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We investigate the existence of solutions and positive solutions for a nonlinear fourth-order differential equation with inte-
gral boundary conditions of the form 𝑥

(4)
(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥

󸀠
(𝑡), 𝑥
󸀠󸀠
(𝑡), 𝑥
󸀠󸀠󸀠
(𝑡)), 𝑡 ∈ [0, 1], 𝑥(0) = 𝑥

󸀠
(1) = 0, 𝑥󸀠󸀠(0) = ∫

1

0
ℎ(𝑠, 𝑥(𝑠),

𝑥
󸀠
(𝑠), 𝑥
󸀠󸀠
(𝑠))d𝑠, 𝑥󸀠󸀠󸀠(1) = 0, where 𝑓 ∈ 𝐶([0, 1] × R4), ℎ ∈ 𝐶([0, 1] × R3). By using a fixed point theorem due to D. O’Regan, the

existence of solutions and positive solutions for the previous boundary value problems is obtained. Meanwhile, as applications,
some examples are given to illustrate our results.

1. Introduction

It is well known that fourth-order boundary value problems
(BVPs) arise in a variety of different areas of the flexibility
mechanics and engineering physics and thus have been exten-
sively studied; for instance, see [1–29] and references therein.
Boundary value problems with integral boundary conditions
appear in heat conduction, thermoelasticity, chemical engi-
neering underground water flow, and plasma physics; see [12,
14, 21, 24, 26, 29] and references therein.

Motivated by the previous works and [30], in this paper,
we consider fully nonlinear fourth-order differential equation

𝑥
(4)

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡) , 𝑥
󸀠󸀠
(𝑡) , 𝑥
󸀠󸀠󸀠

(𝑡)) , 𝑡 ∈ [0, 1] ,

(1)

subject to the integral boundary conditions

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) = ∫

1

0

ℎ (𝑠, 𝑥 (𝑠) , 𝑥
󸀠
(𝑠) , 𝑥
󸀠󸀠
(𝑠)) d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0,

(2)

as well as its simplified form

𝑥
(4)

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] , (3)

with the integral boundary conditions

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) = ∫

1

0

ℎ (𝑠, 𝑥 (𝑠)) d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0,

(4)

where 𝑓 and ℎ are continuous functions.
We notice that if ℎ ≡ 0 in problems (1), (2) and (3), (4),

then the models are known as the one endpoint simply sup-
ported and the other one sliding clamped beam.The study of
this class of problems was considered by some authors via
various methods; we refer the reader to the papers [2, 5, 8,
11, 22].

The aim of this paper is to establish the existence results
of solutions and positive solutions for problems (1), (2) and
(3), (4), respectively. By positive solution, we mean a solution
𝑥(𝑡) such that 𝑥(𝑡) > 0 for 𝑡 ∈ (0, 1]. Our main tool is the
fixed point theorem due to D. O’Regan [31].

2. Preliminary

In this section, we present some lemmaswhich are needed for
our main results.
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Let𝐶[0, 1] denote the Banach space of real-valued contin-
uous functions on [0, 1]with the norm ||𝑥||0 :=max𝑡∈[0,1]|𝑥(𝑡)|.
𝐶
𝑛
[0, 1] is the Banach space of 𝑛 times continuously differ-

entiable functions defined on [0, 1], with the norm ||𝑥||𝐶𝑛 :=

max{||𝑥(𝑖)||0, 𝑖 = 0, 1, . . . , 𝑛}.
Throughout this paper, we always assume that 𝑓 : [0, 1] ×

R4→R = (−∞, +∞) (or [0, 1]×R→R) and ℎ : [0, 1]×R3→R

(or [0, 1]×R→R) are continuous.
We consider a priori bound of solutions of the following

one-parameter family of boundary value problem:

𝑥
(4)

(𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡) , 𝑥
󸀠󸀠
(𝑡) , 𝑥
󸀠󸀠󸀠

(𝑡)) , 𝑡 ∈ [0, 1] ,

(5)

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) = 𝜆∫

1

0

ℎ (𝑠, 𝑥 (𝑠) , 𝑥
󸀠
(𝑠) , 𝑥
󸀠󸀠
(𝑠)) d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0,

(6)

where 0 ≤ 𝜆 ≤ 1. Simple computations lead to the following
lemma.

Lemma 1. BVP (5), (6)with 𝜆 = 0 has only the trivial solution,
and the corresponding Green function𝐺(𝑡, 𝑠) exists and is given
by

𝐺 (𝑡, 𝑠) =

{
{
{
{

{
{
{
{

{

(𝑠 −

1

2

𝑠
2
) 𝑡 −

𝑡
3

6

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

(𝑠 −

1

2

𝑠
2
) 𝑡 −

𝑡
3

6

+

1

6

(𝑡 − 𝑠)
3
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(7)

Now, define a linear operator 𝐿 : 𝐶
4
[0, 1] → 𝐶[0, 1]×R4

by

(𝐿𝑥) (𝑡) = (𝑥
(4)

(𝑡) , 𝑥 (0) , 𝑥
󸀠
(1) , 𝑥

󸀠󸀠
(0) , 𝑥

󸀠󸀠󸀠
(1)) ,

𝑡 ∈ [0, 1] .

(8)

Then, we can easily show that 𝐿 is a Fredholm operator with
index zero, and its inverse 𝐿−1 : 𝐶[0, 1]×R4→𝐶

4
[0, 1] is given

by

𝐿
−1

(𝑦, 𝑎, 𝑏, 𝑐, 𝑑) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) d𝑠 + 𝑎 + 𝑏𝑡 + 𝑐𝑔 (𝑡)

+ d(

1

6

𝑡
3
−

1

2

𝑡) , 𝑡 ∈ [0, 1] ,

(9)

where 𝑔(𝑡) = (1/2)𝑡
2
− 𝑡.

DefineNemytskii operators𝐹 : 𝐶
3
[0, 1]→𝐶[0, 1] induced

by 𝑓 as

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡) , 𝑥
󸀠󸀠
(𝑡) , 𝑥
󸀠󸀠󸀠

(𝑡)) , 𝑡 ∈ [0, 1] ,

(10)

and𝐻 : 𝐶
3
[0, 1] → 𝐶[0, 1] induced by ℎ as

(𝐻𝑥) (𝑡) = ℎ (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡) , 𝑥
󸀠󸀠
(𝑡)) , 𝑡 ∈ [0, 1] . (11)

Also, define an operator 𝑇 : 𝐶
3
[0, 1] → 𝐶[0, 1] ×R4 as

(𝑇𝑥) (𝑡) = ((𝐹𝑥) (𝑡) , 0, 0, ∫

1

0

(𝐻𝑥) (𝑠) d𝑠, 0) . (12)

Simple computations yield the following lemma.

Lemma 2. BVP (5), (6) is equivalent to the abstract equation

𝑥 = 𝜆𝐿
−1

𝑇𝑥 (13)

in 𝐶
3
[0, 1]; that is, 𝑥 ∈ 𝐶

4
[0, 1] is a solution of BVP (5), (6) if

and only if 𝑥 ∈ 𝐶
3
[0, 1] is a solution of the integral equation

𝑥 (𝑡) = 𝜆 [∫

1

0

𝐺 (𝑡, 𝑠) (𝐹𝑥) (𝑠) d𝑠 + ∫

1

0

𝜑 (𝑡, 𝑥 (𝑠)) d𝑠] , (14)

where 𝜑(𝑡, 𝑥(𝑠)) = 𝑔(𝑡)(𝐻𝑥)(𝑠).

Let us denote the operators 𝑃1, 𝑃2 as

(𝑃1𝑥) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) (𝐹𝑥) (𝑠) d𝑠, (15)

(𝑃2𝑥) (𝑡) = ∫

1

0

𝜑 (𝑡, 𝑥 (𝑠)) d𝑠. (16)

Then, 𝐿−1𝑇 can be written as

𝐿
−1

𝑇 = 𝑃1 + 𝑃2. (17)

Now, we can easily give some properties of the Green
function 𝐺(𝑡, 𝑠) and 𝑔(𝑡) by direct computation.

Lemma 3. Let𝐺(𝑡, 𝑠) be as in Lemma 1 and 𝑔(𝑡) = (1/2)𝑡
2
−𝑡.

Then,

(1) 0 ≤ 𝐺(𝑡, 𝑠) ≤ max0≤𝑡,𝑠≤1𝐺(𝑡, 𝑠) = 1/3, 𝑡, 𝑠 ∈ [0, 1];

0 ≤ (

𝜕

𝜕𝑡

)𝐺 (𝑡, 𝑠)

=

{

{

{

𝑠 − (

1

2

) 𝑠
2
− (

1

2

) 𝑡
2
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

𝑠 − 𝑡𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;

(18)

0 ≥ (

𝜕
2

𝜕𝑡
2
)𝐺 (𝑡, 𝑠)

= {

−𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

−𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;

(19)

(2) 𝑔(𝑡) ≤ 0, 𝑔󸀠(𝑡) ≤ 0, 𝑔󸀠󸀠(𝑡) = 1, 𝑔󸀠󸀠󸀠(𝑡) = 0, 𝑡 ∈ [0, 1];
(3) ||𝑔||0 = 1/2, ||𝑔󸀠||0 = 1, ||𝑔󸀠󸀠||0 = 1, ||𝑔󸀠󸀠󸀠||0 = 0,

||𝑔||𝐶3 = 1.
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Lemma 4. Suppose that

(i) for each fixed (𝑡, 𝑥2, 𝑥3) ∈ [0, 1] × R2, 𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2,

𝑥3) is nondecreasing in 𝑥0 and 𝑥1;

(ii) there exists a constant 𝑀 > 0 such that for |𝑥| > 𝑀,
𝑡 ∈ [0, 1],

𝑥𝑓 (𝑡, −𝑥, −𝑥, 𝑥, 0) > 0; (20)

(iii) there exist 𝛽 ∈ (0, 1) and nondecreasing continuous
function 𝜎 : [0, +∞) → [0, +∞) such that 𝜎(𝑢) ≤ 𝛽𝑢

for 𝑢 > 0, and

󵄨
󵄨
󵄨
󵄨
ℎ (𝑡, 𝑥0, 𝑥1, 𝑥2) − ℎ (𝑡, 𝑦0, 𝑦1, 𝑦2)

󵄨
󵄨
󵄨
󵄨

≤ 𝜎 (max {
󵄨
󵄨
󵄨
󵄨
𝑥𝑖 − 𝑦𝑖

󵄨
󵄨
󵄨
󵄨
, 𝑖 = 0, 1, 2})

(21)

for all (𝑡, 𝑥0, 𝑥1, 𝑥2), (𝑡, 𝑦0, 𝑦1, 𝑦2) ∈ [0, 1] ×R3.

Then, any solution 𝑥 = 𝑥(𝑡) of BVP (5), (6) satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(𝑖)

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 + 𝑟, 𝑖 = 0, 1, 2, 𝑡 ∈ [0, 1] , (22)

where 𝑟 = (1 − 𝛽)
−1

||ℎ(⋅, 0, 0, 0)||0.

Proof. Let us first show that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 + 𝑟, ∀𝑡 ∈ [0, 1] . (23)

Note that if 𝜆 = 0 in (5) and (6), then BVP (5), (6) has only the
trivial solution, and thus (23) holds. Hence, we may assume
that 𝜆 ∈ [0, 1]. Suppose now that (23) is not true. Then, there
exists 𝑡0 ∈ [0, 1] such that |𝑥󸀠󸀠(𝑡0)| > 𝑀 + 𝑟. Let

𝐾 :=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠
(𝑡1)

󵄨
󵄨
󵄨
󵄨
󵄨
= max
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
. (24)

Then,𝐾 > 𝑀 + 𝑟, and from 𝑥(0) = 𝑥
󸀠
(1) = 0, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(𝑖)

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐾, 𝑖 = 0, 1, ∀𝑡 ∈ [0, 1] . (25)

It is easy to see that 𝑡1 ∈ [0, 1]. In fact, if 𝑡1 = 0, then |𝑥
󸀠󸀠
(0)| =

𝐾. From (6) and (iii), it follows that for some 𝜁 ∈ [0, 1],

𝐾 =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

ℎ (𝑠, 𝑥 (𝑠) , 𝑥
󸀠
(𝑠) , 𝑥
󸀠󸀠
(𝑠)) d𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ (𝜁, 𝑥 (𝜁) , 𝑥

󸀠
(𝜁) , 𝑥

󸀠󸀠
(𝜁))

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ (𝜁, 𝑥 (𝜁) , 𝑥

󸀠
(𝜁) , 𝑥

󸀠󸀠
(𝜁)) − ℎ (𝜁, 0, 0, 0)

󵄨
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
ℎ (𝜁, 0, 0, 0)

󵄨
󵄨
󵄨
󵄨

≤ 𝛽𝐾 + (1 − 𝛽) 𝑟

< 𝛽𝐾 + (1 − 𝛽)𝐾 = 𝐾,

(26)

which is a contradiction, and thus 𝑡1 ∈ (0, 1]. Furthermore,
by definition of 𝑡1 and (6), we have 𝑥

󸀠󸀠󸀠
(𝑡1) = 0. Hence, from

assumptions (i) and (ii) and (25), we have

𝑥
󸀠󸀠
(𝑡1) 𝑥
(4)

(𝑡1) = 𝜆𝑥
󸀠󸀠
(𝑡1) 𝑓 (𝑡1, 𝑥 (𝑡1) , 𝑥

󸀠
(𝑡1) , 𝑥

󸀠󸀠
(𝑡1) , 0)

≥ 𝜆𝑥
󸀠󸀠
(𝑡1) 𝑓 (𝑡1, −𝑥

󸀠󸀠
(𝑡1) , −𝑥

󸀠󸀠
(𝑡1) ,

𝑥
󸀠󸀠
(𝑡1) , 0) > 0.

(27)

We may assume that 𝑥󸀠󸀠(𝑡1) > 0; then, 𝑥(4)(𝑡1) > 0. Thus, by
the continuity of 𝑥(4)(𝑡) on [0, 1], there exists 𝛿 > 0 such that
𝑥
(4)

(𝑡) > 0 for 𝑡 ∈ (𝑡1 − 𝛿, 𝑡1] ⊂ [0, 1]. Since 𝑥
󸀠󸀠󸀠
(𝑡1) = 0,

it follows that 𝑥󸀠󸀠󸀠(𝑡) < 0 for 𝑡 ∈ (𝑡1 − 𝛿, 𝑡1]; namely, 𝑥󸀠󸀠(𝑡) is
decreasing on (𝑡1−𝛿, 𝑡1], which contradicts the fact that 𝑥

󸀠󸀠
(𝑡)

attains its positive maximum value at 𝑡 = 𝑡1. In summary,
inequality (23) is true, which implies from 𝑥(0) = 𝑥

󸀠
(1) = 0

that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(𝑖)

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 + 𝑟, 𝑖 = 0, 1, 𝑡 ∈ [0, 1] . (28)

This completes the proof of the lemma.

Remark 5. In Lemma 4, if condition (i) is replaced by
(i󸀠), there exists a constant 𝑀 > 0 such that whenever

|𝑥2| > 𝑀 and all (𝑡, 𝑥0, 𝑥1) ∈ [0, 1] ×R2,

𝑥2𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 0) > 0; (29)

then, the conclusion of Lemma 4 remains true.

The following fixed point result due to D. O’Regan plays
a crucial role.

Lemma 6 (see [31]). Let 𝑈 be an open set in a closed, convex
set𝐶 of a Banach space𝐸. Assume that 0 ∈ 𝑈,𝑃(𝑈) is bounded,
and 𝑃 : 𝑈 → 𝐶 is given by 𝑃 = 𝑃1 + 𝑃2, where 𝑃1 : 𝑈 → 𝐸 is
continuous and completely continuous and 𝑃2 : 𝑈 → 𝐸 is a
nonlinear contraction. Then, either

(A1) 𝑃 has a fixed point in 𝑈, or
(A2) there is a point 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑃(𝑢).

3. Main Results

Firstly in this section, we state and prove our existence results
of solutions for BVP (1), (2).

Theorem 7. Suppose that

(i) for each fixed (𝑡, 𝑥2, 𝑥3) ∈ [0, 1] × R2, 𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2,

𝑥3) is nondecreasing in 𝑥0 and 𝑥1;
(ii) there exists a constant 𝑀 > 0 such that for |𝑥| > 𝑀,

𝑡 ∈ [0, 1],

𝑥𝑓 (𝑡, −𝑥, −𝑥, 𝑥, 0) > 0; (30)
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(iii) there exist 𝛽 ∈ (0, 1) and nondecreasing continuous
function 𝜎 : [0, +∞) → [0, +∞) such that 𝜎(𝑢) ≤ 𝛽𝑢

for 𝑢 > 0, and

󵄨
󵄨
󵄨
󵄨
ℎ (𝑡, 𝑥0, 𝑥1, 𝑥2) − ℎ (𝑡, 𝑦0, 𝑦1, 𝑦2)

󵄨
󵄨
󵄨
󵄨

≤ 𝜎 (max {
󵄨
󵄨
󵄨
󵄨
𝑥𝑖 − 𝑦𝑖

󵄨
󵄨
󵄨
󵄨
, 𝑖 = 0, 1, 2})

(31)

for all (𝑡, 𝑥0, 𝑥1, 𝑥2), (𝑡, 𝑦0, 𝑦1, 𝑦2) ∈ [0, 1] ×R3;
(iv) 𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) satisfies the Nagumo condition; that

is, there exists a positive-valued continuous function
Φ(𝑠) on [0, +∞) with ∫

+∞

0
(𝑠d𝑠/Φ(𝑠)) = +∞ such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)

󵄨
󵄨
󵄨
󵄨
≤ Φ (

󵄨
󵄨
󵄨
󵄨
𝑥3

󵄨
󵄨
󵄨
󵄨
) (32)

for all (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ [0, 1]×[−𝑀−𝑟,𝑀+𝑟]
3
×R,

where

𝑟 = (1 − 𝛽)
−1

‖ℎ (⋅, 0, 0, 0)‖0.
(33)

Then, BVP (1), (2) has at least one solution.

Proof. Let 𝑥 be a possible solution of BVP (5), (6). We now
show that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑁, 𝑡 ∈ [0, 1] , (34)

where𝑁 := max{𝑁0, 2(𝑀+ 𝑟)} and ∫

𝑁
0

𝑀+𝑟
(𝑠d𝑠/Φ(𝑠)) = 2(𝑀+

𝑟) + 1.
Suppose that (34) is not true.Then, there exists 𝑡1 ∈ [0, 1)

such that |𝑥󸀠󸀠󸀠(𝑡1)| > 𝑁. Since 𝑥
󸀠󸀠󸀠
(1) = 0, then there exists 𝜉,

𝜂 (𝑡1 < 𝜉 < 𝜂 < 1) such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝑁,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝜂)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝑀 + 𝑟,

𝑀 + 𝑟 <

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑁, ∀𝑡 ∈ (𝜉, 𝜂) .

(35)

Therefore, 𝑥
󸀠󸀠󸀠
(𝑡) is positive or negative on (𝜉, 𝜂) by the

continuity of the 𝑥
󸀠󸀠󸀠
(𝑡). Hence, from assumption (iv), the

definition of 𝑁, and Lemma 4, we can get the following
contradiction:

2 (𝑀 + 𝑟) + 1 = ∫

𝑁
0

𝑀+𝑟

𝑠d𝑠
Φ (𝑠)

≤ ∫

𝑁

𝑀+𝑟

𝑠d𝑠
Φ (𝑠)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉

𝜂

𝑥
󸀠󸀠󸀠

(𝑡) 𝑥
(4)

(𝑡) d𝑡
Φ (

󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝑡)
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝜂

𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
d𝑡 =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠󸀠
(𝜂) − 𝑥

󸀠󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2 (𝑀 + 𝑟) .

(36)

Therefore, inequality (34) holds.
Let Ω := {𝑥 ∈ 𝐶

3
[0, 1] : ||𝑥||𝐶3 < 𝑁 + 1 =: 𝑅}. It follows

easily from the properties of the Green function and the con-
tinuity of𝑓 that the operator𝑃1 : Ω → 𝐶

3
[0, 1] is completely

continuous.

We now show that 𝑃2 : Ω → 𝐶
3
[0, 1] is a nonlinear con-

traction. In fact, from assumption (iii), we have
󵄨
󵄨
󵄨
󵄨
(𝐻𝑥) (𝑡) − (𝐻𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝜎 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

) ,

𝑡 ∈ [0, 1] , ∀𝑥, 𝑦 ∈ 𝐶
3
[0, 1] .

(37)

Consequently, from Lemma 3, we have
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡, 𝑥 (𝑠)) − 𝜑 (𝑡, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡) (𝐻𝑥) (𝑠) − 𝑔 (𝑡) (𝐻𝑦) (𝑠)

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩0
𝜎 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

)

≤

1

2

𝛽
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

, 𝑡, 𝑠 ∈ [0, 1] ,

∀𝑥, 𝑦 ∈ 𝐶
3
[0, 1] .

(38)

Similarly, for all 𝑥, 𝑦 ∈ 𝐶
3
[0, 1],

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝜑 (𝑡, 𝑥 (𝑠))

𝜕𝑡

−

𝜕𝜑 (𝑡, 𝑦 (𝑠))

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󵄩󵄩
󵄩
󵄩
󵄩0
𝜎 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

)

≤ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

, 𝑡, 𝑠 ∈ [0, 1] ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
2
𝜑 (𝑡, 𝑥 (𝑠))

𝜕𝑡
2

−

𝜕
2
𝜑 (𝑡, 𝑦 (𝑠))

𝜕𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩0
𝜎 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

)

≤ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

, 𝑡, 𝑠 ∈ [0, 1] ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
3
𝜑 (𝑡, 𝑥 (𝑠))

𝜕𝑡
3

−

𝜕
3
𝜑 (𝑡, 𝑦 (𝑠))

𝜕𝑡
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, 𝑡, 𝑠 ∈ [0, 1] .

(39)

Hence,
󵄩
󵄩
󵄩
󵄩
𝑃2𝑥 − 𝑃2𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

= max {

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑃2𝑥)
(𝑖)

− (𝑃2𝑦)
(𝑖)󵄩󵄩
󵄩
󵄩
󵄩
󵄩0
, 𝑖 = 0, 1, 2, 3}

≤ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶3

, ∀𝑥, 𝑦 ∈ 𝐶
3
[0, 1] .

(40)

Since all possible solutions of BVP (5), (6) satisfy ||𝑥||𝐶3 ≤

𝑁 < 𝑅, it follows that there is no 𝑥 ∈ 𝜕Ω and 𝜆 ∈ (0, 1) such
that 𝑥 = 𝜆𝐿

−1
𝑇𝑥.We conclude that (A2) of Lemma 6 does not

hold. Consequently, 𝐿−1𝑇 = 𝑃1 + 𝑃2 has a fixed point, which
is a solution of BVP (1), (2). This completes the proof of the
theorem.

Remark 8. In Theorem 7, if condition (i) is replaced by
(i󸀠) there exists a constant 𝑀 > 0 such that whenever

|𝑥2| > 𝑀 and all (𝑡, 𝑥0, 𝑥1) ∈ [0, 1] ×R2,

𝑥2𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 0) > 0, (41)

then the conclusion of Theorem 7 remains true.

Remark 9. In Theorem 7, if 𝑓 ≥ 0 ≥ ℎ and 𝑓(𝑡, 0, 0, 0, 0) ̸≡ 0,
then all the solutions of BVP (1), (2) are monotone and posi-
tive.This is clear because by Lemma 3wehave𝑥 = 𝑃1𝑥+𝑃2𝑥 ≥

0, 𝑥󸀠 = (𝑃1𝑥)
󸀠
+ (𝑃2𝑥)

󸀠
≥ 0 and 𝑥

󸀠󸀠
= (𝑃1𝑥)

󸀠󸀠
+ (𝑃2𝑥)

󸀠󸀠
≤ 0.

Next, we consider the existence of solutions and positive
solutions for BVP (3), (4).
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Theorem 10. Suppose that

(i) there exists Ψ : [0, +∞) → [0, +∞) being continuous
and nondecreasing such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ Ψ (|𝑥|) , ∀ (𝑡, 𝑥) ∈ [0, 1] ×R; (42)

(ii) there exists 𝛽 ∈ (0, 2) such that
󵄨
󵄨
󵄨
󵄨
ℎ (𝑡, 𝑥) − ℎ (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝛽
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, ∀ (𝑡, 𝑥, 𝑦) ∈ [0, 1] ×R

2
;

(43)

(iii) there exists 𝛾 > 0 such that

Ψ (𝛾) + (3/2) ℎ0

𝛾

< 3 (1 −

1

2

𝛽) , (44)

where ℎ0 = max0≤𝑡≤1|ℎ(𝑡, 0)|.

Then, BVP (3), (4) has at least one solution.

Proof. It is easy to see that 𝑥 ∈ 𝐶
4
[0, 1] is a solution of BVP

(3), (4) if and only if 𝑥 ∈ 𝐶[0, 1] is a solution of the integral
equation (14) with 𝜆 = 1. Moreover, 𝑃1 is completely contin-
uous, and 𝑃2 is a nonlinear contraction.

It follows from (15), (i), and Lemma 3 that ∀𝑥 ∈ 𝐶[0, 1],

󵄨
󵄨
󵄨
󵄨
(𝑃1𝑥) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ ∫

1

0

𝐺 (𝑡, 𝑠) Ψ (|𝑥 (𝑠)|) d𝑠

≤

1

3

Ψ (‖𝑥‖0) , 𝑡 ∈ [0, 1] .

(45)

Also, (16), (ii), and Lemma 3 yield

󵄨
󵄨
󵄨
󵄨
(𝑃2𝑥) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡) (𝐻𝑥) (𝑠)

󵄨
󵄨
󵄨
󵄨
d𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩0

∫

1

0

(|ℎ (𝑠, 𝑥 (𝑠)) − ℎ (𝑠, 0)| + |ℎ (𝑠, 0)|) d𝑠

≤

1

2

(𝛽‖𝑥‖0 + ℎ0) , ∀𝑥 ∈ 𝐶 [0, 1] , 𝑡 ∈ [0, 1] .

(46)

From (14), (45), and (46), we have that all possible solutions
of 𝑥 = 𝜆(𝑃1 + 𝑃2)𝑥 satisfy

|𝑥 (𝑡)| ≤

1

3

Ψ (‖𝑥‖0) +
1

2

(𝛽‖𝑥‖0 + ℎ0) , 𝑡 ∈ [0, 1] . (47)

Let Ω := {𝑥 ∈ 𝐶[0, 1] : ||𝑥||0 < 𝛾}. Then, Ω is open in
𝐶[0, 1], 0 ∈ Ω, and (𝑃1 + 𝑃2)(Ω) is bounded. Suppose that
𝑥 ∈ 𝜕Ω and 𝜆 ∈ (0, 1) satisfy 𝑥 = 𝜆(𝑃1+𝑃2)𝑥.Then, ||𝑥||0 = 𝛾,
and (i) and (47) lead to

𝛾 ≤

1

3

Ψ (𝛾) +

1

2

(𝛽𝛾 + ℎ0) ; (48)

that is,

Ψ (𝛾) + (3/2) ℎ0

𝛾

≥ 3 (1 −

1

2

𝛽) , (49)

which contradicts (iii). Hence, (A2) of Lemma 6 does not
hold, and consequently 𝐿−1𝑇 = 𝑃1+𝑃2 has a fixed point which
is a solution of BVP (3), (4). This completes the proof of the
theorem.

Remark 11. InTheorem 10, if 𝑓 ≥ 0 ≥ ℎ and 𝑓(𝑡, 0) ̸≡ 0, then
all the solutions of BVP (3), (4) are monotone and positive.

Now, we consider BVP (3), (4) with linear boundary con-
ditions as

ℎ (𝑡, 𝑥 (𝑡)) = 𝑙 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ [0, 1] , (50)

where 𝑙(⋅) ∈ 𝐶[0, 1]. Define

𝐾 (𝑡, 𝑠) = 𝑔 (𝑡) 𝑙 (𝑠) , (𝑡, 𝑠) ∈ [0, 1] × [0, 1] . (51)

Then,

(𝑃2𝑥) (𝑡) = ∫

1

0

𝐾 (𝑡, 𝑠) 𝑥 (𝑠) d𝑠. (52)

Theorem 12. Suppose that

(i) 𝐾0 := (1/2) ∫

1

0
|𝑙(𝑠)|d𝑠 < 1;

(ii) there exists Ψ : [0, +∞) → [0, +∞) being continuous
and nondecreasing such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ Ψ (|𝑥|) , ∀ (𝑡, 𝑥) ∈ [0, 1] ×R,

lim sup
𝜌→+∞

Ψ (𝜌)

𝜌

< 3 (1 − 𝐾0) .

(53)

Then, the nonlinear fourth-order differential equation (3) with
boundary conditions

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) = ∫

1

0

𝑙 (𝑠) 𝑥 (𝑠) d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0

(54)

has at least one solution.

Proof. Notice that the existence of solutions of BVP (3), (54)
is equivalent to the existence of fixed points of operator equa-
tion

𝑥 = 𝑃1𝑥 + 𝑃2𝑥. (55)

As a linear operator on 𝐶[0, 1], from (52) and (i), we get
||𝑃2|| = 𝐾0 < 1, which implies that 𝐼 − 𝑃2 is invertible and its
inverse is given by

(𝐼 − 𝑃2)
−1

=

∞

∑

𝑛=0

𝑃
𝑛

2 with 󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑃2)

−1󵄩󵄩
󵄩
󵄩
󵄩
≤

1

1 − 𝐾0

. (56)

Hence, we see from (55) that 𝑥 is a solution of BVP (3), (54)
if and only if 𝑥 is a fixed point of the completely continuous
operator 𝑆 = (𝐼 − 𝑃2)

−1
𝑃1.
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Let us show that there exists 𝜌∗ > 0 such that any solution
𝑥 of operator equation𝑥 = 𝜆𝑆𝑥 (𝜆 ∈ (0, 1)) satisfies ||𝑥||0 < 𝜌

∗.
In fact, any solution 𝑥 of 𝑥 = 𝜆𝑆𝑥 (𝜆 ∈ (0, 1)) satisfies

𝑥 (𝑡) = 𝜆(𝐼 − 𝑃2)
−1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) d𝑠, (57)

and, hence, by (ii) and Lemma 3, we have

‖𝑥‖0 ≤
1

3 (1 − 𝐾0)
Ψ (‖𝑥‖0) . (58)

The condition lim sup𝜌→+∞(Ψ(𝜌)/𝜌) < 3(1−𝐾0) implies that
there exists 𝜌

∗
> 0 such that (Ψ(𝜌)/𝜌) < 3(1 − 𝐾0) for all

𝜌 ≥ 𝜌
∗; that is,

𝜌 >

1

3 (1 − 𝐾0)
Ψ (𝜌) , ∀𝜌 ≥ 𝜌

∗
. (59)

Comparing (58) and (59), we see that ||𝑥||0 < 𝜌
∗.

Now, let Ω = {𝑥 ∈ 𝐶[0, 1] : ||𝑥||0 < 𝜌
∗
}. By the Leray-

Schauder continuation theorem 𝑆 has a fixed point in Ω,
which is a solution of BVP (3), (54). This completes the proof
of the theorem.

Remark 13. InTheorem 12, if 𝑓 ≥ 0 ≥ 𝑙 and 𝑓(𝑡, 0) ̸≡ 0, then
all the solutions of BVP (3), (54) are monotone and positive
since all the solutions of BVP (3), (54) satisfy

𝑥 (𝑡) = (

∞

∑

𝑛=0

𝑃
𝑛

2)∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) d𝑠 ≥ 0 on [0, 1] ,

(60)
and thus

𝑥
󸀠
= (𝑃1𝑥)

󸀠
+ (𝑃2𝑥)

󸀠
≥ 0, 𝑥

󸀠󸀠
= (𝑃1𝑥)

󸀠󸀠
+ (𝑃2𝑥)

󸀠󸀠
≤ 0.

(61)
Finally, we give some examples to illustrate our results.

Example 14. Consider the fourth-order boundary value prob-
lem

𝑥
(4)

(𝑡) = 𝑡
2
(𝑥 (𝑡))

3
+

1

2

(𝑥
󸀠
(𝑡))

5

+ 𝑥
󸀠󸀠
(𝑡) 𝑒
(𝑥
󸀠󸀠

(𝑡))
2

+ (𝑥
󸀠󸀠󸀠

(𝑡))

2
, 𝑡 ∈ [0, 1] ,

(62)

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) =

1

2

∫

1

0

√1 + (𝑥
󸀠󸀠
(𝑠))
2d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0.

(63)

Let

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑡
2
𝑥
3

0 +
1

2

𝑥
5

1 + 𝑥2𝑒
𝑥
2

2
+ 𝑥
2

3

on [0, 1] ×R
4
,

ℎ (𝑡, 𝑥0, 𝑥1, 𝑥2) =

1

2

√1 + 𝑥
2
2 on [0, 1] ×R

3
,

𝜎 (𝑢) =

1

2

𝑢 on [0, +∞) .

(64)

It is easy to check that all the assumptions in Theorem 7 are
satisfied. Hence, BVP (62), (63) has at least one solution.

Example 15. Consider the fourth-order boundary value prob-
lem

𝑥
(4)

(𝑡) = 𝑞 (𝑡) (𝑥(𝑡))
2
+ 1, 𝑡 ∈ [0, 1] , (65)

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) =

3

2

∫

1

0

ln 1

1 + (𝑥 (𝑠))
2
d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0,

(66)

where 𝑞(𝑡) ∈ 𝐶([0, 1], [0, (1/8)]).
Let

𝑓 (𝑡, 𝑥) = 𝑞 (𝑡) 𝑥
2
+ 1 on [0, 1] ×R,

ℎ (𝑡, 𝑥) =

3

2

ln 1

1 + 𝑥
2

on [0, 1] ×R,

Ψ (𝑥) =

1

8

𝑥
2
+ 1 on [0, +∞) ,

𝛽 =

3

2

, 𝛾 = 3.

(67)

It is easy to check that all the assumptions inTheorem 10 and
Remark 11 are satisfied. Hence, BVP (65), (66) has at least one
monotone positive solution.

Example 16. Consider the fourth-order boundary value prob-
lem

𝑥
(4)

(𝑡) = 𝑞 (𝑡)

3

√(𝑥 (𝑡))
2
+ 1, 𝑡 ∈ [0, 1] ,

(68)

𝑥 (0) = 𝑥
󸀠
(1) = 0,

𝑥
󸀠󸀠
(0) = ∫

1

0

(𝑠
2
− 4𝑠) 𝑥 (𝑠) d𝑠,

𝑥
󸀠󸀠󸀠

(1) = 0,

(69)

where 𝑞(𝑡) ∈ 𝐶([0, 1], [0, +∞)).
Let

𝑓 (𝑡, 𝑥) = 𝑞 (𝑡)

3

√𝑥
2
+ 1 on [0, 1] ×R,

Ψ (𝑥) = (max
𝑡∈[0,1]

𝑞 (𝑡))

3

√𝑥
2
+ 1 on [0, +∞) ,

𝑙 (𝑡) = 𝑡
2
− 4𝑡 on [0, 1] .

(70)

It is easy to check that all the assumptions inTheorem 12 and
Remark 13 are satisfied. Hence, BVP (68), (69) has at least one
monotone positive solution.

Acknowledgment

This work was supported by NSFC (11126339).



Journal of Applied Mathematics 7

References

[1] R. P. Agarwal and Y. M. Chow, “Iterative methods for a fourth
order boundary value problem,” Journal of Computational and
Applied Mathematics, vol. 10, no. 2, pp. 203–217, 1984.

[2] Z. Bai, “The upper and lower solution method for some fourth-
order boundary value problems,” Nonlinear Analysis. Theory,
Methods & Applications, vol. 67, no. 6, pp. 1704–1709, 2007.

[3] A. Cabada and F. M. Minhós, “Fully nonlinear fourth-order
equations with functional boundary conditions,” Journal of
Mathematical Analysis and Applications, vol. 340, no. 1, pp. 239–
251, 2008.

[4] M. A. Del Pino and R. F. Manásevich, “Existence for a fourth-
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