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The (𝐺󸀠/𝐺)-expansion method is used to study ion-acoustic waves equations in plasma physic for the first time. Many new exact
traveling wave solutions of the Schamel equation, Schamel-KdV (S-KdV), and the two-dimensional modified KP (Kadomtsev-
Petviashvili) equation with square root nonlinearity are constructed. The traveling wave solutions obtained via this method are
expressed by hyperbolic functions, the trigonometric functions, and the rational functions. In addition to solitary waves solutions,
a variety of special solutions like kink shaped, antikink shaped, and bell type solitary solutions are obtained when the choice of
parameters is taken at special values. Two- and three-dimensional plots are drawn to illustrate the nature of solutions. Moreover,
the solution obtained via this method is in good agreement with previously obtained solutions of other researchers.

1. Introduction

The ion-acoustic solitary wave is one of the fundamental
nonlinear waves phenomena appearing in fluid dynamics [1]
and plasma physics [2]. To allowing for the trapping of some
of the electrons on ion-acoustic waves, Schamel proposed a
modified equation for ion-acoustic waves [3] given by

𝑢
𝑡
+ 𝑢
1/2
𝑢
𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0, (1)

where 𝑢 is thewave potential and 𝛿 is a constant, this equation
describing the ion-acoustic wave, where the electrons do not
behave isothermally during their passage of the wave in a
cold-ion plasma. Then, combining the equations of Schamel
and the KdV equation, one obtains the so-called one-
dimensional form of the Schamel-KdV (S-KdV) equation
equation [4, 5]:

𝑢
𝑡
+ (𝛼𝑢

1/2
+ 𝛽𝑢) 𝑢

𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0, 𝛿𝛽 ̸= 0, (2)

where 𝛽, 𝛼, and 𝛿 are constants. This equation is established
in plasma physics in the study of ion acoustic solitons
when electron trapping is present, and also it governs the
electrostatic potential for a certain electron distribution in

velocity space. Note that we obtain the KdV equation when
𝛼 = 0 and the Schamel equation when 𝛽 = 0 for 𝛿 = 1.
Due to the wide range of applications of (2), it is important
to find new exact wave solutions of the Schamel-KdV (S-
KdV) equation. Another equation arising in the study of
ion-acoustic waves is the so-called modified Kadomtsev-
Petviashvili (KP) equation given by [6]

(𝑢
𝑡
+ 𝛼𝑢
1/2
𝑢
𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

)
𝑥
+ 𝛿𝑢
𝑦𝑦

= 0. (3)

Equation (3) was firstly derived by Chakraborty and
Das [7]; the modified KP equation containing a square root
nonlinearity is a very attractive model for the study of ion-
acoustic waves in a multispecies plasma made up of non-
isothermal electrons in plasma physics.

In the literature, theKP equation is also known as the two-
dimensional KdV equation [8].

It has lately become more interesting to obtain exact
analytical solutions to nonlinear partial differential equations
such as the one arising from the ion-acoustic wave phe-
nomena, by using appropriate techniques. Several important
techniques have been developed such as the tanh-method [9,
10], sine-cosine method [11, 12], tanh-coth method [13], exp-
functionmethod [14], homogeneous-balancemethod [15, 16],
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Jacobi-elliptic function method [17, 18], and first-integral
method [19, 20] to solve analytically nonlinear equations such
as the above ion-acoustic wave equations.

Moreover, in the standard tanh method developed by
Malfliet in 1992 [21], the tanh is used as a new variable. Since
all derivatives of a tanh are represented by tanh itself, the
solution obtained by this method may be solitons in terms
of sech2 or may be kinks in terms of tanh. We believe that
the (𝐺󸀠/𝐺)-expansion method is more efficient than the tanh
method. Moreover, the tanh method may yield more than
one soliton solution, a capability which the tanh method
does not have. The sine-cosine method yields a solution
in trigonometric form. The Exp-function method leads to
both generalized solitary solution and periodic solutions.The
homogeneous-balancemethod is a generalized tanh function
method for many nonlinear PDEs. The first integral method,
which is based on the ring theory of commutative algebra,
was first proposed by Feng. There is no general theory telling
us how to find its first integrals in a systematic way; so, a
key idea of this approach to find the first integral is to utilize
the division theorem.The traveling wave solutions expressed
by the (𝐺󸀠/𝐺)-expansion method, which was first proposed
by Wang et al. [22], transform the given difficult problem
into a set of simple problems which can be solved easily to
get solutions in the forms of hyperbolic, trigonometric, and
rational functions. The main merits of the (𝐺󸀠/𝐺)-expansion
method over the other methods are as follows.

(i) Higher-order nonlinear equations can be reduced to
ODEs of order greater than 3.

(ii) There is no need to apply the initial and boundary
conditions at the outset. The method yields a general
solution with free parameters which can be identified
by the above conditions.

(iii) The general solution obtained by the (𝐺󸀠/𝐺)-expan-
sion method is without approximation.

(iv) The solution procedure can be easily implemented in
Mathematica or Maple.

In fact, the (𝐺󸀠/𝐺)-expansion method has been success-
fully applied to obtain exact solution for a variety of NLPDE
[23–34].

In this paper, the (𝐺󸀠/𝐺)-expansion method is used to
study ion-acoustic waves equations in plasma physic for the
first time.We obtainmany new exact traveling wave solutions
for the Schamel equation, S-KdV, and the two-dimensional
modified KP equation.The traveling wave solutions obtained
via this method are expressed by hyperbolic functions,
the trigonometric functions, and the rational functions. In
addition to solitary waves solutions, a variety of special
solutions like kink shaped, antikink shaped, and bell type
solitary solutions are obtained when the choice of parameters
is taken at special values. Two- and three-dimensional plots
are drawn to illustrate the nature of solutions. Moreover, the
solution obtained via this method is in good agreement with
previously obtained solutions of other researchers.

Our paper is organized as follows: in Section 2, we present
the summary of the (𝐺󸀠/𝐺)-expansionmethod, and Section 3
describes the applications of the (𝐺󸀠/𝐺)-expansion method
for Schamel equation, S-KdV equation, and modified KP
equation, and lastly, conclusions are given in Section 4.

2. Summary of the (𝐺󸀠/𝐺)-Expansion Method

In this section, we describe the (𝐺󸀠/𝐺)-expansion method
for finding traveling wave solutions of NLPDE. Suppose that
a nonlinear partial differential equation in two independent
variables, 𝑥 and 𝑡, is given by

𝑝 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (4)

where 𝑢 = 𝑢 (𝑥, 𝑡) is an unknown function, 𝑃 is a polynomial
in 𝑢 = 𝑢 (𝑥, 𝑡) and its various partial derivatives, in which
highest order derivatives and nonlinear terms are involved.

The summary of the (𝐺󸀠/𝐺)-expansion method can be
presented in the following six steps.

Step 1. To find the traveling wave solutions of (4), we
introduce the wave variable:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) , 𝜁 = (𝑥 − 𝑐𝑡) , (5)

where the constant 𝑐 is generally termed the wave velocity.
Substituting (5) into (4), we obtain the following ordinary dif-
ferential equations (ODE) in 𝜁 (which illustrates a principal
advantage of a traveling wave solution; i.e., a PDE is reduced
to an ODE):

𝑝 (𝑢, 𝑐𝑢
󸀠
, 𝑢
󸀠
, 𝑐𝑢
󸀠󸀠
, 𝑐
2
𝑢
󸀠󸀠
, 𝑢
󸀠󸀠
, . . .) = 0. (6)

Step 2. If necessary, we integrate (6) asmany times as possible
and set the constants of integration to be zero for simplicity.

Step 3. Suppose that the solution of nonlinear partial differ-
ential equation can be expressed by a polynomial in (𝐺

󸀠
/𝐺)

as

𝑢 (𝜁) =

𝑚

∑

𝑖=0

𝑎
𝑖
(
𝐺
󸀠

𝐺

)

𝑖

, (7)

where 𝐺 = 𝐺(𝜁) satisfies the second-order linear ordinary
differential equation

𝐺
󸀠󸀠

(𝜁) + 𝜆𝐺
󸀠

(𝜁) + 𝜇𝐺 (𝜁) = 0, (8)

where 𝐺󸀠 = 𝑑𝐺/𝑑𝜁, 𝐺󸀠󸀠 = 𝑑
2
𝐺/𝑑𝜁
2, and 𝑎

𝑖
, 𝜆, and 𝜇 are real

constants with 𝑎
𝑚

̸= 0. Here, the prime denotes the derivative
with respect to 𝜁. Using the general solutions of (8),
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we have

(
𝐺
󸀠

𝐺

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝜆

2

+

√𝜆
2
− 4𝜇

2

×(

𝑐
1
sinh {(√𝜆2 − 4𝜇/2) 𝜁}+ 𝑐

2
cosh {(√𝜆2 − 4𝜇/2) 𝜁}

𝑐
1
cosh {(√𝜆2 − 4𝜇/2) 𝜁}+ 𝑐

2
sinh {(√𝜆2 − 4𝜇/2) 𝜁}

) ,

𝜆
2
− 4𝜇 > 0,

−𝜆

2

+

√4𝜇 − 𝜆
2

2

×(

−𝑐
1
sin {(√4𝜇 − 𝜆2/2) 𝜁}+ 𝑐

2
cos {(√4𝜇 − 𝜆2/2) 𝜁}

𝑐
1
cos {(√4𝜇 − 𝜆2/2) 𝜁}+ 𝑐

2
sin {(√4𝜇 − 𝜆2/2) 𝜁}

) ,

𝜆
2
− 4𝜇 < 0,

(
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

) −
𝜆

2

, 𝜆
2
− 4𝜇 = 0.

(9)
The above results can be written in simplified forms as

(
𝐺
󸀠

𝐺

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝜆

2

+

√𝜆
2
− 4𝜇

2

tanh
{
{

{
{

{

√𝜆
2
− 4𝜇

2

𝜁

}
}

}
}

}

, 𝜆
2
− 4𝜇 > 0,

−𝜆

2

+

√4𝜇 − 𝜆
2

2

tan
{
{

{
{

{

√4𝜇 − 𝜆
2

2

𝜁

}
}

}
}

}

, 𝜆
2
− 4𝜇 < 0,

(
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

) −
𝜆

2

, 𝜆
2
− 4𝜇 = 0.

(10)

Step 4. The positive integer 𝑚 can be accomplished by
considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in (6) as
follows: if we define the degree of 𝑢(𝜁) as 𝐷[𝑢(𝜁)] = 𝑚, then
the degree of other expressions is defined by

𝐷[
𝑑
𝑞
𝑢

𝑑𝜁
𝑞
] = 𝑚 + 𝑞,

𝐷 [𝑢
𝑟
(
𝑑
𝑞
𝑢

𝑑𝜁
𝑞
)

𝑠

] = 𝑚𝑟 + 𝑠 (𝑞 + 𝑚) .

(11)

Therefore, we can get the value of𝑚 in (7).

Step 5. Substituting (7) into (6), useing general solutions of
(8), and collecting all terms with the same order of (𝐺󸀠/𝐺)
together, then setting each coefficient of this polynomial to
zero yields a set of algebraic equations for 𝑎

𝑖
, 𝑐, 𝜆, and 𝜇.

Step 6. Substitute 𝑎
𝑖
, 𝑐, 𝜆, and 𝜇 obtained in Step 5 and the

general solutions of (8) into (7). Next, depending on the sign
of the discriminant 𝐴 = 𝜆

2
− 4𝜇, we can obtain the explicit

solutions of (4) immediately.

3. Applications of the
(𝐺
󸀠
/𝐺)-Expansion Method

3.1. Schamel Equation. In order to find the solitary wave solu-
tion of (1), we use the transformations

𝑢 (𝑥, 𝑡) = V2 (𝑥, 𝑡) , V (𝑥, 𝑡) = V (𝜁) , 𝜁 = 𝑘𝑥 − 𝑐𝑡.

(12)

Then, (1) becomes

−𝑐VV󸀠 + 𝑘V2V󸀠 + 𝛿𝑘3 (VV󸀠󸀠󸀠 + 3V󸀠V󸀠󸀠) = 0. (13)

Integrating (13) with respect to 𝜁 and setting the integration
constant equal to zero, we have

−
𝑐

2

V2 +
𝑘

3

V3 + 𝑘3𝛿(V󸀠)
2

+ 𝑘
3
𝛿VV󸀠󸀠 = 0. (14)

According to the previous steps, using the balancing proce-
dure between V3 with VV󸀠󸀠 in (14), we get 3𝑚 = 2𝑚 + 2 so that
𝑚 = 2. Now, assume that (14) has the following solution:

V (𝜁) = 𝑎
0
+ 𝑎
1
(
𝐺
󸀠

𝐺

) + 𝑎
2
(
𝐺
󸀠

𝐺

)

2

, 𝑎
2

̸= 0, (15)

where 𝑎
0
, 𝑎
1
, and 𝑎

2
are unknown constants to be determined

later. Substituting (15) along with (8) into (14) and collecting
all terms with the same order of (𝐺󸀠/𝐺), the left hand side of
(14) is converted into a polynomial in (𝐺󸀠/𝐺). Equating each
coefficient of the resulting polynomials to zero yields a set of
algebraic equations for 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝛿, 𝜆, 𝑐, 𝑘, and 𝜇 as follows:

(
𝐺
󸀠

𝐺

)

6

:
1

3

𝑘𝑎
3

2
+ 10𝑘

3
𝛿𝑎
2

2
= 0,

(
𝐺
󸀠

𝐺

)

5

: 18𝑘
3
𝛿𝑎
2

2
𝜆 + 12𝑘

3
𝛿𝑎
1
𝑎
2
+ 𝑘𝑎
1
𝑎
2

2
= 0,

(
𝐺
󸀠

𝐺

)

4

: 6𝑘
3
𝛿𝑎
0
𝑎
2
+ 16𝑘

3
𝛿𝑎
2

2
𝜇 + 8𝑘

3
𝛿𝑎
2

2
𝜆
2
−
1

2

𝑐𝑎
2

2

+ 21𝑘
3
𝛿𝑎
2

1
+ 𝑘𝑎
0
𝑎
2

2
+ 𝑘𝑎
2

1
𝑎
2
= 0,

(
𝐺
󸀠

𝐺

)

3

: 14𝑘
3
𝛿𝑎
2

2
𝜆𝜇 + 5𝑘

3
𝛿𝑎
2

1
𝜆 + 18𝑘

3
𝛿𝑎
1
𝑎
2
𝜇

+ 9𝑘
3
𝛿𝑎
1
𝜆
2
𝑎
2
+ 2𝑘𝑎

0
𝑎
1
𝑎
2
− 𝑐𝑎
1
𝑎
2
+
1

3

𝑘𝑎
3

1

+ 2𝑘
3
𝛿𝑎
0
𝑎
1
+ 10𝑘

3
𝛿𝑎
0
𝑎
2
𝜆 = 0,
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(
𝐺
󸀠

𝐺

)

2

: 2𝑘
3
𝛿𝑎
2

1
𝜆
2
+ 4𝑘
3
𝛿𝑎
2

1
𝜇 + 8𝑘

3
𝛿𝑎
0
𝑎
2
𝜇 −

1

2

𝑐𝑎
2

1
− 𝑐𝑎
0
𝑎
2

+ 15𝑘
3
𝛿𝑎
1
𝑎
2
𝜆𝜇 + 𝑘𝑎

0
𝑎
2

1
+ 4𝑘
3
𝛿𝑎
0
𝑎
2
𝜆
2

+ 6𝑘
3
𝛿𝑎
2

2
𝜇
2
+ 3𝑘𝛿𝑎

0
𝑎
1
𝜆 + 𝑘𝑎

2

0
= 0,

(
𝐺
󸀠

𝐺

)

1

: 2𝑘
3
𝑎
0
𝑎
1
𝜇 + 𝑘
3
𝛿𝑎
0
𝑎
1
𝜆
2
+ 6𝑘
3
𝛿𝑎
0
𝑎
2
𝜆𝜇 + 𝑘𝑎

2

0

− 𝑐𝑎
0
𝑎
1
+ 6𝑘
3
𝑎
1
𝑎
2
𝛿𝜇
2
+ 3𝑘
3
𝛿𝜆𝜇𝑎
2

1
= 0,

(
𝐺
󸀠

𝐺

)

0

: 𝑘
3
𝛿𝑎
2

1
𝜇
2
−
1

2

𝑐𝑎
2

0
+
1

3

𝑘𝑎
3

0
+ 𝑘
3
𝛿𝜆𝜇𝑎
0
𝑎
1

+ 2𝑘
3
𝛿𝜇
2
𝑎
0
𝑎
2
= 0.

(16)

On solving the above set of algebraic equations by Maple, we
have

𝑎
0
= −30𝜇𝛿𝑘

2
, 𝑎

1
= −30𝑘

2
𝛿𝜆,

𝑎
2
= −30𝑘

2
𝛿, 𝑐 = 𝛿𝑘

3
(4𝜆
2
− 16𝜇) .

(17)

Now, (15) becomes

V (𝜁) = −30𝜇𝛿𝑘
2
− 30𝑘

2
𝛿𝜆(

𝐺
󸀠

𝐺

) − 30𝑘
2
𝛿(

𝐺
󸀠

𝐺

)

2

. (18)

Substituting the general solution of (8) into (18), we obtain
the three types of traveling wave solutions depending on the
sign of 𝐴 = 𝜆

2
− 4𝜇.

If 𝐴 > 0, we have the following general hyperbolic
traveling wave solutions of (1):

V (𝑥, 𝑡)

= −30𝜇𝛿𝑘
2
− 30𝑘

2
𝛿𝜆

× [
−𝜆

2

+

√𝐴

2

× (

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

− 30𝑘
2
𝛿 [

−𝜆

2

+

√𝐴

2

×(

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

2

,

(19)

where 𝑐
1
and 𝑐
2
are arbitrary constants.

If 𝐴 < 0, we have the following general trigonometric
function solutions of (1):

V (𝑥, 𝑡)

= −30𝜇𝛿𝑘
2
− 30𝑘

2
𝛿𝜆

× [
−𝜆

2

+

√𝐴

2

×(

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {√𝐴/2}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

− 30𝑘
2
𝛿 [

−𝜆

2

+

√𝐴

2

× (

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {(√𝐴/2) 𝜁}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

2

.

(20)

If 𝐴 = 0, we have the following general rational function
solutions of (1):

V (𝑥, 𝑡) = − 30𝜇𝛿𝑘2 − 30𝑘2𝛿𝜆 [−
𝜆

2

+ (
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

− 30𝑘
2
𝛿[−

𝜆

2

+ (
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

2

,

(21)

where 𝜁 = 𝑘𝑥 − 𝛿𝑘
3
(4𝜆
2
− 16𝜇)𝑡.

Writing 𝑢(𝑥, 𝑡) = V2(𝑥, 𝑡) and setting 𝑐
2
= 𝜇 = 0 and 𝜆 = 2

in (19), we reproduce the result of Khater andHassan [35] (see
their Equation (4.7)),

𝑢 (𝑥, 𝑡) = 4 (900𝑘
4
𝛿
2sech4 {𝜁}) , (22)

where 𝜁 = 𝑘𝑥 − 16𝛿𝑘
3
𝑡.

Note that Khater and Hassan [35] obtained only hyper-
bolic solutions, but in this work, we found two additional
types of solutions, that is, trigonometric and rational solu-
tions.

3.2. S-KdV Equation. To find the general exact solutions of
(2), we first write 𝑢(𝑥, 𝑡) = V2(𝑥, 𝑡) to transform (2) into

VV
𝑡
+ (𝛼V + 𝛽V2) V

𝑥
+ 𝛿VV
𝑥𝑥𝑥

= 0. (23)

Assume the traveling wave solution of (23) in the form
V (𝑥, 𝑡) = 𝑉 (𝜁) , 𝜁 = 𝑘 (𝑥 − 𝑐𝑡) . (24)

Hence, (23) becomes
−𝑐𝑉𝑉

󸀠
+ (𝛼𝑉

2
+ 𝛽𝑉
3
)𝑉
󸀠
+ 𝑘
2
𝛿 (𝑉𝑉

󸀠󸀠󸀠
+ 3𝑉
󸀠
𝑉
󸀠󸀠
) = 0.

(25)

Suppose that the solution of (25) can be expressed by a
polynomial in (𝐺󸀠/𝐺) as

𝑉 (𝜁) =

𝑚

∑

𝑖=0

𝑎
𝑖
(
𝐺
󸀠

𝐺

)

𝑖

, 𝑎
𝑖
̸= 0 (26)
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and𝐺(𝜁) satisfies (8).The homogeneous balance between the
highest order derivative 𝑉𝑉󸀠󸀠󸀠 and the nonlinear term 𝑉

3
𝑉
󸀠

appearing in (25) yields 𝑚 = 1, and hence, we take the
following formal solution:

𝑉 (𝜁) = 𝑎
0
+ 𝑎
1
(
𝐺
󸀠

𝐺

) , (27)

where the positive integers 𝑎
0
and 𝑎

1
are to be determined

later. Substituting (27) along with (8) into (25), collecting
all the terms with the same power of (𝐺󸀠/𝐺), and equating
each coefficient to zero yield a set of simultaneous algebraic
equations for 𝑎

0
, 𝑎
1
, 𝑐, 𝑘, 𝛼, 𝛽, and 𝛿 as follows:

(
𝐺
󸀠

𝐺

)

5

: −𝛽𝑎
4

1
− 12𝛿𝑘

2
𝑎
2

1
= 0,

(
𝐺
󸀠

𝐺

)

4

: − 3𝛽𝑎
3

1
𝑎
0
− 𝛽𝑎
4

1
𝜆 − 27𝛿𝑘

2
𝑎
2

1
𝜆 − 𝛼𝑎

3

1

− 6𝛿𝑘
2
𝑎
0
𝑎
1
= 0,

(
𝐺
󸀠

𝐺

)

3

: − 3𝛽𝑎
3

1
𝜆𝑎
0
− 19𝛿𝑘

2
𝑎
2

1
𝜆
2
− 12𝛿𝑘

2
𝑎
0
𝑎
1
𝜆

− 20𝛿𝑘
2
𝑎
2

1
𝜇 − 𝛼𝑎

3

1
𝜆 − 𝛽𝑎

4

1
𝜇 + 𝑐𝑎

2

1
− 2𝛼𝑎

2

1
𝑎
0

− 3𝛽𝑎
2

1
𝑎
2

0
= 0,

(
𝐺
󸀠

𝐺

)

2

: 𝑐𝑎
0
𝑎
1
− 3𝛽𝑎

2

1
𝜆𝑎
2

0
− 2𝛼𝑎

2

1
𝜆𝑎
0
+ 𝑐𝑎
2

1
𝜆 − 26𝛿𝑘

2
𝑎
2

1
𝜆𝜇

− 8𝛿𝑘
2
𝑎
0
𝑎
1
𝜇 − 7𝛿𝑘

2
𝑎
0
𝑎
1
𝜆
2
− 3𝛽𝑎

3

1
𝜇𝑎
0
− 𝛽𝑎
1
𝑎
3

0

− 𝛼𝑎
1
𝑎
2

0
− 𝛼𝑎
3

1
𝜇 = 0,

(
𝐺
󸀠

𝐺

)

1

: − 𝛼𝜆𝑎
1
𝑎
2

0
+ 𝑐𝑎
0
𝑎
1
𝜆 − 8𝛿𝑘

2
𝑎
2

1
𝜇
2
− 7𝛿𝜇𝑘

2
𝑎
2

1
𝜆
2

− 3𝛽𝜇𝑎
2

1
𝑎
2

0
+ 𝑐𝑎
2

1
𝜇 − 𝛽𝜆𝑎

1
𝑎
3

0
− 8𝛿𝜆𝜇𝑘

2
𝑎
0
𝑎
1

− 2𝛼𝜇𝑎
2

1
𝑎
0
= 0,

(
𝐺
󸀠

𝐺

)

0

: 𝑐𝜇𝑎
0
𝑎
1
− 𝛼𝜇𝑎

1
𝑎
2

0
− 𝛽𝜇𝑎

1
𝑎
3

0
− 3𝛿𝜆𝑘

2
𝑎
2

1
𝜇
2

− 𝛿𝜇𝜆
2
𝑘
2
𝑎
0
𝑎
1
− 2𝛿𝜇

2
𝑘
2
𝑎
0
𝑎
1
= 0.

(28)

The above system admits the following sets of solutions:

𝑎
0
= 0, 𝑎

1
=

4𝛼

5𝛽𝜆

, 𝜇 = 0,

𝑐 = −
16𝛼
2

75𝛽

, 𝑘 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

,

(29)

𝑎
0
= −

4𝛼

5𝛽

, 𝑎
1
= −

4𝛼

5𝛽𝜆

, 𝜇 = 0,

𝑐 = −
16𝛼
2

75𝛽

, 𝑘 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

,

(30)

𝑎
0
=

5𝛽𝑎
1
𝜆 − 4𝛼

10𝛽

, 𝜇 =

25𝛽
2
𝑎
2

1
𝜆
2
− 16𝛼

2

100𝛽
2
𝑎
2

1

,

𝑐 = −
16𝛼
2

75𝛽

, 𝑘 = ±√
𝛽

−12𝛿

𝑎
1
.

(31)

Now, substituting (29)-(30) into (27) gives, respectively,

𝑉
1
(𝜁) =

4𝛼

5𝛽𝜆

(
𝐺
󸀠

𝐺

) ,

𝑉
2
(𝜁) = −

4𝛼

5𝛽

−
4𝛼

5𝛽𝜆

(
𝐺
󸀠

𝐺

) ,

𝑉
3
(𝜁) =

5𝛽𝑎
1
𝜆 − 4𝛼

10𝛽

+ 𝑎
1
(
𝐺
󸀠

𝐺

) .

(32)

When substituting the general solutions (9) into (32), we
obtain the following three types of traveling wave solutions.

Case 𝐴 > 0: (hyperbolic type)

V
1
(𝑥, 𝑡) = −

2𝛼

5𝛽

+
2𝛼

5𝛽

(
𝑐
1
sinh {(𝜆/2) 𝜁} + 𝑐

2
cosh {(𝜆/2) 𝜁}

𝑐
1
cosh {(𝜆/2) 𝜁} + 𝑐

2
sinh {(𝜆/2) 𝜁}

) ,

𝜁 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

𝑥 +
16𝛼
2

75𝛽

𝑡,

V
2
(𝑥, 𝑡) = −

2𝛼

5𝛽

−
2𝛼

5𝛽

(
𝑐
1
sinh {(𝜆/2) 𝜁} + 𝑐

2
cosh {(𝜆/2) 𝜁}

𝑐
1
cosh {(𝜆/2) 𝜁} + 𝑐

2
sinh {(𝜆/2) 𝜁}

) ,

𝜁 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

𝑥 +
16𝛼
2

75𝛽

𝑡,

V
3
(𝑥, 𝑡)

= −
2𝛼

5𝛽

+
2𝛼

5𝛽

× (

𝑐
1
sinh {(2𝛼/5𝛽𝑎

1
) 𝜁} + 𝑐

2
cosh {(2𝛼/5𝛽𝑎

1
) 𝜁}

𝑐
1
cosh {(2𝛼/5𝛽𝑎

1
) 𝜁} + 𝑐

2
sinh {(2𝛼/5𝛽𝑎

1
) 𝜁}

) ,

𝜁 = ±√
𝛽

−12𝛿

𝑎
1
𝑥 +

16𝛼
2

75𝛽

𝑡.

(33)
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If we set 𝑐
2
= 0 and write 𝑢(𝑥, 𝑡) = V2(𝑥, 𝑡), then the above

solutions can be written as

𝑢
1
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[−1 ± tanh( 𝛼

5√−3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

,

(34)

𝑢
2
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[1 ± tanh( 𝛼

5√−3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

,

(35)

𝑢
3
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[−1 ± 2 tanh( 𝛼

5√−3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

.

(36)

Note that (35) is exactly the same solution of Khater and
Hassan [35] as given in their first equation of (3.9) with 𝜁

0
= 0.

Similarly we can obtain the second solution of (36) in Hassan
[5] if we set 𝑐

1
= 0 in our solution (35). The solution (35)

represents kink shaped solitary and antikink shaped solitary
solutions (depending upon the choice of sign) which are
shown graphically in Figure 1 for the case 𝑐

1
= 1.

Case 𝐴 < 0: (trigonometric type)

𝑉
1
(𝑥, 𝑡)=−

2𝛼

5𝛽

+
2𝛼𝑖

5𝛽

(
−𝑐
1
sin {(𝑖𝜆/2) 𝜁} + 𝑐

2
cos {(𝑖𝜆/2) 𝜁}

𝑐
1
cos {(𝑖𝜆/2) 𝜁} + 𝑐

2
sin {(𝑖𝜆/2) 𝜁}

) ,

𝜁 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

𝑥 +
16𝛼
2

75𝛽

𝑡,

𝑉
2
(𝑥, 𝑡) = −

2𝛼

5𝛽

−
2𝑖𝛼

5𝛽

× (
−𝑐
1
sin {(𝑖𝜆/2) 𝜁} + 𝑐

2
cos {(𝑖𝜆/2) 𝜁}

𝑐
1
cos {(𝑖𝜆/2) 𝜁} + 𝑐

2
sin {(𝑖𝜆/2) 𝜁}

) ,

𝜁 = ±

2√1/ − 75𝛿𝛽𝛼

𝜆

𝑥 +
16𝛼
2

75𝛽

𝑡,

𝑉
3
(𝑥, 𝑡)

= −
2𝛼

5𝛽

+
2𝑖𝛼

5𝛽

× (

−𝑐
1
sin {(2𝑖𝛼/5𝛽𝑎

1
) 𝜁} + 𝑐

2
cos {(2𝑖𝛼/5𝛽𝑎

1
) 𝜁}

𝑐
1
cos {(2𝑖𝛼/5𝛽𝑎

1
) 𝜁} + 𝑐

2
sin {(2𝑖𝛼/5𝛽𝑎

1
) 𝜁}

) ,

𝜁 = ±√
𝛽

−12𝛿

𝑎
1
𝑥 +

16𝛼
2

75𝛽

𝑡.

(37)

But if 𝑐
2
= 0 and 𝑢(𝑥, 𝑡) = V2(𝑥, 𝑡), then trigonometric

type solution becomes

𝑢
1
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[−1 ± 𝑖 tan( 𝛼

5√3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

,

𝑢
2
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[1 ± 𝑖 tan( 𝛼

5√3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

,

𝑢
3
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[−1 ± 2𝑖 tan( 𝛼

5√3𝛽𝛿

[𝑥 +
16𝛼
2

75𝛽

𝑡])]

2

.

(38)

Case 𝐴 = 0: (rational type)

𝑢
1
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[−1 + 2(

𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

2

,

𝑢
2
(𝑥, 𝑡) =

4𝛼
2

25𝛽
2
[1 + 2(

𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

2

,

𝑢
3
(𝑥, 𝑡) = [

2𝛼

5𝛽

+ 𝑎
1
(

𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

2

.

(39)

As mentioned before, the (𝐺
󸀠
/𝐺)-expansion method

gives more general types of solutions than that found by
Khater and Hassan [35] and Hassan [5].

3.3.TheModified Two-Dimensional KP (Kadomtsev-Petviash-
vili) Equation. The modified KP equation (3) containing a
square root nonlinearity is a very attractive model for the
study of ion-acoustic waves in plasma physic [8]. We will
obtain more general exact solutions of the modified KP
equation. In order to find the traveling wave solution of (3),
we let

V (𝑥, 𝑦, 𝑡) = V (𝜁) , 𝜁 = (𝑥 + 𝑘𝑦 − 𝑐𝑡) . (40)

Now, taking 𝑢(𝑥, 𝑦, 𝑡) = V2(𝑥, 𝑦, 𝑡), (3) becomes

(−𝑐 + 𝛿𝑘
2
) VV󸀠󸀠 + (−𝑐 + 𝛿𝑘2) V󸀠2 + 𝛼V2V󸀠󸀠 + 2𝛼VV󸀠2

+ 𝛽VV󸀠󸀠󸀠󸀠 + 4𝛽V󸀠V󸀠󸀠󸀠 + 3𝛽(V󸀠󸀠)
2

= 0,

(41)

where 𝑘, 𝑐, 𝛽, 𝛿, and 𝛼 are constants and the prime denotes
differentiation with respect to 𝜁. Integrating (41) with respect
to 𝜁 and setting the integration constant equal to zero, we
obtain

(−𝑐 + 𝛿𝑘
2
) VV󸀠 + 𝛼V2V󸀠 + 3𝛽V󸀠V󸀠󸀠 + 𝛽VV󸀠󸀠󸀠 = 0. (42)

Balancing V2V󸀠 with VV󸀠󸀠󸀠 gives𝑚 = 2. Therefore, we can write
the solution of (42) in the form

V (𝜁) = 𝑎
0
+ 𝑎
1
(
𝐺
󸀠

𝐺

) + 𝑎
2
(
𝐺
󸀠

𝐺

)

2

, (43)

where 𝑎
0
, 𝑎
1
, and 𝑎

2
are constants to be determined later.

Substituting (43) along with (8) into (42) and collecting all
terms with the same order of (𝐺󸀠/𝐺), the left hand sides of
(42) are converted into a polynomial in (𝐺󸀠/𝐺). Setting each
coefficient of each polynomial to zero, we derive a set of
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Figure 1: (a) 2D profile of (35): kink shaped solitary (𝑢+, blue line), anti-kink shaped solitary (𝑢−, black line). (b) Corresponding 3D plots
when + sign is taken and when −ve sign is taken, with 𝛼 = 1, 𝛽 = −1, and 𝛿 = 1.

algebraic equations for 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝛿, 𝜆, 𝛼, 𝛽, 𝑐, 𝑘, and 𝜇 as

follows:

(
𝐺
󸀠

𝐺

)

7

: −60𝛽𝑎
2

2
− 2𝛼𝑎

3

2
= 0,

(
𝐺
󸀠

𝐺

)

6

: −2𝛼𝑎
3

2
𝜆 − 5𝛼𝑎

1
𝑎
2

2
− 60𝛽𝑎

1
𝑎
2
− 150𝑎

2

2
𝜆 = 0,

(
𝐺
󸀠

𝐺

)

5

: − 12𝛽𝑎
2

1
− 5𝛼𝑎

1
𝑎
2

2
𝜆 − 124𝛽𝑎

2

2
𝜆
2
− 2𝑘
2
𝛿𝑎
2

2

− 24𝛽𝑎
0
𝑎
2
− 4𝛼𝑎

0
𝑎
2
− 144𝛽𝑎

1
𝑎
2
𝜆 + 2𝑐𝑎

2

2

− 4𝛼𝑎
2

1
𝑎
2
− 2𝛼𝑎

3

2
𝜇 = 0,

(
𝐺
󸀠

𝐺

)

4

: − 196𝛽𝑎
2

2
𝜆𝜇 − 6𝛼𝑎

0
𝑎
1
𝑎
2
− 111𝛽𝑎

1
𝑎
2
𝜆
2

− 4𝛼𝑎
0
𝑎
2

2
𝜆 − 32𝛽𝑎

2

2
𝜆
3
− 𝛼𝑎
3

1
− 2𝑘
2
𝛿𝑎
2

2
𝜆 + 2𝑐𝑎

2

2
𝜆

− 54𝛽𝑎
0
𝑎
2
𝜆 − 5𝛼𝑎

1
𝑎
2

2
𝜇 − 4𝛼𝑎

2

1
𝑎
2
𝜆 + 3𝑐𝑎

1
𝑎
2

− 6𝛽𝑎
0
𝑎
1
− 3𝑘
2
𝛿𝑎
1
𝑎
2
= 0,

(
𝐺
󸀠

𝐺

)

3

: 2𝑐𝑎
0
𝑎
2
− 76𝛽𝑎

2

2
𝜇
2
− 4𝛼𝑎

0
𝑎
2

2
𝜇 − 𝑘
2
𝛿𝑎
2

1

− 27𝛽𝑎
1
𝜆
3
𝑎
2
− 74𝛽𝑎

2

2
𝜆
2
𝜇 + 𝑐𝑎

2

1
− 6𝛼𝑎

0
𝑎
1
𝑎
2
𝜆

+ 3𝑐𝑎
1
𝑎
2
𝜆 − 40𝛽𝑎

0
𝑎
2
𝜇 − 38𝛽𝑎

0
𝑎
2
𝜆
2

− 19𝛽𝑎
2

1
𝜆
2
− 2𝛼𝑎

0
𝑎
2

1
− 4𝛼𝑎

2

1
𝑎
2
𝜇

− 168𝛽𝑎
1
𝑎
2
𝜆𝜇 − 3𝑘

2
𝛿𝑎
1
𝑎
2
𝜆

+ 2𝑐𝑎
2

2
𝜇 − 2𝛼𝑎

2

0
𝑎
2
− 20𝛽𝑎

2

1
𝜇 − 𝛼𝑎

3

1
𝜆

− 12𝛽𝑎
0
𝑎
1
𝜆 − 2𝑘

2
𝛿𝑎
0
𝑎
2
= 0,

(
𝐺
󸀠

𝐺

)

2

: 2𝑐𝑎
0
𝑎
2
𝜆 − 4𝛽𝑎

2

1
𝜆
3
− 8𝛽𝑎

0
𝑎
1
𝜇

− 3𝑘
2
𝛿𝑎
1
𝑎
2
𝜇 − 𝛼𝑎

3

1
𝜇 − 52𝛽𝑎

0
𝑎
2
𝜆𝜇 + 𝑐𝑎

0
𝑎
1

+ 3𝑐𝑎
1
𝑎
2
𝜇 − 6𝛼𝑎

0
𝑎
1
𝑎
2
𝜇 − 𝑘
2
𝛿𝑎
2

1
𝜆

− 60𝛽𝑎
1
𝑎
2
𝜇
2
− 𝛼𝑎
2

0
𝑎
1
− 2𝛼𝑎

0
𝑎
2

1
𝜆

− 2𝑘
3
𝛿𝑎
0
𝑎
2
𝜆 − 2𝛼𝑎

2

0
𝑎
2
𝜆 − 7𝛽𝑎

0
𝑎
1
𝜆
2

− 26𝛽𝑎
2

1
𝜆𝜇 + 𝑐𝑎

2

1
𝜆 − 57𝛽𝑎

1
𝜆
2
𝑎
2
𝜇

− 8𝛽𝑎
0
𝑎
2
𝜆
3
− 𝑘
2
𝛿𝑎
0
𝑎
1
− 54𝛽𝑎

2

2
𝜆𝜇
2
= 0,

(
𝐺
󸀠

𝐺

)

1

: − 2𝛼𝑎
2

0
𝜇 + 2𝑐𝑎

0
𝑎
2
𝜇 − 𝛼𝑎

2

0
𝑎
1
𝜆 − 2𝑘

2
𝛿𝑎
0
𝑎
2
𝜇

− 8𝛽𝑎
2

1
𝜇
2
+ 𝑐𝑎
0
𝑎
1
𝜆 − 16𝛽𝑎

0
𝑎
2
𝜇
2

− 8𝛽𝑎
0
𝑎
1
𝜆𝜇 − 𝛽𝑎

0
𝑎
1
𝜆
3
− 14𝛽𝑎

0
𝑎
2
𝜆
2
𝜇

− 36𝛽𝜆𝜇
2
𝑎
1
𝑎
2
− 12𝛽𝑎

2

2
𝜇
3
− 𝑘
2
𝛿𝑎
0
𝑎
1
𝜆

− 𝑘
2
𝛿𝑎
2

1
𝜇 + 𝑐𝑎

2

1
𝜇 − 2𝛼𝑎

0
𝑎
2

1
𝜇 − 7𝛽𝜇𝜆

2
𝑎
2

1
= 0,
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(
𝐺
󸀠

𝐺

)

0

: − 6𝛽𝜇
3
𝑎
1
𝑎
2
+ 𝑐𝑎
0
𝑎
1
𝜇 − 𝛼𝜇𝑎

2

0
𝑎
1
− 3𝛽𝜆𝜇

2
𝑎
2

1

− 𝛽𝜇𝜆
2
𝑎
0
𝑎
1
− 6𝛽𝜆𝜇

2
𝑎
0
𝑎
2
− 2𝛽𝑎

0
𝑎
1
𝜇
2

− 𝑘
2
𝛿𝜇𝑎
0
𝑎
1
= 0.

(44)

Solving this system by Maple gives two sets of solutions.

Case 1. We have

𝑎
0
=

−30𝛽𝜇

𝛼

, 𝑎
1
=

−30𝛽𝜆

𝛼

, 𝑎
2
=

−30𝛽

𝛼

,

𝑐 = −16𝛽𝜇 + 4𝛽𝜆
2
+ 𝑘
2
𝛿.

(45)

Substituting the above case and the general solution (8) into
(43) and according to (42), we obtain three types of traveling
wave solutions of (3) as follows.

If 𝐴 > 0, we have the hyperbolic type

V (𝑥, 𝑦, 𝑡)

=

−30𝛽𝜇

𝛼

−

30𝛽𝜆

𝛼

× [
−𝜆

2

+

√𝐴

2

× (

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

−

30𝛽

𝛼

[
−𝜆

2

+

√𝐴

2

× (

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

2

.

(46)

In particular, if 𝑐
1

̸= 0, 𝑐
2
= 0, 𝜆 > 0, and 𝜇 = 0, then 𝑢(𝑥, 𝑦, 𝑡)

becomes

𝑢 (𝑥, 𝑦, 𝑡) =

225𝛽
2
𝜆
4

4𝛼
2

sech4 {𝜆
2

𝜁} ,

𝜁 = 𝑥 + 𝑘𝑦 − (4𝛽𝜆
2
+ 𝑘
2
𝛿) 𝑡.

(47)

If 𝐴 < 0, we have the trigonometric type

V (𝑥, 𝑦, 𝑡)

=

−30𝛽𝜇

𝛼

−

30𝛽𝜆

𝛼

× [
−𝜆

2

+

√𝐴

2

× (

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {(√𝐴/2) 𝜁}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

−

30𝛽

𝛼

[
−𝜆

2

+

√𝐴

2

×(

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {(√𝐴/2) 𝜁}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

2

.

(48)

So, the traveling wave solutions of (3) in this case are

𝑢 (𝑥, 𝑦, 𝑡) =

225𝛽
2
𝜆
4

4𝛼
2

sec4 {
√−𝜆
2

2

𝜁} ,

𝜁 = 𝑥 + 𝑘𝑦 − (4𝛽𝜆
2
+ 𝑘
2
𝛿) 𝑡.

(49)

Case 2. We have

𝑎
0
=

−5𝛽 (𝜆
2
+ 2𝜇)

𝛼

, 𝑎
1
=

−30𝛽𝜆

𝛼

, 𝑎
2
=

−30𝛽

𝛼

,

𝑐 = 16𝛽𝜇 − 4𝛽𝜆
2
+ 𝑘
2
𝛿.

(50)

If 𝐴 > 0, we have the hyperbolic type

V (𝑥, 𝑦, 𝑡)

= −

5𝛽 (𝜆
2
+ 2𝜇)

𝛼

−

30𝛽𝜆

𝛼

× [
−𝜆

2

+

√𝐴

2

× (

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

−

30𝛽

𝛼

[
−𝜆

2

+

√𝐴

2

×(

𝑐
1
sinh {(√𝐴/2) 𝜁} + 𝑐

2
cosh {(√𝐴/2) 𝜁}

𝑐
1
cosh {(√𝐴/2) 𝜁} + 𝑐

2
sinh {(√𝐴/2) 𝜁}

)]

2

.

(51)

However, if 𝑐
1

̸= 0, 𝑐
2
= 0, 𝜆 > 0, and 𝜇 = 0, then 𝑢(𝑥, 𝑦, 𝑡)

becomes

𝑢 (𝑥, 𝑦, 𝑡) =

25𝛽
2
𝜆
4

4𝛼
2

[2 − 3sech2 {𝜆
2

𝜁}]

2

,

𝜁 = 𝑥 + 𝑘𝑦 − (−4𝛽𝜆
2
+ 𝑘
2
𝛿) 𝑡.

(52)

If 𝐴 < 0, we have the trigonometric type

V (𝑥, 𝑦, 𝑡)

= −

5𝛽 (𝜆
2
+ 2𝜇)

𝛼

−

30𝛽𝜆

𝛼
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Figure 2: Bell type solitary (a) 2D profile and (b) corresponding 3D plot of (47) for parameters 𝛼 = 2, 𝛽 = 0.4 and 𝛿 = 0.1, 𝜆 = 1, 𝑘 = 1, and
𝑡 = 0.5.

× [
−𝜆

2

+

√𝐴

2

× (

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {(√𝐴/2) 𝜁}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

−

30𝛽

𝛼

[
−𝜆

2

+

√𝐴

2

×(

−𝑐
1
sin {(√𝐴/2) 𝜁} + 𝑐

2
cos {(√𝐴/2) 𝜁}

𝑐
1
cos {(√𝐴/2) 𝜁} + 𝑐

2
sin {(√𝐴/2) 𝜁}

)]

2

.

(53)

In the particular case when 𝑐
1

̸= 0, 𝑐
2
= 0, 𝜆 > 0, and 𝜇 = 0,

𝑢(𝑥, 𝑦, 𝑡) becomes

𝑢 (𝑥, 𝑦, 𝑡) =

25𝛽
2
𝜆
4

4𝛼
2

[2 − 3sec2 {
√−𝜆
2

2

𝜁}]

2

,

𝜁 = 𝑥 + 𝑘𝑦 − (−4𝛽𝜆
2
+ 𝑘
2
𝛿) 𝑡.

(54)

If 𝐴 = 0, we have the rational type

V (𝑥, 𝑦, 𝑡) = −

5𝛽 (𝜆
2
+ 2𝜇)

𝛼

− 30𝑘
2
𝛿𝜆 [−

𝜆

2

+ (
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

− 30𝑘
2
𝛿[−

𝜆

2

+ (
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)]

2

,

(55)

where 𝜁 = 𝑥 + 𝑘𝑦 − (16𝛽𝜇 − 4𝛽𝜆
2
+ 𝑘
2
𝛿)𝑡.

We remark that our results in (47) and (52), when 𝑐
1

̸= 0,
𝑐
2
= 0, 𝜆 > 0, and 𝜇 = 0, match those of Khater et al. [6] (2.19)

when 𝑎 = 1. In Figure 2, we plot the bell type solitary for 2D
profile and the corresponding 3D plot of (47) for parameters
𝛼 = 2, 𝛽 = 0.4 and 𝛿 = 0.1, 𝜆 = 1, 𝑘 = 1, and 𝑡 = 0.5.

4. Conclusion

The (𝐺󸀠/𝐺)-expansion was applied to solve the model of ion-
acoustic waves in plasma physics where these equations each
contain a square root nonlinearity. The (𝐺

󸀠
/𝐺)-expansion

has been successfully used to obtain some exact traveling
wave solutions of the Schamel equation, Schamel-KdV (S-
KdV) equation, and modified KP (Kadomtsev-Petviashvili)
equation. Moreover, the reliability of the method and the
reduction in the size of computational domain give this
method a wider applicability. This fact shows that our
algorithm is effective and more powerful for NLPDE. In
all the general solutions (22), (35), (47), and (52), we have
the additional arbitrary constants 𝑐

1
, 𝑐
2
, 𝜆, and 𝜇. We note

that the special case 𝑐
1

̸= 0, 𝑐
2

= 0, 𝜆 > 0, and 𝜇 = 0

reproduced the results of Khater and Hassan [35], Hassan [5]
and Khater et al. [6]. Many different new forms of traveling
wave solutions such as the kink shaped, antikink shaped, and
bell type solitary solutions were obtained. Finally, numerical
simulations are given to complete the study.

Moreover, all the methods have some limitations in their
applications. In fact, there is no unified method that can
be used to handle all types of nonlinear partial differential
equations (NLPDE). Certainly, each investigator in the field
of differential equations has his own experience to choose
the method depending on form of the nonlinear differential
equation and the pole of its solution. So, the limitations of
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the (𝐺
󸀠
/𝐺)-expansion method used a rise only when the

equation has the traveling wave and becomes powerful in
finding traveling wave solutions of NLPDE only.

In our future works, we can extend our method by
introducing a more generalized ansätz 𝐺󸀠2 = 𝑑

2
𝐺
2
+ 𝑑
3
𝐺
3
+

𝑑
4
𝐺
4, where 𝐺 = 𝐺(𝜁), to solve Schamel equation, Schamel-

KdV (S-KdV) equation, and modified Kadomtsev-Petviash-
vili (KP) equation.
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