(𝑏
𝑛
) + 𝑦∗) →

(𝑏
∗
, 𝑓(𝑏
∗
)+𝑦
∗
). Moreover, the following condition holds true

for every 𝑛 < 𝜔:

𝑓 (𝑏
𝑛
) + 𝑦∗
𝑛
+ ℎ
𝑛
𝑦
𝑛
∈ 𝑓 (𝑏

𝑛
+ ℎ
𝑛
𝑧
𝑛
) + 𝐹 (𝑏

𝑛
+ ℎ
𝑛
𝑧
𝑛
) . (48)

Then, for every 𝑛 < 𝜔, there exists 𝑧̂
𝑛
∈ 𝐹(𝑏
𝑛
+ℎ
𝑛
𝑧
𝑛
) such that

𝑦
𝑛
=
𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) − 𝑓 (𝑏

𝑛
)

ℎ
𝑛

+
𝑧̂
𝑛
− 𝑦∗
𝑛

ℎ
𝑛

∈ 𝑌, (49)

which yields

lim
𝑛→𝜔

𝑧̂
𝑛
− 𝑦∗
𝑛

ℎ
𝑛

= 𝑦 − 𝑓󸀠 (𝑏
∗
, 𝑧) . (50)

Finally, the definition of paratingent cone assures that the last
limit belongs to 𝑃𝐿𝐹(𝑏

∗
, 𝑦
∗
)(𝑧), and hence, 𝑦 − 𝑓󸀠(𝑏

∗
, 𝑧) also

does.
In order to prove the reverse inclusion, we fix arbitrary

𝑧 ∈ 𝑍 and 𝑦 ∈ 𝑓󸀠(𝑏
∗
, 𝑧) + 𝑃𝐿𝐹(𝑏

∗
, 𝑦
∗
)(𝑧). We use again the

characterization of paratingent cones which provides us the
usual three sequences: ℎ

𝑛
→ 0+, 𝑍 × 𝑌 ∋ (𝑧

𝑛
, 𝑦
𝑛
) → (𝑧, 𝑦 −

𝑓󸀠(𝑏
∗
, 𝑧)), and 𝐿 ∋ (𝑏

𝑛
, 𝑦∗
𝑛
) → (𝑏

∗
, 𝑦
∗
) in such away that

𝑦∗
𝑛
+ ℎ
𝑛
𝑦
𝑛
∈ 𝐹 (𝑏

𝑛
+ ℎ
𝑛
𝑧
𝑛
) , ∀𝑛 < 𝜔. (51)

Now, for every 𝑛 < 𝜔, there exists 𝑧̂
𝑛
∈ 𝐹(𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) such that

𝑦
𝑛
= (𝑧̂
𝑛
− 𝑦∗
𝑛
)/ℎ
𝑛
, and the sequence defined by the general

term

𝑤
𝑛
=
𝑓 (𝑏
𝑛
+ ℎ
𝑛
𝑧
𝑛
) + 𝑧̂
𝑛
− 𝑓 (𝑏

𝑛
) − 𝑦∗
𝑛

ℎ
𝑛

∈ 𝑌 (52)

converges to 𝑦. To conclude, since

(𝑏
𝑛
, 𝑓 (𝑏
𝑛
) + 𝑦∗
𝑛
) + ℎ
𝑛
(𝑧
𝑛
, 𝑤
𝑛
) ∈ Graph (𝑓 + 𝐹) , ∀𝑛 < 𝜔,

(53)

certainly

𝑦 ∈ 𝑃𝐿
󸀠

(𝑓 + 𝐹) (𝑏
∗
, 𝑓 (𝑏
∗
) + 𝑦
∗
) (𝑧) . (54)
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4. Sensitivity Analysis

Theorem A will be proved in this section. However, before
this, it will be necessary to state and prove Theorem 12. In
this theorem, it is shown how the Fréchet differentiability
of the single-valued map 𝑇Ψ allows us to transfer the
paraderivability from the 𝑇-dual perturbation map Ψ to
the set-valued map Ψ̌. In its proof, the obtained results in
Section 3 are applied, taking Σ asΨ. In addition, we will need
to establish also some previous technical results which will
constitute the first part of this section.

Throughout this section we will assume, firstly, that the
parameter 𝑏 belongs to an open convex set 𝑉 ⊂ 𝑍 such that
0 ∉ 𝑉.This condition is not a restriction because the problem
(1) with 𝑏 = 0 is equivalent to some problem (1) with 𝑏 ̸= 0.
If we keep this assumption in mind, the following claim can
be proved. There exists a continuously Fréchet differentiable
map 𝛽 : 𝑉 → 𝑍∗ such that 𝛽(V)(V) = 1 for each V ∈ 𝑉. This
is a consequence of the Hanh-Banach theorem, Theorem 3.4
of [28].

In the second place, we will assume that for every 𝑏 ∈ V
there exists a regular local 𝑇-optimal solution 𝑥

𝑏
∈ 𝐷 of (1)

in such a way that the map 𝜆 : 𝑉 → 𝑋 given by 𝜆(𝑏) = 𝑥
𝑏
is

Fréchet differentiable. The existence of this kind of map has
been studied by several authors; the linear case can be seen in
[30].This assumption jointly with Proposition 8 of [6] implies
that𝑇Ψ is a single-valuedmap, that is,𝑇𝐺 = 𝑇𝐺󸀠 ∈ B(𝑍,𝑊)
for every two elements 𝐺, 𝐺󸀠 ∈ Ψ(𝑏) and 𝑏 ∈ 𝑉.

Definition 10. Let 𝑏 ∈ 𝑉, 𝑥
𝑏
∈ 𝐷 a regular local 𝑇-optimal

solution of (1), and 𝐺
𝑥𝑏

∈ B(𝑍, 𝑌) a 𝑇-Lagrange multiplier
of (1) associated with 𝑥

𝑏
.The (𝑇, 𝛽)-modification of𝐺

𝑥𝑏
is the

map defined by

𝐺(𝑇,𝛽)
𝑥𝑏

(𝑧) := 𝑇̂−1𝑇𝐺
𝑥𝑏
(𝑧) + 𝜋𝐺

𝑥𝑏
(𝑏) 𝛽 (𝑏) (𝑧) , ∀𝑧 ∈ 𝑍.

(55)

It is easy to check that𝐺(𝑇,𝛽)
𝑥𝑏

is a 𝑇-Lagrange multiplier of
(1) associated with 𝑥

𝑏
. Moreover, (𝑇, 𝛽)-modifications of two

different 𝑇-Lagrange multipliers of (1) associated to the same
regular local 𝑇-optimal solution coincide. Moreover, we have
the following result.

Proposition 11 (see Proposition 10 of [19]). Let 𝑏 ∈ 𝑉, 𝑥
𝑏
∈ 𝐷

a regular local 𝑇-optimal solution of (1), 𝐺
𝑥𝑏
∈ B(𝑍, 𝑌) a 𝑇-

Lagrange multiplier of (1) associated with 𝑥
𝑏
, and U

𝑥𝑏
the set

of the 𝑇-Lagrange multipliers of (1) associated with 𝑥
𝑏
. Then

U
𝑥𝑏
= {𝐺(𝑇,𝛽)
𝑥𝑏

} +H
𝑏
, (56)

whereH
𝑏
= {𝐻 ∈ B(𝑍,Ker𝑇) : 𝐻(𝑏) = 0}.

Next we will prove the following.

Theorem 12. Let one supposes that the 𝑇-dual perturbation
map Ψ is paraderivable relative to 𝐿 at (𝑏

∗
, 𝐺
∗
) ∈ 𝐿 ⊂

Graph(Ψ) and 𝑇Ψ is Fréchet differentiable at 𝑏
∗
∈ 𝑉. Then

Ψ̌ is paraderivable relative to

𝐿̌ := {(𝑏, 𝐺 (𝑏)) ∈ 𝑍 × 𝑌 : (𝑏, 𝐺) ∈ 𝐿} (57)

at (𝑏
∗
, 𝐺
∗
(𝑏
∗
)) and

𝑃𝐿̌Ψ̌ (𝑏
∗
, 𝐺
∗
(𝑏
∗
)) (𝑧)

= 𝑃𝐿Ψ (𝑏
∗
, 𝐺
∗
) (𝑧) (𝑏

∗
) + 𝐺
∗
(𝑧) , ∀𝑧 ∈ 𝑍.

(58)

Proof. The statement will be proved by applying Theorem 4.
Hence, it is enough to prove that Ψ verifies property T(𝐿)
at (𝑏
∗
, 𝐺
∗
) ∈ 𝐿. For this, let us fix the four sequences which

appear in the first part of the definition of Definition 3, that is,
ℎ
𝑛
→ 0+, 𝑍 ∋ 𝑏

𝑛
→ 𝑏 ∈ 𝑍, 𝐿̌ ∋ (𝑏̂

𝑛
, 𝐺
𝑛
(𝑏̂
𝑛
)) → (𝑏

∗
, 𝐺
∗
(𝑏
∗
)),

and {𝐺
𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌) such that each 𝐺
𝑛
∈ Σ(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) and

the below limit exists

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌. (59)

Now we can consider, on the one hand, the continuously
Fréchet differentiable map 𝛽 : 𝑉 → 𝑍∗ defined at the
beginning of this section and such that 𝛽(𝑏)(𝑏) = 1 for every
𝑏 ∈ 𝑉. On the other hand, we consider the auxiliary maps
𝐺(𝑇,𝛽)
𝑛

and 𝐺(𝑇,𝛽)
𝑛

for every 𝑛 < 𝜔. By Proposition 11 we have

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) = 𝐺(𝑇,𝛽)

𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) ,

𝐺
𝑛
(𝑏̂
𝑛
) = 𝐺(𝑇,𝛽)

𝑛
(𝑏̂
𝑛
) ,

(60)

for every 𝑛 < 𝜔. Moreover, the below limit exists

lim
𝑛→𝜔

𝐺(𝑇,𝛽)
𝑛

(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺(𝑇,𝛽)
𝑛

(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌. (61)

Then Proposition 8 applied to the set-valued map

Ψ(𝑇,𝛽) : 𝑉 󴁄󴀼 B (𝑍, 𝑌) ,

𝑏 󴁄󴀼 Ψ(𝑇,𝛽) (𝑏) = {𝐺(𝑇,𝛽) ∈ B (𝑍, 𝑌) : 𝐺 ∈ Ψ (𝑏)}

(62)

implies that the following also exists:

lim
𝑛→𝜔

𝐺(𝑇,𝛽)
𝑛

− 𝐺(𝑇,𝛽)
𝑛

ℎ
𝑛

∈ B (𝑍, 𝑌) . (63)

Now, we have all necessary ingredients at hand in order
to check that Ψ enjoys property T(𝐿) at (𝑏

∗
, 𝐺
∗
) ∈ 𝐿. For

this purpose, we will define three sequences which verify the
conditions stated in the second part of Definition 3. In fact,
for each 𝑛 < 𝜔, we consider 𝑏

𝑛
:= 𝑏
𝑛
, and define the maps 𝐺

𝑛

and 𝐺
𝑛
by

𝐺
𝑛
(𝑧) := 𝐺(𝑇,𝛽)

𝑛
(𝑧) + (𝐺

∗
− 𝐺(𝑇,𝛽)
∗

) (𝑧)

+ (𝐺(𝑇,𝛽)
∗

− 𝐺
∗
) (𝑏̂
𝑛
) 𝛽 (𝑏̂
𝑛
) (𝑧) ,

𝐺
𝑛
(𝑧) := 𝐺(𝑇,𝛽)

𝑛
(𝑧) + (𝐺

∗
− 𝐺(𝑇,𝛽)
∗

) (𝑧)

+ (𝐺(𝑇,𝛽)
∗

− 𝐺
∗
) (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) 𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) (𝑧) ,

(64)
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for every 𝑧 ∈ 𝑍. Clearly {𝐺
𝑛
}
𝑛<𝜔

, {𝐺
𝑛
}
𝑛<𝜔

⊂ B(𝑍, 𝑌). Again
Proposition 11 yields 𝐺

𝑛
∈ Ψ(𝑏̂

𝑛
+ ℎ
𝑛
𝑏
𝑛
) and 𝐺

𝑛
∈ Ψ(𝑏̂

𝑛
)

for every 𝑛 < 𝜔. Furthermore, since each 𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) =

𝐺(𝑇,𝛽)
𝑛

(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) and 𝐺

𝑛
(𝑏̂
𝑛
) = 𝐺(𝑇,𝛽)

𝑛
(𝑏̂
𝑛
), from (60) we get

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) = 𝐺

𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) and 𝐺

𝑛
(𝑏̂
𝑛
) = 𝐺

𝑛
(𝑏̂
𝑛
). This

provides the equality

lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

= lim
𝑛→𝜔

𝐺
𝑛
(𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝐺
𝑛
(𝑏̂
𝑛
)

ℎ
𝑛

∈ 𝑌.

(65)

The last step in the proof is to check that lim
𝑛→𝜔

(𝐺
𝑛
−𝐺
𝑛
)/ℎ
𝑛

exists. Indeed, for every 𝑛 < 𝜔,

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

=
𝐺(𝑇,𝛽)
𝑛

− 𝐺(𝑇,𝛽)
𝑛

ℎ
𝑛

+ (𝐺
∗
− 𝐺(𝑇,𝛽)
∗

) (𝑏̂
𝑛
)
𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛽 (𝑏̂

𝑛
)

ℎ
𝑛

+ (𝐺
∗
− 𝐺(𝑇,𝛽)
∗

) (𝑏
𝑛
) 𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) .

(66)

Now, taking into account that 𝛽 is continuously differen-
tiable at 𝑏

∗
, from Lemma 7, we obtain that

lim
𝑛→𝜔

𝛽 (𝑏̂
𝑛
+ ℎ
𝑛
𝑏
𝑛
) − 𝛽 (𝑏̂

𝑛
)

ℎ
𝑛

= 𝛽󸀠 (𝑏
∗
, 𝑏) . (67)

Therefore,

lim
𝑛→𝜔

𝐺
𝑛
− 𝐺
𝑛

ℎ
𝑛

= lim
𝑛→𝜔

𝐺(𝑇,𝛽)
𝑛

− 𝐺(𝑇,𝛽)
𝑛

ℎ
𝑛

+ (𝐺
∗
− 𝐺(𝑇,𝛽)
∗

) (𝑏
∗
) 𝛽󸀠 (𝑏

∗
, 𝑏)

+ (𝐺
∗
− 𝐺(𝑇,𝛽)
∗

) (𝑏) 𝛽 (𝑏
∗
) ,

(68)

and the proof is over.

Now we can proveTheorem A.

Proof of Theorem A. In the first part of the proofwewill check
that 𝜋Υ is paraderivable relative to 𝜋𝐿̌

Ψ
at (𝑏
∗
, 𝜋𝑓(𝑥

𝑏∗
)). After

that we will finish the proof by means of the equality

Υ (𝑏) = 𝑇̂−1𝑇Υ (𝑏) + 𝜋Υ (𝑏) , ∀𝑏 ∈ 𝑉. (69)

Since 𝜋Υ(𝑏) = 𝜋Ψ̌(𝑏) for every 𝑏 ∈ 𝑉, it is enough to
check that the set-valued map 𝜋Ψ̌ is paraderivable relative to
𝜋𝐿̌
Ψ
at (𝑏
∗
, 𝜋𝐺
𝑥𝑏∗
(𝑏
∗
)). ApplyingTheorem 12 we get that Ψ̌ is

paraderivable relative to

𝐿̌
Ψ
= {(𝑏, 𝐺 (𝑏)) ∈ 𝑍 × 𝑋 : (𝑏, 𝐺) ∈ 𝐿

Ψ
} , (70)

at (𝑏
∗
, 𝐺
𝑥𝑏∗
(𝑏
∗
)) and

𝑃𝐿̌ΨΨ̌ (𝑏
∗
, 𝐺
𝑥𝑏∗

(𝑏
∗
)) (𝑧)

= 𝑃𝐿ΨΨ(𝑏
∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
) + 𝐺
𝑥𝑏∗

(𝑧) , ∀𝑧 ∈ 𝑍.
(71)

By Lemma 6 𝜋Ψ̌ is paraderivable relative to 𝜋𝐿̌
Ψ

at
(𝑏
∗
, 𝜋𝐺
𝑥𝑏∗
(𝑏
∗
)) and

𝜋𝑃𝐿̌Ψ Ψ̌ (𝑏
∗
, 𝐺
𝑥𝑏∗

(𝑏
∗
)) (𝑧)

= 𝑃𝜋𝐿̌Ψ𝜋Ψ̌ (𝑏
∗
, 𝜋𝐺
𝑥𝑏∗

(𝑏
∗
)) (𝑧) , ∀𝑧 ∈ 𝑍.

(72)

Now, the equality 𝜋Υ = 𝜋Ψ̌ and (71) yield

𝑃𝜋𝐿̌Ψ𝜋Υ (𝑏
∗
, 𝜋𝑓 (𝑥

𝑏∗
)) (𝑧)

= 𝜋𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝑃
𝐿ΨΨ(𝑏

∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
) , ∀𝑧 ∈ 𝑍.

(73)

In order to finish the proof we consider the equality (69).
On the one hand, by Proposition 8 of [6], the function 𝑇Υ is
continuously Fréchet differentiable at 𝑏

∗
and [𝑇Υ]󸀠(𝑏

∗
, 𝑧) =

𝑇𝐺
𝑥𝑏∗
(𝑧), for every 𝑧 ∈ 𝑍. Thus, [𝑇̂−1𝑇Υ]

󸀠

(𝑏
∗
, 𝑧) =

𝑇̂−1𝑇𝐺
𝑥𝑏∗
(𝑧) for every 𝑧 ∈ 𝑍. On the other hand, if we apply

Proposition 9 to equality (69), we obtain that the set-valued
map Υ is paraderivable relative to 𝐿

Υ
at (𝑏
∗
, 𝑓(𝑥
𝑏∗
)) and

𝑃𝐿ΥΥ (𝑏
∗
, 𝑓 (𝑥
𝑏∗
)) (𝑧)

= 𝑇̂−1𝑇𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝑃
𝐿ΨΨ(𝑏

∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
)

= 𝐺
𝑥𝑏∗

(𝑧) + 𝜋𝑃
𝐿ΨΨ(𝑏

∗
, 𝐺
𝑥𝑏∗
) (𝑧) (𝑏

∗
) , ∀𝑧 ∈ 𝑍.

(74)

This section is finished by illustratingTheoremAwith the
aid of an example.

Example 13. Let one considers 𝑋 = 𝑌 = R3, 𝑍 = 𝑊 = R,
the interval 𝑉 = (−11/10, 9/10) ⊂ R, 𝐷 = {(𝑥, 𝑦, 𝑧) ∈ R3 :

2 cosh𝑦2 > 𝑧}, and the problem

Min (𝑥 − √2𝑦 + 𝑧, 𝑥 + √2𝑦 + 𝑧, −√2𝑥 + √2𝑧) ;

− log (2 cosh𝑦2 − 𝑧) = 𝑏, (𝑥, 𝑦, 𝑧) ∈ 𝐷,
(75)

for every 𝑏 ∈ 𝑉.
Let us take 𝑇 = (1, 1, √2). Solving the problem we obtain

the 𝑇-perturbation map

Υ (𝑏) = {(
2𝑒𝑏 − 1

𝑒𝑏
− 𝜆,

2𝑒𝑏 − 1

𝑒𝑏
− 𝜆,√2

2𝑒𝑏 − 1

𝑒𝑏
+ √2𝜆)

∈ R
3 : 𝜆 ∈ R} ,

(76)
for every 𝑏 ∈ 𝑉.
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Let us study the sensitivity of the problem (75) at 𝑏 = −1,
the point 𝑥

−1
= (0, 0, 2 − 𝑒), and so 𝑓(𝑥

1
) = (2 − 𝑒, 2 −

𝑒, √2(2 − 𝑒)), taking 𝐿 = Graph(Υ). We first analyze directly
the sensitivity by calculating

𝑃Υ (−1, 𝑓 (𝑥
−1
)) (𝑢)

= {(𝑒𝑢 + 𝜆, 𝑒𝑢 + 𝜆,√2𝑒𝑢 − √2𝜆) : 𝜆 ∈ R} , ∀𝑢 ∈ R.

(77)

Let us now apply Theorem A to verify (77). Since Ker 𝑇
is the linear space generated by the vectors (−√2, 0, 1) and
(−1, 1, 0), taking 𝑌

𝑇
= (Ker 𝑇)⊥ we obtain 𝐺

𝑥−1
(𝑢) =

(𝑒𝑢, 𝑒𝑢, √2𝑒𝑢) and the 𝑇-dual perturbation map

Ψ (𝑏) = {( 𝑒−𝑏 +
𝜆

𝑏
, 𝑒−𝑏 +

𝜆

𝑏
,√2𝑒−𝑏 −

√2𝜆

𝑏
) : 𝜆 ∈ R} .

(78)

Thus, we have

𝑃Ψ (−1, 𝐺
𝑥−1
) (𝑢) (𝑏)

= {(−𝑒−𝑏𝑢 −
𝜆

𝑏2
, −𝑒−𝑏u − 𝜆

𝑏2
, −√2𝑒−𝑏𝑢 +

√2𝜆

𝑏2
) : 𝜆 ∈ R} ,

(79)

for every 𝑢 ∈ R, and therefore

𝜋𝑃Ψ (−1, 𝐺
𝑥−1
) (𝑢) (−1) = {(−𝜆, −𝜆,√2𝜆) : 𝜆 ∈ R} . (80)

Finally we obtain that

𝐺
𝑥−1

(𝑢) + 𝜋𝑃Ψ (−1, 𝐺
𝑥−1
) (𝑢) (−1)

= (𝑒𝑢, 𝑒𝑢, √2𝑒𝑢) + {(−𝜆, −𝜆,√2𝜆) : 𝜆 ∈ R}

= {(𝑒𝑢 − 𝜆, 𝑒𝑢 − 𝜆,√2𝑒𝑢 + √2𝜆) : 𝜆 ∈ R}

= 𝑃Υ (−1, 𝑓 (𝑥
−1
)) (𝑢)

(81)

Consequently, equality (4) holds as Theorem A states.

5. Concluding Remarks

The objective of this article is to analyze the sensitivity
of a multiobjective differential program with equality con-
straints. Given a family of parameterized programs, the 𝑇-
perturbation set-valuedmap is defined as the correspondence
that assigns to each right-hand side parameter value the set of
minimal points of its associated program, on which a positive
linear continuous map, 𝑇, takes a minimum value. The
behavior of the𝑇-perturbationmap is analyzed quantitatively
by making use of the paratingent derivative. The main result
of the paper is stated in Theorem A, where we assert that
the sensitivity of the program is measured by a Lagrange
multiplier plus the projection of its derivative onto the kernel
of 𝑇. The use of the paratingent derivative in the analysis
transmits to the obtained result its distinctive stability with

respect to disturbances around the point where the analysis
is performed. In previous papers, some authors have carried
out this kind of analysis by means of other derivatives. By
doing so, this research completes the study of sensitivity of
𝑇-optimal solutions of this program by means of the four
main set-valued derivatives, that is, contingent, adjacent,
circatangent, and paratingent derivatives.
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and optimality conditions in the multiobjective differential
programming,” Indian Journal of Pure andAppliedMathematics,
vol. 29, no. 7, pp. 671–680, 1998.

[7] A. Balbás, M. Ballvé, P. Jiménez Guerra et al., “Sensitivity
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envolvent theorem in multiobjective programming,” Indian
Journal of Pure and Applied Mathematics, vol. 26, no. 11, pp.
1035–1047, 1995.

[9] T. Gal and K.Wolf, “Stability in vector maximization. A survey,”
European Journal of Operational Research, vol. 25, no. 2, pp. 169–
182, 1986.
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