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We establish some new oscillation criteria for nonlinear dynamic equation of the form (a(®) B (c()x> )™ + q(t) f(x(o(@))) =
0 on an arbitrary time scale T with sup T = oo, where a(t), b(t), c(t) are positive rd-continuous functions. An example illustrating

the importance of our result is included.

1. Introduction

A time scale T is an arbitrary nonempty closed set of
real numbers R with the topology and ordering inherited
from R.The theory of time scales, which has recently received
a lot of attention, was introduced by Hilger in his Ph.D thesis
[1] in order to unify continuous and discrete analysis. The
cases when a time scale T is equal to R or the set of all
integers Z represent the classical theories of differential and
difference equations. Many results concerning differential
equations carry over quite easily to corresponding results
for difference equations, while other results seem to be
completely different from their continuous counterparts. The
study of dynamic equations on time scales reveals such
discrepancies and helps avoid proving results twice once for
differential equations and once again for difference equations.
The general is to prove a result for a dynamic equation where
the domain of the unknown function is a time scale T. In
this way results not only related to the set of real numbers
or set of integers but those pertaining to more general time
scales are obtained. Therefore, not only can the theory of
dynamic equations unify the theories of differential equations
and difference equations, but also extends these classical
cases to cases “in between,” for example, to the so-called g-
difference equations when T = {1,4,¢*,...,4"...}, which
has important applications in quantum theory (see [2]). In the
last years there has been much research activity concerning

the oscillation and asymptotic behavior of solutions of some
dynamic equations on time scales, and we refer the reader to
the paper [3-8] and the references cited therein.

Recently, Hassan in [9] studied the third-order dynamic
equation

(a0 {[r®x* (t)]A}y>A Ffx@m)=0, O

onatimescale T, where y > 1 is the quotient of odd positive
integers, a and r are positive rd-continuous functions on T,
and the so-called delay function 7 : T — T satisfies 7(f) <
tfort € Tandlim, , 7(t) = ooand f e C(T x
R, R) and obtained some oscillation criteria, which improved
and extended the results that have been established in [10-12].

Li et al. in [13] also discussed the oscillation of (1),
where y > 0 is the quotient of odd positive integers, f €
C(T x R, R) is assumed to satisfy uf(t,u) > 0 for u#0, and
there exists a positive rd-continuous function p on T such
that f(t,u)/u” > p(t) for u#0. They established some new
sufficient conditions for the oscillation of (1).

Wang and Xu in [14] extended the Hille and Nehari
oscillation theorems to the third-order dynamic equation

A
(nO((n0x*®))) a0 s =0 @



on a time scale T, where y > 1 is a ratio of odd positive
integers and the functions r;(t) (i = 1,2),4q(t) are positive
real-valued rd-continuous functions defined on T.

Erbe et al. in [15] were concerned with the oscillation of
the third-order nonlinear functional dynamic equation

(a2 @) ) +fCx@on =0 ©

on a time scale T, where y is the quotient of odd positive
integers, a and r are positive rd-continuous functionson T,
andg : T — T satisfies lim, , g(t) = ocoand f €
C(T x R, R). The authors obtain some new oscillation criteria
and extend many known results for oscillation of third-order
dynamic equations.

Qiand Yuin [16] obtained some oscillation criteria for the
fourth-order nonlinear delay dynamic equation

A0+ p) R (T(1) =0, (4)

on a time scale T, where y is the ratio of odd positive
integers, p is a positive real-valued rd-continuous function
defined on T, 7 € C4(T, T), 7(t) < t,and lim, _, . 7(t) = oo.

Grace et al. in [17] were concerned with the oscillation of
the fourth-order nonlinear dynamic equation

Mg =0, ©)

on a time scale T, where A is the ratio of odd positive
integers, g is a positive real-valued rd-continuous function
defined on T. They reduce the problem of the oscillation of all
solutions of (5) to the problem of oscillation of two second-
order dynamic equations and give some conditions ensuring
that all bounded solutions of (5) are oscillatory.

Grace et al. in [18] establish some new criteria for the
oscillation of fourth-order nonlinear dynamic equations

(axAZ)AZ (t) N f(t, xU (t)) -0, t> to’ (6)

where a is a positive real-valued rd-continuous function
satisfying that Itjo(a(s)/a(s))As <00, f:[t)oo) xR —
R is continuous satisfying sgn f(t,x) = sgnx and f(t,x) <
f(t,y) for x < y and t > t,. They also investigate the case
of strongly superlinear and the case of strongly sublinear
equations subject to various conditions.

Agarwal et al. in [19] were concerned with oscillatory
behavior of a fourth-order half-linear delay dynamic equa-
tion with damping

((=*)) 0+ p0(+*) ©+q0x @@ =0, O

on a time scale T with supT = oo, where A is the ratio
of odd positive integers, r, p,q are positive real-valued rd-
continuous functions defined on T, r(t) — u(t)p(t)#0, T €
Cy(T,T), () < t,and 7(t) — ooast — oo. They
establish some new oscillation criteria of (7).

Zhang et al. in [20] were concerned with the oscillation of
a fourth-order nonlinear dynamic equation

AN\A
(px*) ©+a) fx@@®) =0, (8)

Abstract and Applied Analysis

on an arbitrary time scale T with sup T = oo, where p,q €
C.4(T, (0, 00)) with _Ljo(l/p(s))As < 00 and there exists a
positive constant L such that f(y)/y > L for all y #0; they
give a new oscillation result of (8).

Motivated by the previous studies, in this paper, we will
study the oscillation criteria of the following fourth-order
nonlinear dynamic equation:

AN\ A
(a 0 (b@) (cx*®)") ) +q(0) f(x(@®) =0,

t € [ty,00)p

©)

where T is a time scale with supT = coandt, € Tisa
constant and [t, 00)y = [t,, 00) (] T. Throughout this paper,
we assume that the following conditions are satisfied:

(Hl) a; b; Caq € Crd([tO) OO)T) (01 OO))) bA(t) 2 0 and CA(t)
> 0.

(Hy) [ (Ha(s)as < [71/b(s)As = [ (1/c(s)As =
Q.

(H5) f € C(T,R) and there exists a positive constant M
such that for any u#0, f(u)/u > M.

By a solution of (9), we mean a nontrivial real-valued
function x € Cid([Tx, 00)p) with T, > t,, which has the
property that a(t)(b(t)(c(t)x"()*)"* € C4([T,,00)) and
satisfies (9) on [T, 00)y, where Cid is the space of differ-
entiable functions whose derivative is rd-continuous. The
solutions vanishing in some neighborhood of infinity will be
excluded from our consideration. A solution x(t) of (9) is
said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise it is called nonoscillatory.

2. Some Auxiliary Lemmas
We shall employ the following lemmas.
Lemma 1. Assume that x(t) is an eventually positive solution

of (9). Then there exists t, € [ty, 00)r sufficiently large, such
that, for t € [t,, 00)1, one of the following cases holds:

O x@® > 0 xMt) < 0 (c(t)xA(t))A > 0,
B O ©)) <o,

@ x@) > 0, x*¢t) > 0, (c)x*@®)* > 0
b)) <0

BG)x@) > 0 %) > 0 (cx*@)* > o
b)) >0,

@ x(t) > 0, x*t) > 0, O < o

OO > 0.
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Proof. Let x(t) be an eventually positive solution of (9). Then
thereisa t; > t, sufficiently large, such that, x(t) > 0 for t >
t,. By (9) we have

A

(a ® (b (cx* (t))A)A) =—q(t) f (x(c (1))

<—Mq(t)x (o (1) <0,
(10)

which implies that a(t)(b®)(c()x (1)) is decreasing and
one of the following two cases holds.

(@) (b(t)(ct)x (1)) > 0 for t > t,.

(b) There is a t, > t, such that (b(t)(c(t)x"(£))*)* < 0
for t € [t,,00)r.

If case (a) holds, then b(t)(c(t)x>(£))" is strictly increas-
ing on [t;, 00)r and there exist the following two subcases.

(ay) (c(®)x"(1)> <0 for t > t,.

(a,) There exists a t; > t, such that (c(H)x™(@#))® > 0 for
t € [t;5,00)r.

If subcase (a;) holds, then we claim x2@) > 0. If not,
there exists a t, > t; such that c()x™(t) < c(t4)xA(t4) <
0 for t > t,. Thus, we get

O < x(t) +et) ¥ 1) [ s — o0, )

which contradicts x(t) > 0 eventually. Therefore, we obtain
case (4).

If subcase (a,) holds, then let b(t)(c()x> ()" >
blts)(c(t;)x(t5))" > 0 we get

cB) % (1) 2 (t5) () + b (1) (c (85) %° (1))
t (12)
1

X L %As — 00.

Therefore, we obtain case (3).

If case (b) holds, then we claim (c(£)x®(¢))* > 0 for ¢ >
t,. If not, there exists a t; > t, such that b(t)(c(®)x> ()" <
b(l‘s)(c(ts)xA(tS))A < 0 for t > t;. Integrating this inequality
from t5 to t, we get

c(t) 2 (1) < ¢ (t5) ¥ (£5) + b (85) (¢ (85) x° (£5))

(13)
!
X L mAs — —00.

Then, there exists a t; > f5 such that c(t)xA(t) < -M <
0 for t > t,. Integrating this inequality from ¢ to t, we get

x@t)<x(tsy) - M J;t %As — —00, (14)

which contradicts x(t) > 0 eventually. The proof is com-
pleted. O

Lemma 2 (see [12]). Assume that there exists T € T such
that U satisfies

uwp >0 U@®>0, U@ >0,
(15)
UM (1 <o, for t € [T, 00).
Then
lim inf tU (1) (16)

— 21,
t—oco h, (t,t,) U2 (t)

where hy(t,t,) = [ (r ~ to)Ar.

3. The Main Result

Now we state and prove our main result.

Theorem 3. Assume that one of the following conditions holds:

Q) ,
L) b(s) T 17
1 (*Q(s) N
J;o m J;{ b (s) ASAH = 00, (18)
. ! 1 [ Q(s)
ll?lsolcl)p J;() |:Mq (v) L(V) m L b65) AsAu
[7@Q(s) /b (s) As

acO) [T (e @) [ Q) /b(s)) Ashu

X Av = 00.
(19)

If there exist two positive functions o, f € Crld([TO,oo)T,
(0, +00)) such that for all sufficiently large t, € [t,, 00)y, and
t, > t; > t, > t;, and some constant d € (0, 1),

lim sup L [(dMq (5)Q (0 () 1y (0 (5), £,)

t— 00

a(s)
« L ﬁm (0 (s)c (s))“> (20)

1

"0 (s))a(s)] As = co,



4
li:nsup Lt Mgq (s) a’ (s)
o) [ = Lj(l/a(u))Au
<, (L( b() A”)
-1
x (c(2)) >Az 1)
o) 1 -1
([ s)
[(a* ), ]a [ (1/a(2)) a2
40 (s) j:l (1/a(z)) Az
X As = 00,
. | MEo(s) [ [, a0y
fim sup L[ b(s) j aw
[(8° @) Je@ [ a/canau] @
467 (5) [} (1/c (w)) du
X As = 00,
where
© 1
= ——As,
Qo= | - S o

£, @) := max {0, f (1)}.
Then, every solution x(t) of (9) is oscillatory.

Proof. Assume that (9) has a nonoscillatory solution x(t) on
[ty, 00)r. Then, without loss of generality, there is a t; > ¢,
sufficiently large, such that x(t) > 0 for t > t,. By Lemma 1,
there exist the following four possible cases:

M x@®) > 0,x) < 0, (cH)x*@®)> > o,
BB )™ <0,

Q) xt) > 0,x%) > 0, (O @)* > o,
) (ct)x )™ < 0,

B)xt) > 0,x%) > 0, (O @) > o,
) (ct)x )™ > 0,

@ x@) > 0,x*@®) > 0 (LB < o
) (ct)x )™ > 0.

If case (1) holds, then

A

(a GIUGIGGES (t))A)A> =—q(t) f (x(o (1))

<—Mq(t)x (o () <0,
(24)
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which implies that a(®)(b@®)(c(®)x* ()™ is decreasing on
[t,,00)r, and so

a(s) (b(s) (c(9)x" (s))A)A <a(®) (b (c)x* (t))A)A

for s>t >t,.
(25)

Dividing the previous inequality by a(s) and integrating the
resulting inequality from t to [, we get

b() (cx2 M) <b®) (cx*®)"
A
+a® (b (c02*®)") e
I
X L mAs.
Let I — 00, we obtain

A
b®) (cx*®)" 2 -a® (b®) (c)x*®)") Q).

(27)
Hence, there exists a constant m > 0 such that
b (c(H)x* )" =mQt). (28)
Integrating (28) from t, to t, we get
t
c(t) x™ () = c(to) x* () = m j wAs, (29)
t, b(s)
which implies that
t A
J Q(S) AS S _C(to)x (to), (30)
ty b (S) m
which contradicts assumption (17).
Integrating (28) from t to oo, we get
()< (0 2 mJ QW) s 31)
t b(s)
Integrating the previous inequality from f, to t gives
1 [*QE)
ty) —x(t) = — AsAu, 32
% (t) - x (1 ’“L,cw) |, rAshu, (3
which implies
t (e8] t
to c(u) Ju b(s) m

which contradicts assumption (18).
Let A(t) = a(t)(b(t)(c(t)x"())*)". Integrating (27) from
t to oo gives

—c(t)x" (t) 2 ro _AGQE)

*Q(s)
t bG) As > —A(t) J

t b(s)

As.
(34)
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Integrating (34) from ¢ to oo, we get Integrating (41) from ¢, to t gives
1 [*Q(s)
R(t —_— AsA
x(t)>‘IOOA(u) IOOQ(S)AsAu ()L ¢ (u) L bl
ok e Sy b(s) 1 [*Q(s)
(35) -R(t;) I — J AsAu
P (*QE) L@ bl
> A (t) Jt m Ju b (5) AsAu - . Q (S)
- j Mq( ) J'a(v) m J b (5) Ashudy
Set
J RO) (790,
Al) c(v) b(s)
R(t) = paes for t € [t,,00);. (36) J R () J (S) J 1
t, c(v) v b(s) o(v) ¢ (1)
Then, R(t) < 0 for ¢ € [t;,00)r and « J (s) AsAuAv
AT Amxt () A x" (t) ‘ [ @) /b (s)) As
RE(t) == - < -Mq () - - v A
x0(t)  x(t)x° () x () x (t)(37) = L 4¢ (v) J;(j) (1/c (w)) '[;O (Q(s) /b (s)) AsAu !
(42)
By (34), we get which implies
‘ R O]
26 0 J Mg () LM ), B
R® (1) < ~Mq () - (t) J’ Q()A
<-Mg cHx®x @) ) b(s) (38) jm Q) s
5 - s s)) As
<-Mg() - 2 [T Wy O e [T Q@ o) sk |
ct)x*(@) Jr b(s) )
1 [TQs)
Combining (36) with (38) gives <R(®) L c(u) L b(s) A
1 Q)
, SR | | A
R%(t) < —-Mq (1) - RC (g) j (5((55)) As. (39) {: Cl(u) {’: Q((;)
s
<R (tl) J; @ J;t b(s) AsAu + 1.
In view of (35), we get (43)
Which contradicts assumption (19).
0 o0 If case (2) holds, then set
R(t)J 1 J Q) A opu > 1. (40)
¢ c@)Ju b(s) 4D e [t,00)p  (44)
b(®) (c (t) x* ()"
From (39), we obtain and R(t) < 0 for t € [t;,00)p and
A% ()
) 00 RAt)ys —— 1
R (1) J ﬁ J (5((55)) AsAu (b(ch)A) (o (1))
a(t) u
< -Mgq(t) JOO e Jm Q) iy AW (b(”‘A)A)A ® (45)
o0 € ) L b6 (b)) 0 (b ()" (0 )
R@®) QW) , [ 1 [*Q
e J b Lm c(u) J b(s) M Cy 40 xe®) R

(41) b)) o) a®)’



6

On the other hand, let U(t) = Lt u(s)As for t € [t,,00)r,
1
where u(t) = c(t)x™(¢); it is easy to check that U(t) > 0,

US(t) > 0, U*(t) > 0. In view of
(b@®u* ()" =6 Oud )+ Ou (1) <0,  (46)
by (H,), we get
UMA ) =u® (1) < 0. (47)

Therefore, by Lemma 2, for any d € (0, 1), there exists t; €
[t;, 00)r such that

tU (1)

m >d fort e [ty,00);. (48)
Then, we see that
-[t1 c(s) xA (s) As S dhz (t> tO) (49)
ct)yx@® ot

Since

t t
J u(s)As:J c(s)xA(s)As
t t

—eOx () x(0) - [ @ @ as
' (50)
we get
c(t)x(t) > f c(s) x™ (s) As. (51)

In view of (49), we obtain that for all t € [t;, 00)y,

20 _ c0x@®) [ OO dn (i) ()
@) e c)x@) t

On the other hand, there exists t, > t; such that for any t €
[tZs OO)T:

c®)x* (1) = c(t) x" (1)

Jt b(s) (c () x* ()" R

+ ] b(s) $ (53)
> b(t) (c (1) x* ()" j: ﬁm.
It follows from (52) and (53) that
x(t) > M’CA (t)
dh, (o) [} (1/b(s)) S v (54)

tc(t)
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Combining (45) with (54) gives

L Mdq)hy (o)) [V ) As gy
R™(t) < - 2 - )
ot)c(o @) a(t)
(55)
By (27) we get
RMHQ(t) = 1. (56)

Multiplying both sides of (55) with ¢ replaced by s, by Q7(s),
and integrating with respect to s from t, to t (t > t,), one
gets

fﬁ@d@m

¢ Mdq(s) hy (0 (9),t0) [ (1/b ) Au
=" L o (s)c(o(s) (57)
x Q% (s) As
t 2
- J R—(S)QG (s) As.
t, a(s)
Thus,
R(t)Q(t) < R(t,) Q(t,)
¢ Mdq (s) hy (0 (s). 1,) jt‘z"s) (1/b () Au
B I a(s)c(o(s))
x Q% (s) As
_ J “[RG) , R ()
t, La(s) a(s)
< R(t,)Q(ty)
| Mdgq(9)hy (0(5),t0) f (1/b () Au
B J a(s)c(o(s)

Q’ (S)] As

. 1
ST (s))a(s)} As

(58)
which implies that
J~t Mdq (s) by (0/(s), k) [T (1/b () Au
t

t

o(s)c(o(s)

(59)
! ] As

AR ToYETRs Py

<R(,)Q(t,)) -R(HQ() <R(t,)Q(t,) + 1,

which contradicts assumption (20).
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If case (3) holds, then since
A ! A\A
b(®) (c)x* @) > I (b6 (c©)x*)") s
t

> A(t) j mAS,

A A

Hence, there exists t, € [t;,00)r such that

c®)x™ (1)

we have

< b(®) (c () x* (1))

J; (1/a()as

A
_ A £b(s) (c(s)x* (9))
— C(tz)x (tz) + Lz _[:l (1/a (w)) Au

J: (1/a (u)) Au
“TTh0)

As

As,

b®) (e ®)" Jt f; (1fa () du
>
j:l (1/a(s)) As t b(s)

which implies that

A
Jttz (J: (1/a(w)) Au/b (5)> As

00)r such that

Hence, there exists t; € [t,,
x () = x(t5)

+ Jt ¢ (s) X" (s)
b JZ (J:l/ (1/a (u)) Au/b (v)) Av

.I-ts2 (J.tj (1/a (u)) Au/b (v)) Av
: c(s)
> c(t)x" (1)
i -[ti (J: (1/a (u)) Au/b (s)) As

As

! JZ (J: (1/a (u)) Au/b (v)) Av
" L c(s)
Combining (62) with (64) gives

vy Il (I /a0 8o ) e 9) s

[ (fas)as

xb(®) (c () x* ®)".

Write

A(t)

R(t)=a(t) — 2
O oo

for t € [t;,00)1.  (66)

(60)
Thus, R(t) > 0 and for any ¢ € [t;, 00)r,

A(t)
b(t) (c(6) x5 ()"

A
, A
o ——
e U(b(t)(c(t)xw))A)

o (t)
« (t)

R () = (1)
(61)

o’ (t)

A

(A b (c®)x* @)

(62)
~A®) (b@) (<« (t))A)A>

x (b(t) (c(t)x* ®)" (b(ch)A) (¢ (t)))il
A
3 ("),

(3

(67)

A% (1)
(b(cx)*) (0 (1))

R(t)+a’ ()
A

63) A (b@) (e )"

b(t) (c (1) x2 (1))" (b(cx)") (o (1)

A A
CO) e AN

o (t) (b(cx*)") (0 (1)

R (1) (b(ch)A (t))
a (O (1) (b(cx®)") (o (1)

o

—a’ (t)

By (61) and (65), we get

x7 (t)

R (t) < -Mq (t) &’ (t) ———————
(b(cx®)™) (o ()

(o ®),
+ WR (t)

R (1) (b(ch)A> (1)
a(t) o (1) (b(cx)*) (o (1)

—a’ (1)

(65)
< -Mgq(t)a® (t)



o) [ ¢s ﬂumwmu
XL (L( b() Aa
x@@ﬁ)&

o) -1
(" i)

(a®®), o R
Y RO em
Kmmmm

[ (/a(s) As

o) [ ¢s ﬁumwmu
XL (L( bW) Aa

x@@ﬁ)&

o) -1
(" i)

[(a®®), ) a) [ (1/a(9) as
+ .

t

4a“(t)Li(l/a(s))As

(68)

Integrating the last inequality from ¢, (t, € [t;,00)1) to t,
we get

t
L Mq(s)a® (s)

o) [ ¢z ﬁumwmu
<, <L< b0) A”)
x@wﬂ>m
o(s) 1 -1
X@1H5M>

(@) Jaw [ ara@az |
407 (s) [} (1/a(2)) Az ’

(69)

<R(ty),

which contradicts assumption (21).
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If case (4) holds, then
(A(t)" < Mq(t) x (o () < 0. (70)
Integrating the previous inequality from t to z, we get
z
A(z)-A(t) < J Mq (s) x (o (s)) As. (71)
t
Letting z — oo in this inequality, we obtain

A M(” (s) As
M a

72
o0 x (o) <0. (72)

A
(b (crx"0)")
Integrating the previous inequality from t to z, we get

b(t) (c()x* ()" -b@) (c(2)x* (2)"

0 (73)
z L q (u) Au
+ Mx (o (t)) L TR
Letting z — 00 in this inequality, we obtain
oo [ A
bU)&(ﬂxAU»A+AM(UUDJ. L—EEQ—EAng
t a(s)
(74)
Now we set
t) x (t
RaﬁﬁﬂﬂdiZ;) for t € [t;,00)p.  (75)

Thus, R(t) > 0 and for any t € [t;, 00)r,

c(t) x" (t)
x (1)

R (1) =B (1)
(e ®) x®) —c®) x> ) x* ()
x(t) x (o (t))

(o= o)
x (0 (1)

+B7 (1)

(76)
B ()
B(t)

FW x®
TBRocoeot O

<

R(t)+p° (1)

Since

c(s) x ()

c(s)

x(t)Zx(t)—x(tl)zjt As

(77)

A !
>c(t)x™ (t) L mAs,

A
tLt) <0. (78)
Ll (1/c(s)) As

we get



Abstract and Applied Analysis

Hence, by (74) and (78), we get

_L q(u) Au As
a(s)

R (1) < _ME® JOO
t

b(t)
(B~ M),
Y e *0

£ (1) j (l/c(s))As t
Bt j g (1/c s))As 79)

L q (u) Au
a(s)
co[(B*®).] [ /e as
apr o f; Afesnas

_Mﬂﬂr
b® i

Integrating the previous inequality from ¢, to t, we get

jfwwwﬁﬂwmm
G Tee LT am

cO[(8' )] [ e au) 6
_ E S
4 (s) Ll (1/c () Au

<R(t),

which contradicts assumption (22). The proof is completed.
O

4. Example

Finally, we give an example to illustrate our main result.

Example 1. Consider the fourth-order nonlinear dynamic
equation

Z, (81

<t2<t1/5( £315,A (t)) >A>A 6/Sf(zt) te2

where ¢ > 0 is a constant, and

a(t) ="t b(t)=t/° c(t) ="

(82)

q(t):tG%, f(u):uln(3+u2).

9
So M = 1.Itis easy to calculate that
© 1 1 2
J —AS:J —As = — <00,
r, a(s) t S t,
® 1 |
——As = J —=As = 0o,
LO ( ) ty st/s
(83)

© 1 © 1
J —As = J —<As = 00,
i, c(s) ¢, s°P°

© 1 1 2
Q= [ as= ] gas=

It is obvious that

QW) \ o [T 2 5. 2 1
Jto b9 L, e = 1—1/21/5t(1?<°°' (84)

Therefore, we get

© 1 ®Q(s) 2 J'OO 1
— Ashu=—=" | —_Au=oo.
J;o c(u) J-u b(s) sou 1-1/215 J, utls w=eo

(85)
Then, condition (18) holds. By Lemma 2, we get
t t—ty)(t—2t
by (it = [ (1) e = L1220,
' (86)
2t —t,) (2t =2t
hy (0 (t),ty) = hy (2t,to) = ( o) o) >t

3

while ¢ sufficiently large. Let «(t) = 1, B(t) = t. We have that
if p > 1/2d, then

lim sup Jt [ (dMq (5)Qa () hy (0 (s),tp)

t— 00

a(s)
« j (1/b (u))Au)

t

x (o (s)c(s) ™
——1 ] As (87)
4Q (0 (s)) a(s)

t|d /56/5 (1/5)5254/5
zlimsupj [ (Q ) 1 As
to

t— 00 2553/5 45
do 1 ‘1

> (—Q - —)limsupj -As =00
2 4 t— 00 tO S

o (f; ([} (/a @) aufb ) av X
J (@ )

t3

Since

[\

1 o(s) JZ (1/1’1/5) Av (88)
J CR
4/5

o(s)
> lj Z_Az > 1 6/5,
t, ¢(2)
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we get

t
lim sup L Mgq (s)a’ (s)

t — 0o

Az

Ja@ Jo (1) (/aw) dufb ) av
X

: c(2)

o(s) 1 -1
(J (m)“)
[(a® (s)) ['a [/ (1/a(2) az
s)f (1/a(2)) Az

> lim sup As

t— 00

" (9/56/5) (l/tl) 26/556/5
N

t
= 26/Sglim supj As = 00
ty

t— 00

(89)

Since
) o A
J MA 5L (90)

a(u) B QSGT’

I:(S) (1/c () Au

5 <2 (91)
Ll (1/c (u)) Au

>

we obtain

. L MB7(s) [ f q() Av
lim sup J b(s) J ay

[(8* ) ] e ) [ (/e ) Au L6
— S
49 (s) jtl (1/c () Au

t
1
2 —-)1 J L opse
( Q 2 lﬁgp . 52/5 S (0,@]

Hence, conditions (18), (20), (21), and (22) of Theorem 3 are
satisfied. By Theorem 3, we see that every solution x(¢) of
(81) is oscillatory if ¢ > 1/2d.
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