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The main characteristic of visually pleasing curves used for product design is a monotonic curvature profile. Recently, a planar
curve called Generalized Log Aesthetic Curve (GLAC) has been extended from the Log Aesthetic Curve (LAC), and it has an
additional shape parameter, ]. This curve preserves the monotonicity of curvature and is said to produce visually pleasing curves.
This paper delves on the drawable region of the GLAC segment which indicates the probable solutions of shape parameters from
given interpolating points and the direction of travel at those points. The first section reviews the formulation of GLAC and its
related bounds. The section describes the algorithm for identifying the drawable region. It is followed by the section describing
how small changes of ] widen the drawable boundaries. The final section discusses the superiority of GLAC compared to LAC for
use in industrial product design.

1. Introduction

The importance of aesthetic shapes to design industrial prod-
ucts leads to the studies of planar aesthetic curves [1]. High
quality curves are also known as fair curves, minimal energy
curves, aesthetic curves, and so forth.Themain characteristic
of these curves is that it has a monotonic curvature profile.
The mathematical term used to describe planar curves with
monotonic (either increase or decrease) curvature is called
a spiral [2]. A curve is categorized as fair if its curvature
plot consists of relatively minimum number of monotone
pieces.

In 1999, Harada et al. presented a quantitative method
of investigating curves used in automobile design which is
called Logarithmic Distribution Diagram of Curvature
(LDDC). They defined aesthetic curves as curves with a con-
stant LDDC gradient (denoted as 𝛼). Consequently in 2003,
Kanaya et al. simplified the formulation of LDDC to Loga-
rithmic Curvature Graph (LCG). In 2005,Miura analyzed the
features of aesthetic curves and derived a general formula of
aesthetic curves called Log Aesthetic Curve (LAC). Yoshida
and Saito [3] further investigated LAC to identify the overall
shapes of LAC. They proposed a method to draw LAC

curve segment interactively by using two endpoints and their
respective tangent vectors. In 2009, Levien and Sequin stated
that the LA curve is the most promising curve for aesthetic
design. In 2012, Yoshida and Saito derived amethod to render
the drawable boundary for LAC segments.

The number of research papers produced since the
introduction of LAC has been increasing exponentially such
as the reformulation of 2D and 3D LAC in the form of
variational principal [4], analytic representation of LA curve
using Incomplete Gamma function for efficient computation
[5], and the formulation of G2 LA spline for automobile
design application [6].

Recently, a planar curve called Generalized Log Aesthetic
Curve (GLAC) has been developed by extending the formu-
lation of Generalized Cornu Spiral (GCS) [7] in a similar
manner to the LAC [8].The family of GLAC comprises planar
curves of high quality such as GCS, LAC, clothoid, Nielsen’s
spiral, logarithmic spiral, circle involute, and so forth. The
GLAC segment has an additional parameter (denoted as ]) to
determine its shape as compared to GCS and LAC segment.
Hence, an extra constraint can be satisfied when shaping the
GLAC segment. Recent advancements of GLAC include the
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Table 1: The lower bound and upper bound for 𝑠.

Arc length
] < 0 (] ̸= − 1) ] > 0 ] = −1
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−

1

Λ𝛼

— −

1

Λ𝛼

0

extension of spatial GLAC [9] and the shape analysis ofGLAC
[10].

Interactive control of GLAC segment has been devel-
oped similar to interactive LAC segment [11]. However, it
is necessary to analyze the drawable region of interactive
GLAC segment so that the users are aware of the flexibility
of GLAC for shape design. The identification of drawable
region of GLAC is similar to the method employed for LAC
[12]. However, a slight modification has been carried out to
determine the shape parameter Λ. We modify the arc length
instead of modifying the 𝜃

𝑑

directly. We will modify arc
length in the range of 0 < 𝑠 < ∞, which will give 𝜃

𝑑

such
that 0 < 𝜃

𝑑

< 𝜋.

1.1. The Formulation of GLAC. GLAC is derived via the curve
synthesis process where a formulation of a curve is derived
from defined curvature function. The advantage of GLAC is
that it has an extra shape parameter (]) which can be used
to dictate the curvature radius (𝜌) at the starting point of the
GLAC.GLACbecomes LACwhen ] becomes 0.TheLCGand
its gradient function, 𝜆(𝑠) are derived for GLAC as follows
[8]:

LCGGLAC (𝑠)

=

{
{
{

{
{
{

{

log[ 1

(Λ𝛼𝑠 + 1)
−1/𝛼

+ ]
] ,

log [ 1
Λ

(Λ𝛼𝑠 + 1) (1 + ](Λ𝛼𝑠 + 1)1/𝛼)]

}
}
}

}
}
}

}

,

𝜆 (𝑠)GLAC = 𝛼 + ](Λ𝛼𝑠 + 1)1/𝛼 (1 + 𝛼) .

(1)

Arc length and tangential angle function of GLAC are
shown below, respectively:

𝑠GLAC (𝜌) =

{
{
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− ]
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− 1) otherwise,

𝜃GLAC (𝑠)

=

{
{
{
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{
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{
{
{
{
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{

{

1

Λ

(1 − 𝑒
−Λ𝑠

) + ]𝑠 if 𝛼 = 0,
1
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log [Λ𝑠 + 1] + ]𝑠 if 𝛼 = 1,

1
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(2)

The parametric form of GLAC is

𝐶GLAC (𝑠) = {∫
𝑠

0

cos [𝜃GLAC (𝑢)] 𝑑𝑢, ∫
𝑠

0

sin [𝜃GLAC (𝑢)] 𝑑𝑢} ,

(3)

where {Λ, 𝛼, ]} ∈ R are the variables that can be used to shape
the GLAC segment.

1.2. The Bounds of GLAC. The bounds are derived for both
arc length and tangential angle function of GLACwhich are
depicted in Table 1 and Table 2 respectively. For the case of
] = 0, the bounds of GLAC are similar to the bounds of LAC
as stated in [10].

2. Drawable Region of GLAC

Interactive control of GLAC segment can be developed either
by stating the value of ] or allowing the optimization techique
to find a suitable value for ]. It is possible to construct the
drawable region for interactive GLAC if the designer chooses
to set the value for ]. The analysis of the drawable region can
then be used to identify all possible solutions that exist for a
given input.

2.1. The Method. The method used is similar to LAC where
three control points will be placed in a rectangle of corners
(±1, ±1). Values of 𝛼 < 0 are used to construct the drawable
region for the case of ] > 0. For the case of −1 < ] < 0, there
is no restriction for 𝛼. Figure 1 illustrates the setup of control
points in order to obtain the drawable region of GLAC.

Let points 𝑃
0

, 𝑃
1

, and 𝑃
2

be the control points for
drawing a GLAC segment. The points 𝑃

0

and 𝑃
2

are placed
at (−1, 0) and (1, 0). The point 𝑃

1

is the point on the drawable
boundary in the rectangle. To note, 𝑃

1

is unknown and will
be determined by the tangential angle 𝜃

𝑑

on the curve. GLAC
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Table 2: The lower bound and upper bound for 𝜃.

Tangential angle
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(b) GLAC segment and a drawable boundary

Figure 1: A drawable region of interactive GLAC segment.

(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = −0.5 (e) 𝛼 = −0.1 (f) 𝛼 = 0 (g) 𝛼 = 0.5

(h) 𝛼 = 0.8 (i) 𝛼 = 1 (j) 𝛼 = 1.1 (k) 𝛼 = 2 (l) 𝛼 = 3

Figure 2: The drawable region of GLAC when ] = −0.3.

segment with tangential angle from 0 to 𝜃
𝑑

is used for all
𝛼. Point 𝑃

1

can be found on the rectangle by performing
transformation. By changing the arc length from 0 to a large
number, the points of 𝑃

1

will form the drawable boundary.
Note that we are modifying arc length to obtain 𝜃

𝑑

in the
range of 0 < 𝜃

𝑑

< 𝜋. Hence, by applying reflection on the
x-axis and y-axis, a complete drawable boundary can be
found.

2.2. The Algorithm. The objective of this algorithm
(Algorithm 1) is to determine the second control point

through the formulation of GLAC curve segment and by
plotting it on the rectangle.

3. Analysis Result

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 show the obtained result
for the drawable region of the interactive GLAC segment
depending on 𝛼 and ]. Figures 2, 3, 4, 5, 6, and 7 show the
pattern of how the decrease and increase of ] affects the
drawable region. Figures 8, 9, 10, and 11 show the drawable
region for 𝛼 = −1, 0, 1, 2 as ] increases. The white region
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Remark: Control points {𝑃
0

, 𝑃
2

} are given with a preferred 𝛼. Via GLAC function, second
control point is determined. New points are transformed to the originals and plotted. 𝑠 is modified
from 0 to a large number such that 𝜃

𝑑

is in range of 0 < 𝜃
𝑑

< 𝜋 to get the complete drawable boundary.
Input: 𝑃

0

(−1, 0) , 𝑃
2

(1, 0) , 𝛼, ], 𝑠.
Output: Complete drawable boundary of interactive GLAC.
Begin
Step 1. If −1 < ] < 0 then

if 𝛼 = 0 then

Λ ←

− log [−]]
𝑠

.
else

Λ ←

(−])−𝛼 − 1

𝑠𝛼

.
else if ] > 0 and 𝛼 < 0 then

Λ ←

−1

𝑠𝛼

.

Step 2. Determine 𝑆𝑃 (𝑥
0

, 𝑦
0

) and 𝐸𝑃 (𝑥
2

, 𝑦
2

) using (3).

Step 3. Determine scaling factor 𝑟 ←
󵄩
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2

𝑃
0

󵄩
󵄩
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and angle 𝜃
𝑒

← cos−1 [[

[

𝑥
2

√𝑥
2

2

+ 𝑦
2

2

]

]

]

.

Step 4. Determine 𝑃
1

using the tangent line of both end points.
Step 5. Scale points to 𝑟, reflect through 𝑥-axis, rotate to −𝜃

𝑒

and translate to {𝑃
0

, 𝑃
2

}.
Step 6. Plot point 𝑃

1

.
Step 7. Modify 𝑠 from 0 to a large number and repeat Step 1. to 6.
Step 8. Reflect points via 𝑥-axis and𝑦-axis.
Step 9.Output.
End.

Algorithm 1

(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = −0.5 (e) 𝛼 = −0.1 (f) 𝛼 = 0 (g) 𝛼 = 0.5

(h) 𝛼 = 0.8 (i) 𝛼 = 1 (j) 𝛼 = 1.1 (k) 𝛼 = 2 (l) 𝛼 = 3

Figure 3: The drawable region of GLAC when ] = −0.1.

implies the drawable region of GLAC segment, while the gray
region indicates no solution. Hence, more probable GLAC
shapes can be drawn when the white region widens.

The drawable region of GLAC shows a better result when
−1 < ] < 0 compared to when ] > 0. This can be observed in
Figure 4 where the drawable boundaries are larger compared
to Figure 7. When ] is positive (small value, e.g., when ] =
0.01) and −1 < 𝛼 < 0, the drawable region is quite larger as
compared to when −1 < ] < 0. However, when ] is posi-
tive, the drawable region gets smaller for all other 𝛼. This
implies that the shape variable ] plays amajor role in dictating

the drawable region effectively. The drawable regions can be
expended remarkably with a small change of ]. Generally,
−1 < ] < 0 gives a wider drawable region when 𝛼 > 1 and
𝛼 < −1. We can note that when 𝛼 = 2, the drawable region
is very large compared to LAC. LAC has regions that have no
solutions, whereas GLAC provides the solution.

According to Yoshida and Saito [12], there are cases where
the LAC segment is not drawable even when the second
control point is within the drawable boundary. GLAC faces
a similar situation where the second control point is within
the drawable region yet the curve segment is not drawable.
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(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = −0.5 (e) 𝛼 = −0.1 (f) 𝛼 = 0 (g) 𝛼 = 0.5

(h) 𝛼 = 0.8 (i) 𝛼 = 1 (j) 𝛼 = 1.1 (k) 𝛼 = 2 (l) 𝛼 = 3

Figure 4: The drawable region of GLAC when ] = −0.01.

(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = −0.5 (e) 𝛼 = −0.1

Figure 5: The drawable region of GLAC when ] = 0.01.

(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = −0.5 (e) 𝛼 = −0.1

Figure 6: The drawable region of GLAC when ] = 0.1.

(a) 𝛼 = −3 (b) 𝛼 = −2 (c) 𝛼 = −1 (d) 𝛼 = 0.5 (e) 𝛼 = −0.1

Figure 7: The drawable region of GLAC when ] = 0.3.

(a) ] = −0.3 (b) ] = −0.1 (c) ] = −0.01 (d) ] = 0.01 (e) ] = 0.1 (f) ] = 0.3

Figure 8: The drawable region for 𝛼 = −1 as ] increases.
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(a) ] = −0.3 (b) ] = −0.1 (c) ] = −0.01

Figure 9: The drawable region for 𝛼 = 0 as ] increases.

(a) ] = −0.3 (b) ] = −0.1 (c) ] = −0.01

Figure 10: The drawable region for 𝛼 = 1 as ] increases.

(a) ] = −0.3 (b) ] = −0.1 (c) ] = −0.01

Figure 11: The drawable region for 𝛼 = 2 as ] increases.

(a) GLAC (] = 0) (b) GLAC (] = −0.01)

Figure 12: Comparison on the drawable region of LAC and GLAC for 𝛼 = 3.

Figure 12 is the comparison on the drawable region of
LAC and GLAC when 𝛼 = 3. It portrays well the role of ]
in GLAC. Note that GLAC becomes LAC when ] is 0. Since
LAC is one of the cases in GLAC, the numerical example
above clearly shows that for𝛼 > 1, GLAChas a wider solution
compared to LAC. Hence, GLAC provides greater flexibility
where users would be able to create various shapes with a
fixed start and end interpolating points.

4. Conclusion and Future Works

An algorithm has been proposed to elucidate possible solu-
tions that exist for interactive control of GLAC segment

and the result is promising. The drawable region of GLAC
proved to be far greater than LAC. This gives more freedom
for designers to choose control points, tangent angle, and
suitable shape parameters in order to design visually pleasing
industrial products. The extra shape parameter ] facilitates
the ability to set the curvature radius at the origin which
makes the GLAC more flexible.

Future works include the development of a 𝐺2 algorithm
for GLAC by manipulating the shapes variables similar to
the work proposed in [13, 14]. A different kind of approach
will be redefining the curvature function in such a way that
a curvature continuous Log Aesthetic Spline (LAS) can be
created.
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