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This paper deals with the existence of solutions for integral boundary value problems (IBVPs) on time scales. We provide sufficient
conditions for the existence of solutions by using Schauder fixed point theorem in a cone. Existence result for this problem is also
given by the method of upper and lower solutions.

1. Introduction

Thestudy of dynamic equations on time scales goes back to its
founderHilger [1].Themainmotive of the subject of dynamic
equations on time scales is that they build bridges between
continuous and discrete cases. We begin by presenting some
basic definitions on time scale calculus.

A time scale T is a nonempty closed subset ofR. It follows
that the jump operators 𝜎, 𝜌 : T → T ,

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡}

(1)

are well defined. The point 𝑡 ∈ T is left-dense, left-scattered,
right-dense, and right-scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡,
and 𝜎(𝑡) > 𝑡, respectively. If T has a right-scatteredminimum
𝑚, define T

𝜅
= T − 𝑚; otherwise, set T

𝜅
= T . If T has a left-

scattered maximum 𝑀, define T𝜅 = T − 𝑀; otherwise, set
T𝜅 = T . A function 𝑓 : T → R is ld-continuous provided
it is continuous at left dense points in T , and its right-sided
limit exists at right dense points in 𝑇. For 𝑓 : T → R and
𝑡 ∈ T𝜅, the delta derivative of 𝑓 at 𝑡, denoted by 𝑓Δ(𝑡), is the
number with the property that given any 𝜖 > 0, there is a
neighborhood 𝑈 ⊂ T of 𝑡 such that






𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ

(𝑡) [𝜎 (𝑡) − 𝑠]






≤ 𝜖 |𝜎 (𝑡) − 𝑠| (2)

for all 𝑠 ∈ 𝑈. For 𝑓 : T → R and 𝑡 ∈ T
𝜅
, the nabla derivative

of 𝑓 at 𝑡, denoted by 𝑓∇(𝑡), is the number with the property

that given any 𝜖 > 0, there is a neighborhood𝑈 ⊂ T of 𝑡 such
that






𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠) − 𝑓

∇

(𝑡) [𝜌 (𝑡) − 𝑠]






≤ 𝜖





𝜌 (𝑡) − 𝑠






(3)

for all 𝑠 ∈ 𝑈.
A function 𝐹 : T → R is called a nabla antiderivative of

𝑓 : T → R provided that 𝐹∇(𝑡) = 𝑓(𝑡) holds for all 𝑡 ∈ T
𝜅
.

We then define the nabla integral of 𝑓 by

∫

𝑡

𝑎

𝑓 (𝑠) ∇𝑠 = 𝐹 (𝑡) − 𝐹 (𝑎) ∀𝑎, 𝑡 ∈ T . (4)

For the details of basic notions connected to time scales,
we refer the readers to the books [2, 3] and the papers [4,
5], which are useful references for calculus on time scales.
Hereafter, we use the notation [𝑎, 𝑏]T to indicate the time scale
interval [𝑎, 𝑏]∩T .The intervals [𝑎, 𝑏)T , (𝑎, 𝑏]T , and (𝑎, 𝑏)T are
similarly defined.

Let T be a time scale such that 𝑎 ∈ ([𝑎, 𝑏]T )𝜅 and 𝑏 ∈

([𝑎, 𝑏]T )
𝜅. We are concerned with existence of solutions of the

following integral boundary value problem (IBVP):

−[𝑝 (𝑡) 𝑥
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏]T ,
(5)

𝛼𝑥 (𝜌 (𝑎)) − 𝛽𝑥
[Δ]

(𝜌 (𝑎)) = ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑥 (𝑠)) ∇𝑠, (6)

𝛾𝑥 (𝑏) + 𝛿𝑥
[Δ]

(𝑏) = ∫

𝑏

𝜌(𝑎)

ℎ
2
(𝑥 (𝑠)) ∇𝑠, (7)
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where𝑓 : [𝜌(𝑎), 𝜎(𝑏)]×R → R and ℎ
𝑖
: R → R are continu-

ous, 𝑝(𝑡) > 0, 𝑞(𝑡) > 0, 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0, 𝛼+𝛽 > 0, and 𝛾+𝛿 > 0,
and 𝑥

[Δ]

(𝑡) = 𝑝(𝑡)𝑥
Δ

(𝑡).
We would like to mention some results of Khan [6], Yang

[7], Ahmad et al. [8], and Atici and Guseinov [9] which
motivate us to consider the problem (5)–(7). In [6], Khan
considered themethod of quasilinearization for the nonlinear
boundary value problem with integral boundary conditions

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥) , 𝑡 ∈ [0, 1] ,

𝑥 (0) − 𝑘
1
𝑥


(0) = ∫

1

0

ℎ
1
(𝑥 (𝑠)) 𝑑𝑠,

𝑥 (1) + 𝑘
2
𝑥


(1) = ∫

1

0

ℎ
2
(𝑥 (𝑠)) 𝑑𝑠,

(8)

where 𝑓 : [0, 1] × R → R and ℎ
𝑖
: R → R (𝑖 = 1, 2)

are continuous functions and 𝑘
𝑖
are nonnegative constants.

He obtained some results for the existence of solutions
in an ordered interval generated by the lower and upper
solutions of the boundary value problem. Our work will
extend some known results which Khan obtained in [6] for
integral boundary value problems to any time scales.

Boundary value problems with integral boundary con-
ditions constitute a very interesting and important class
of problems. Various problems in heat conduction, chem-
ical engineering, underground water flow, thermoelasticity,
population dynamics, and plasmaphysics [8, 10–12] can be
reduced to the problems with integral boundary conditions.
For more details of boundary value problems involving
integral boundary conditions, see, for instance, [6, 13–19] and
references therein. Also this type of problems includes two-
point, three-point, and multipoint boundary value problems
as special cases [4, 5, 7, 20] and the references therein.

In this section, we obtain some inequalities needed later
for certain Green’s function. In Section 2, the main tool used
in the proof of existence of solutions for the IBVP (5)–(7),
is a fixed point theorem in a cone, result due to Schauder
[21]. Besides this, in this section, we prove the existence
of solutions which will lie between the lower and upper
solutionswhen the lower solution is under the upper solution.

To obtain a solution for the IBVP (5)–(7), we need a
mapping whose kernel 𝐺(𝑡, 𝑠) is the Green’s function of the
equation

−[𝑝 (𝑡) 𝑥
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑥 (𝑡) = 𝑔 (𝑡) , 𝑡 ∈ [𝑎, 𝑏]T
(9)

with the integral boundary conditions (6)-(7).
In [9], Atici and Guseinov have shown that the solution

𝑥(𝑡) of the nonhomogeneous equation (9) with the nonho-
mogeneous boundary condition

𝛼𝑥 (𝜌 (𝑎)) − 𝛽𝑥
[Δ]

(𝜌 (𝑎)) = 𝑑
1
,

𝛾𝑥 (𝑏) + 𝛿𝑥
[Δ]

(𝑏) = 𝑑
2

(10)

is given by

𝑥 (𝑡) = 𝑤 (𝑡) +

1

𝐷

∫

𝑏

𝜌(𝑎)

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) ∇𝑠, (11)

where

𝑤 (𝑡) =

1

𝐷

{𝜃 (𝑡) 𝑑
2
− 𝜑 (𝑡) 𝑑

1
} , (12)

𝐷 = −𝑊
𝑡
[𝜃, 𝜑]

= 𝜑 (𝑡) 𝜃
[Δ]

(𝑡) − 𝜑
[Δ]

(𝑡) 𝜃 (𝑡) .

(13)

Since the Wronskian of two solutions of the correspond-
ing homogeneous equation

−[𝑝 (𝑡) 𝑥
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑥 (𝑡) = 0, (14)

under the initial conditions

𝜃 (𝜌 (𝑎)) = 𝛽, 𝜃
[Δ]

(𝜌 (𝑎)) = 𝛼,

𝜑 (𝑏) = 𝛿, 𝜑
[Δ]

(𝑏) = −𝛾

(15)

is independent of 𝑡 ∈ [𝜌(𝑎), 𝜎(𝑏)]T , taking 𝑡 = 𝜌(𝑎) and 𝑡 = 𝑏

in (13), we find 𝐷 = 𝛼𝜑(𝜌(𝑎)) − 𝛽𝜑
[Δ]

(𝜌(𝑎)) = 𝛿𝜃
[Δ]

(𝑏) +

𝛾𝜃(𝑏) ̸= 0, where 𝜃(𝑡) and 𝜑(𝑡) are the linearly independent
solutions of (14) subject to conditions (15).

In our problem, we can easily see that the solution of the
IBVP (5)–(7) is

𝑥 (𝑡) = 𝑃 (𝑡) +

1

𝐷

∫

𝑏

𝜌(𝑎)

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) ∇𝑠, (16)

where

𝑃 (𝑡) =

1

𝐷

{𝜃 (𝑡) ∫

𝑏

𝜌(𝑎)

ℎ
2
(𝑥 (𝑠)) ∇𝑠

− 𝜑 (𝑡) ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑥 (𝑠)) ∇𝑠} .

(17)

The Green’s function in this formula is

𝐺 (𝑡, 𝑠) = {

𝜃 (𝑠) 𝜑 (𝑡) , 𝑠 ≤ 𝑡,

𝜃 (𝑡) 𝜑 (𝑠) , 𝑠 ≥ 𝑡 .

(18)

Lemma 1. Let 𝜃(𝑡) and 𝜑(𝑡) be the solutions of (14) under
conditions (15). Then, 𝜃(𝑡) is strictly increasing and positive
on [𝜌(𝑎), 𝜎(𝑏)]T , and 𝜑(𝑡) is strictly decreasing and positive on
[𝜌(𝑎), 𝑏]T .

Proof. In [9], it is shown by Lemma 5.1 that the solutions 𝜃
and 𝜑 of the BVP (14)-(15) possess the following properties:

𝜃 (𝑡) > 0, ∀𝑡 ∈ (𝜌 (𝑎) , 𝜎 (𝑏)]
T
, (19)

𝜑 (𝑡) > 0, ∀𝑡 ∈ [𝜌 (𝑎) , 𝑏)
T
. (20)

Suppose that there exists at least one 𝑟 ∈ (𝜌(𝑎), 𝜎(𝑏)]T such
𝜃
Δ

(𝑟) ≤ 0. From (19) and (14), we obtain

[𝑝 (𝑡) 𝜃
Δ

(𝑡)]

∇

= 𝑞 (𝑡) 𝜃 (𝑡) > 0, (21)
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and integrating over [𝜌(𝑎), 𝑟]T , we get

𝑝 (𝑟) 𝜃
Δ

(𝑟) = 𝑝 (𝜌 (𝑎)) 𝜃
Δ

(𝜌 (𝑎)) + ∫

𝑟

𝜌(𝑎)

𝑞 (𝑡) 𝜃 (𝑡) ∇𝑡. (22)

Since 𝑝(𝜌(𝑎)) > 0, 𝜃Δ(𝜌(𝑎)) ≥ 0, 𝑞(𝑡) > 0, and 𝜃(𝑡) > 0,
we obtain 𝑝(𝑟)𝜃

Δ

(𝑟) > 0. Thus, we determine 𝜃
Δ

(𝑟) > 0.
This contradiction shows that the solution 𝜃(𝑡) is strictly
increasing and positive on [𝜌(𝑎), 𝜎(𝑏)]T as desired. Similar
arguments can be applied for the proof of 𝜑Δ(𝑡) < 0 and
𝜑(𝑡) > 0 on [𝜌(𝑎), 𝑏]T .

Lemma 2. TheGreen’s function𝐺(𝑡, 𝑠) defined by (18) satisfies
the inequality 𝐺(𝑡, 𝑠) = 𝐺(𝑠, 𝑡) > 0, for all (𝑡, 𝑠) ∈ [𝜌(𝑎), 𝑏]T ×

[𝜌(𝑎), 𝑏]T and 𝐺(𝑡, 𝑠) ≤ 𝜃(𝜎(𝑏))𝜑(𝜌(𝑎)).

Lemma 3. Let𝐺(𝑡, 𝑠) be defined by (14).Then, there results are

𝐺 (𝑡, 𝑠) ≥ ℎ (𝑡) 𝐺 (𝑡
0
, 𝑠) , 𝑡, 𝑡

0
, 𝑠 ∈ (𝜌 (𝑎) , 𝑏)

T
, (23)

where

ℎ (𝑡) =

1

𝑀

min {𝜃 (𝑡) , 𝜑 (𝑡)} ,

𝑀 = max {𝜃 (𝜎 (𝑏)) , 𝜑 (𝜌 (𝑎))} .

(24)

Proof. For this purpose, we have four cases which are 𝑡, 𝑡
0
≤ 𝑠,

𝑡, 𝑡
0
≥ 𝑠, 𝑡 ≤ 𝑠 ≤ 𝑡

0
, and 𝑡

0
≤ 𝑠 ≤ 𝑡. We consider only two

cases; the others can be shown similarly.

Case 1. Let 𝑡
0
≤ 𝑠 ≤ 𝑡. By using Lemma 1, we get

𝐺 (𝑡, 𝑠)

𝐺 (𝑡
0
, 𝑠)

≥

𝜑 (𝑡) 𝜃 (𝑠)

𝜃 (𝑠) 𝜑 (𝑡
0
)

≥

𝜑 (𝑡)

𝜑 (𝑡
0
)

≥

𝜑 (𝑡)

𝜑 (𝜌 (𝑎))

≥

min {𝜃 (𝑡) , 𝜑 (𝑡)}

𝑀

= ℎ (𝑡) .

(25)

Case 2. Let 𝑡
0
≤ 𝑡 ≤ 𝑠 and 𝑡 ≤ 𝑡

0
≤ 𝑠. By using Lemma 1, we

get

𝐺 (𝑡, 𝑠)

𝐺 (𝑡
0
, 𝑠)

=

𝜃 (𝑡) 𝜑 (𝑠)

𝜃 (𝑡
0
) 𝜃 (𝑠)

≥

𝜃 (𝑡) 𝜑 (𝑡
0
)

𝜃 (𝜎 (𝑏)) 𝜑 (𝑡
0
)

=

𝜃 (𝑡)

𝜃 (𝜎 (𝑏))

≥

min {𝜃 (𝑡) , 𝜑 (𝑡)}

𝑀

= ℎ (𝑡) .

(26)

From these cases, we hold 𝐺(𝑡, 𝑠) ≥ ℎ(𝑡)𝐺(𝑡
0
, 𝑠).

Also, we get

|𝑃 (𝑡)| ≤











1

𝐷

{𝜃 (𝑡) ∫

𝑏

𝜌(𝑎)

ℎ
2
(𝑥 (𝑠)) ∇𝑠

+ 𝜑 (𝑡) ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑥 (𝑠)) ∇𝑠}











≤

𝑀

𝐷

∫

𝑏

𝜌(𝑎)





ℎ
1
(𝑥 (𝑠))





+




ℎ
2
(𝑥 (𝑠))





∇𝑠 := 𝑅.

(27)

2. Existence of Solutions

We will consider the Banach space 𝐵 = {𝑥 : 𝑥 ∈ 𝐶[𝜌(𝑎),

𝜎(𝑏)]T }, with the norm ‖𝑥‖ = max
𝑡∈[𝜌(𝑎),𝜎(𝑏)]T

|𝑥(𝑡)|.

Theorem 4. Assume that the function 𝑓(𝑡, 𝜉) is continuous
with respect to 𝜉 ∈ 𝑅. If𝑁 > 0 satisfies

DR +𝑀
2

𝑄 (𝑏 − 𝜌 (𝑎)) ≤ ND, (28)

where 𝑄 > 0 satisfies

𝑄 ≥ max
‖𝑥‖≤𝑁





𝑓 (𝑡, 𝑥)





, 𝑓𝑜𝑟 𝑡 ∈ [𝜌 (𝑎) , 𝑏]

T
, (29)

then the IBVP (5)–(7) has a solution 𝑥(𝑡).

Proof. Let 𝐾 := {𝑥 ∈ 𝐵 : ‖𝑥‖ ≤ 𝑁}. Note that 𝐾 is closed,
bounded, and convex subset of 𝐵 to which the Schauder fixed
point theorem is applicable. Define 𝐴 : 𝐾 → 𝐵 by

𝐴𝑥 (𝑡) := 𝑃 (𝑡) +

1

𝐷

∫

𝑏

𝜌(𝑎)

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) ∇𝑠, (30)

for 𝑡 ∈ [𝜌(𝑎), 𝑏]T . Obviously, the solutions of problem (5)–(7)
are the fixed points of operator 𝐴. In view of the continuity
of the function 𝑓(𝑡, 𝑥(𝑡)), it follows that 𝐴 : 𝐾 → 𝐵 is
continuous.

Now, we show that 𝐴 : 𝐾 → 𝐾. Let 𝑥 ∈ 𝐾. Consider

|𝐴𝑥 (𝑡)| =











𝑃 (𝑡) +

1

𝐷

∫

𝑏

𝜌(𝑎)

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) ∇𝑠











≤ |𝑃 (𝑡)| +

1

𝐷

∫

𝑏

𝜌(𝑎)

|𝐺 (𝑡, 𝑠)|




𝑓 (𝑠, 𝑥 (𝑠))





∇𝑠

≤ 𝑅 +

𝑀
2

𝐷

∫

𝑏

𝜌(𝑎)





𝑓 (𝑠, 𝑥 (𝑠))





∇𝑠

≤ 𝑅 +

𝑀
2

𝑄 (𝑏 − 𝜌 (𝑎))

𝐷

≤ 𝑁

(31)

for every 𝑡 ∈ [𝜌(𝑎), 𝑏]T . This implies that ‖ 𝐴𝑥 ‖≤ 𝑁.
Thus, all functions which belong to 𝐴(𝐾) are equi-

bounded and 𝐴(𝐾) ⊂ 𝐾. The uniform continuity of the
𝐺(𝑡, 𝑠) and 𝑓(𝑡, 𝑥) implies that all functions in𝐴(𝐾) are equi-
continuous. So, by Arzela-Ascoli theorem, the operator 𝐴 :

𝐾 → 𝐾 is compact. Hence, 𝐴 has a fixed point in 𝐾 by
Schauder fixed point theorem.

Corollary 5. If𝑓 is continuous and bounded on [𝜌(𝑎), 𝑏]T×R,
then the IBVP (5)–(7) has a solution.

Let us define the set 𝑆 by

𝑆 := {𝑥 : 𝑥
Δ is continuous on [𝜌 (𝑎) , 𝑏]

T
and 𝑝𝑥

Δ

is nabla differentiable on [𝑎, 𝑏]T and (𝑝𝑥
Δ

)

∇

is ld-continuous on [𝑎, 𝑏]T} .

(32)

For any 𝑢, V ∈ 𝑆, we define the sector [𝑢, V] by

[𝑢, V] := {𝑤 ∈ 𝐸 : 𝑢 ≤ 𝑤 ≤ V} . (33)
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Definition 6. A real valued function 𝑢(𝑡) ∈ 𝑆 on [𝜌(𝑎), 𝑏]T is
a lower solution for IBVP (5)–(7) if

−[𝑝 (𝑡) 𝑢
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑢 (𝑡) ≤ 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏]T ,

𝛼𝑢 (𝜌 (𝑎)) − 𝛽𝑢
[Δ]

(𝜌 (𝑎)) ≤ ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑢 (𝑠)) ∇𝑠,

𝛾𝑢 (𝑏) + 𝛿𝑢
[Δ]

(𝑏) ≤ ∫

𝑏

𝜌(𝑎)

ℎ
2
(𝑢 (𝑠)) ∇𝑠.

(34)

Similarly, real valued function V(𝑡) ∈ 𝑆 on [𝜌(𝑎), 𝑏]T is an
upper solution for IBVP (5)–(7) if the inequalities in (34) are
satisfied in the reverse direction for V(𝑡).

Theorem 7. Assume that 𝑢 and V are, respectively, lower and
upper solutions of (5)–(7). If 𝑓 : [𝜌(𝑎), 𝜎(𝑏)]T × R → R

is continuous, ℎ
𝑖
: R → R (𝑖 = 1, 2) are continuously

differentiable, 𝑓(𝑡, 𝑥) is decreasing in 𝑥 for 𝑡 ∈ [𝜌(𝑎), 𝑏]T , and
0 ≤ ℎ


1
(𝑥) < 𝛼/(𝑏 − 𝜌(𝑎)), then

𝑢 (𝑡) ≤ V (𝑡) , 𝑡 ∈ [𝜌 (𝑎) , 𝑏)
T
. (35)

Proof. Define𝑔 := 𝑢−V. For the sake of contradiction, assume
that the result is not true on [𝜌(𝑎), 𝑏)T .Then, the function𝑔(𝑡)
has a positive maximum at 𝑡

0
∈ (𝜌(𝑎), 𝑏)T and (𝑢 − V)(𝑡) <

(𝑢 − V)(𝑡
0
) for 𝑡 ∈ (𝑡

0
, 𝑏)T . So, we have 𝑔(𝑡0) > 0, 𝑔Δ(𝑡

0
) ≤ 0,

and (𝑝𝑔
Δ

)
∇

(𝑡
0
) ≤ 0; hence,

−[𝑝 (𝑡
0
) 𝑔
Δ

(𝑡
0
)]

∇

≤ −[𝑝 (𝑡
0
) 𝑔
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) 𝑔 (𝑡
0
)

= −[𝑝 (𝑡
0
) 𝑢
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) 𝑢 (𝑡
0
)

− {−[𝑝 (𝑡
0
) V
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) V (𝑡
0
)}

≤ 𝑓 (𝑡
0
, 𝑢 (𝑡
0
)) − 𝑓 (𝑡

0
, V (𝑡
0
)) < 0,

(36)

a contradiction. If 𝑡
0
= 𝜌(𝑎), then 𝑔(𝜌(𝑎)) > 0 and 𝑔Δ(𝜌(𝑎)) ≤

0. Using the boundary conditions, we have

𝛼𝑔 (𝜌 (𝑎)) ≤ 𝛽𝑝 (𝜌 (𝑎)) 𝑔
Δ

(𝜌 (𝑎))

+ ∫

𝑏

𝜌(𝑎)

(ℎ
1
(𝑢 (𝑠)) − ℎ

1
(V (𝑠))) ∇𝑠

≤ ∫

𝑏

𝜌(𝑎)

(ℎ
1
(𝑢 (𝑠)) − ℎ

1
(V (𝑠))) ∇𝑠.

(37)

On the other hand, using the mean value theorem and the
assumption on ℎ

1
(𝑥), we obtain

𝛼𝑔 (𝜌 (𝑎)) ≤ ∫

𝑏

𝜌(𝑎)

ℎ


1
(𝑐) 𝑔 (𝑠) ∇𝑠

<

𝛼

𝑏 − 𝜌 (𝑎)

∫

𝑏

𝜌(𝑎)

𝑔 (𝑠) ∇𝑠

<

𝛼

𝑏 − 𝜌 (𝑎)

max
𝑡∈[𝜌(𝑎),𝑏)T

𝑔 (𝑡) (𝑏 − 𝜌 (𝑎))

< 𝛼𝑔 (𝜌 (𝑎)) ,

(38)

where 𝑐 ∈ (𝑢(𝑠), V(𝑠)), a contradiction. Hence,

𝑢 (𝑡) ≤ V (𝑡) , 𝑡 ∈ [𝜌 (𝑎) , 𝑏)
T
. (39)

Now, we state and prove the existence and uniqueness of
solutions in an ordered interval generated by the lower and
upper solutions of the boundary value problem.

Theorem 8. Assume that 𝑢 and V are, respectively, lower
and upper solutions of (5)–(7) such that 𝑢(𝑡) ≤ V(𝑡), 𝑡 ∈

[𝜌(𝑎), 𝜎(𝑏)]T . If 𝑓 : [𝜌(𝑎), 𝜎(𝑏)]T × R → R and ℎ
𝑖
: R → R

(𝑖 = 1, 2) are continuously differentiable and ℎ


1
(𝑥) ≥ 0, then

there exists a solution 𝑥(𝑡) of (5)–(7) such that

𝑢 (𝑡) ≤ 𝑥 (𝑡) ≤ V (𝑡) , 𝑡 ∈ [𝜌 (𝑎) , 𝑏)
T
. (40)

Proof. Define the following modifications of 𝑓(𝑡, 𝑥) and
ℎ
𝑖
(𝑥), 𝑖 = 1, 2:

𝐹 (𝑡, 𝑥) =

{
{
{
{
{

{
{
{
{
{

{

𝑓 (𝑡, V (𝑡)) +
𝑥 − V (𝑡)

1 + |𝑥 − V|
, 𝑥 ≥ V (𝑡) ,

𝑓 (𝑡, 𝑥 (𝑡)) , 𝑢 (𝑡) ≤ 𝑥 ≤ V (𝑡) ,

𝑓 (𝑡, 𝑢 (𝑡)) −

𝑥 − 𝑢 (𝑡)

1 + |𝑥 − 𝑢|

, 𝑥 ≤ 𝑢 (𝑡)

(41)

for 𝑡 ∈ [𝜌(𝑎), 𝜎(𝑏)]T , and

𝐻
𝑖
(𝑥) =

{
{

{
{

{

ℎ
𝑖
(V (𝑡)) , 𝑥 ≥ V (𝑡) ,

ℎ
𝑖
(𝑥 (𝑡)) , 𝑢 (𝑡) ≤ 𝑥 ≤ V (𝑡) ,

ℎ
𝑖
(𝑢 (𝑡)) , 𝑥 ≤ 𝑢 (𝑡) .

(42)

Consider the modified problem

−[𝑝 (𝑡) 𝑥
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑥 (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏]T ,

𝛼𝑥 (𝜌 (𝑎)) − 𝛽𝑥
[Δ]

(𝜌 (𝑎)) = ∫

𝑏

𝜌(𝑎)

𝐻
1
(𝑥 (𝑠)) ∇𝑠,

𝛾𝑥 (𝑏) + 𝛿𝑥
[Δ]

(𝑏) = ∫

𝑏

𝜌(𝑎)

𝐻
2
(𝑥 (𝑠)) ∇𝑠.

(43)
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As 𝐹 : [𝜌(𝑎), 𝜎(𝑏)]T ×R → R and𝐻
𝑖
: R → R (𝑖 = 1, 2)

are continuous and bounded, it follows that the boundary
value problem (43) has a solution. Further, note that

− [𝑝 (𝑡) 𝑢
Δ

(𝑡)]

∇

+ 𝑞 (𝑡) 𝑢 (𝑡) ≤ 𝑓 (𝑡, 𝑢 (𝑡))

= 𝐹 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏]
𝑇
,

𝛼𝑢 (𝜌 (𝑎)) − 𝛽𝑢
[Δ]

(𝜌 (𝑎)) ≤ ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑢 (𝑠)) ∇𝑠

= ∫

𝑏

𝜌(𝑎)

𝐻
1
(𝑢 (𝑠)) ∇𝑠,

𝛾𝑢 (𝑏) + 𝛿𝑢
[Δ]

(𝑏) ≤ ∫

𝑏

𝜌(𝑎)

ℎ
2
(𝑢 (𝑠)) ∇𝑠

= ∫

𝑏

𝜌(𝑎)

𝐻
2
(𝑢 (𝑠)) ∇𝑠,

(44)

which imply that 𝑢(𝑡) is a lower solution of (43). Similarly,
V(𝑡) is an upper solution of (43). We need to show that any
solution 𝑥(𝑡) of (43) is such that 𝑢(𝑡) ≤ 𝑥(𝑡) ≤ V(𝑡), 𝑡 ∈

[𝜌(𝑎), 𝑏)T . Assume that 𝑢(𝑡) ≤ 𝑥(𝑡) is not true on [𝜌(𝑎), 𝑏)T .
Then, the function 𝑘(𝑡) = 𝑢(𝑡)−𝑥(𝑡) has a positive maximum
at 𝑡
0
∈ (𝜌(𝑎), 𝑏)T and (𝑢 − 𝑥)(𝑡) < (𝑢 − 𝑥)(𝑡

0
) for 𝑡 ∈ (𝑡

0
, 𝑏)T .

So, we have 𝑘(𝑡
0
) > 0, 𝑘

Δ

(𝑡
0
) ≤ 0, and (𝑝𝑘

Δ

)
∇

(𝑡
0
) ≤ 0 by

Lemma 6.17 in [3]; hence,

0 ≤ −[𝑝 (𝑡
0
) 𝑘
Δ

(𝑡
0
)]

∇

≤ −[𝑝 (𝑡
0
) 𝑘
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) 𝑘 (𝑡
0
)

= −[𝑝 (𝑡
0
) (𝑢 − 𝑥)

Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) (𝑢 − 𝑥) (𝑡

0
)

= −[𝑝 (𝑡
0
) 𝑢
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) 𝑢 (𝑡
0
)

− {−[𝑝 (𝑡
0
) 𝑥
Δ

(𝑡
0
)]

∇

+ 𝑞 (𝑡
0
) 𝑥 (𝑡
0
)}

≤ 𝑓 (𝑡
0
, 𝑢 (𝑡
0
)) − {𝑓 (𝑡

0
, 𝑢 (𝑡
0
))

−

𝑥 (𝑡
0
) − 𝑢 (𝑡

0
)

1 +




𝑥 (𝑡
0
) − 𝑢 (𝑡

0
)





} < 0,

(45)

a contradiction. If 𝑡
0
= 𝜌(𝑎), then 𝑘(𝜌(𝑎)) > 0 and 𝑘Δ(𝜌(𝑎)) ≤

0, but then the boundary conditions and the nondecreasing
property of ℎ

𝑖
give

𝛼𝑘 (𝜌 (𝑎)) = 𝛼 (𝑢 (𝜌 (𝑎)) − 𝑥 (𝜌 (𝑎)))

≤ 𝛽𝑢
[Δ]

(𝜌 (𝑎)) + ∫

𝑏

𝜌(𝑎)

ℎ
1
(𝑢 (𝑠)) ∇𝑠 − 𝛽𝑥

[Δ]

(𝜌 (𝑎))

− ∫

𝑏

𝜌(𝑎)

𝐻
1
(𝑥 (𝑠)) ∇𝑠

= 𝛽𝑝 (𝜌 (𝑎)) (𝑘
Δ

(𝜌 (𝑎)))

+ ∫

𝑏

𝜌(𝑎)

(ℎ
1
(𝑢 (𝑠)) − 𝐻

1
(𝑥 (𝑠))) ∇𝑠

≤ ∫

𝑏

𝜌(𝑎)

(ℎ
1
(𝑢 (𝑠)) − 𝐻

1
(𝑥 (𝑠))) ∇𝑠.

(46)

If 𝑥 < 𝑢(𝑡), then 𝐻
1
(𝑥(𝑠)) = ℎ

1
(𝑢(𝑠)), and, hence,

𝛼𝑘(𝜌(𝑎)) ≤ 0, a contradiction. If 𝑥 > V(𝑡), then 𝐻
1
(𝑥(𝑠)) =

ℎ
1
(V(𝑠)) ≥ ℎ

1
(𝑢(𝑠)), which implies 𝛼𝑘(𝜌(𝑎)) ≤ 0, a contradic-

tion. Hence, 𝑢(𝑡) ≤ 𝑥(𝑡) ≤ V(𝑡) and 𝐻
1
(𝑥(𝑠)) = ℎ

1
(𝑥(𝑠)) ≥

ℎ
1
(𝑢(𝑠)) and 𝛼𝑘(𝜌(𝑎)) ≤ 0, another contradiction.

We can illustrate our results in the following examples.

Example 9. Let T be any time scales such that 1 ∈ ([0, 1]T )
𝜅

and 0 ∈ ([0, 1]T )𝜅. We consider the following IBVP:

−𝑥
Δ∇

(𝑡) = sin𝑥 (𝑡) , 𝑡 ∈ [0, 1]T ,

2𝑥 (𝜌 (0)) − 𝑥
Δ

(𝜌 (0)) = ∫

1

𝜌(0)

𝑥 (𝑠) ∇𝑠,

𝑥 (1) − 2𝑥
Δ

(1) = ∫

1

𝜌(0)

𝑥 (𝑠) ∇𝑠.

(47)

From (15), we have 𝜃(𝑡) = 2(𝑡 − 𝜌(0)) + 1 and 𝜑(𝑡) = −𝑡 − 1.
We calculate easily

𝑀 = max {𝜃 (𝜎 (1)) , 𝜑 (𝜌 (0)) }

= max {2 (𝜎 (1) − 𝜌 (0)) + 1, −𝜌 (0) − 1}

= 2 (𝜎 (1) − 𝜌 (0)) + 1,

𝐷 = 𝜑 (𝑡) 𝜃
Δ

(𝑡) − 𝜑
Δ

(𝑡) 𝜃 (𝑡)

= (−𝑡 − 1) 2 − (−1) (2 (𝑡 − 𝜌 (0)) + 1) .

(48)

For 𝑡 = 1 or 𝑡 = 𝜌(0),𝐷 = −1 − 2𝜌(0).
We have

|𝑃 (𝑡)| ≤

𝑀

𝐷

∫

1

𝜌(0)

[




ℎ
1
(𝑥 (𝑠))





+




ℎ
2
(𝑥 (𝑠))





] ∇𝑠

=

2 (𝜎 (1) − 𝜌 (0)) + 1

−1 − 2𝜌 (0)

∫

1

𝜌(0)

2 |𝑥 (𝑠)| ∇𝑠

≤

2 (𝜎 (1) − 𝜌 (0)) + 1

−1 − 2𝜌 (0)

2𝑄 (1 − 𝜌 (0)) := 𝑅,

(49)

where 𝑄 = max
𝑡∈[𝜌(0),1]

|𝑥(𝑡)|. Since max
‖𝑥‖≤𝑁

|𝑓(𝑡, 𝑥)| =

max
‖𝑥‖≤𝑁

| sin𝑥(𝑡)| ≤ max
‖𝑥‖≤𝑁

|𝑥(𝑡)| ≤‖ 𝑥 ‖≤ 𝑁 ≤ 𝑄 for
𝑡 ∈ [𝜌(0), 1], there exists a positive real number 𝑁 which
satisfies 𝑅 + 𝑀

2

𝑄(1 − 𝜌(0))/𝐷 ≤ 𝑁 for the positive Q, and
then all condition in Theorem 4 are satisfied. Therefore, the
IBVP (5)–(7) has a solution 𝑥(𝑡).
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Example 10. Let T = [0, 1/4] ∪ {1/3} ∪ [1/2, 2]. We consider
the following IBVP:

−𝑥
Δ∇

(𝑡) + 𝑥 (𝑡) = 𝑒
−𝑥(𝑡)

, 𝑡 ∈ [0, 1]T ,

2𝑥 (𝜌 (0)) − 𝑥
Δ

(𝜌 (0)) = ∫

1

𝜌(0)

𝑥
2

(𝑠) ∇𝑠,

𝑥 (1) + 2𝑥
Δ

(1) = ∫

1

𝜌(0)

𝑥 (𝑠) ∇𝑠.

(50)

For 𝑢(𝑡) = −1, we get

−𝑢
Δ∇

(𝑡) + 𝑢 (𝑡) = −1 ≤ 𝑒
1

, 𝑡 ∈ [0, 1]T ,

2 (−1) − 0 ≤ ∫

1

𝜌(0)

(−1)
2

∇𝑠 = 1,

(−1) + 0 ≤ ∫

1

𝜌(0)

(−1) ∇𝑠 = −1.

(51)

Thus, 𝑢(𝑡) = −1 is the lower solution.
For V(𝑡) = 1, we get

−V
Δ∇

(𝑡) + V (𝑡) = 1 ≥ 𝑒
−1

, 𝑡 ∈ [0, 1]T ,

2 (1) − 0 ≥ ∫

1

𝜌(0)

(1)
2

∇𝑠 = 1,

(1) + 0 ≥ ∫

1

𝜌(0)

(1) ∇𝑠 = 1.

(52)

Thus, V(𝑡) = 1 is the upper solution.
Theorem 8 implies that IBVP has a solution 𝑥(𝑡) such that

−1 ≤ 𝑥 (𝑡) ≤ 1, 𝑡 ∈ [𝜌 (0) , 1)
T
. (53)

Example 11. Let T be any time scales such that 1 ∈ ([0, 1]T )
𝜅

and 0 ∈ ([0, 1]T )𝜅. We consider the following IBVP:

−[(𝑡 + 1) 𝑥
Δ

(𝑡)]

∇

+ 𝑒
𝑡

𝑥 (𝑡) = sin𝑥 (𝑡) − 𝑥 (𝑡) , 𝑡 ∈ [0, 1]T ,

4 (1 − 𝜌 (0)) 𝑥 (𝜌 (0)) − 3𝑡𝑥
Δ

(𝜌 (0)) = ∫

1

𝜌(0)

𝑥
3

(𝑠)∇𝑠,

16 (1 − 𝜌 (0)) 𝑥 (1) − 2𝑡𝑥
Δ

(1) = ∫

1

𝜌(0)

𝑥
5

(𝑠)∇𝑠.

(54)

Let 𝑢(𝑡) = 0. We can easily see that 𝑢(𝑡) satisfies all conditions
of a lower solution. Hence, 𝑢(𝑡) = 0 is the lower solution.

Let V(𝑡) = 𝜋/2, and

−[(𝑡 + 1) V
Δ

(𝑡)]

∇

+ 𝑒
𝑡

V (𝑡) = 𝑒
𝑡
𝜋

2

≥ 1 −

𝜋

2

= sin V (𝑡) − V (𝑡) , 𝑡 ∈ [0, 1]T .

(55)

We get (𝑒𝑡 + 1)(𝜋/2) ≥ 1. From

4 (1 − 𝜌 (0))

𝜋

2

− 0 ≥ ∫

1

𝜌(0)

(

𝜋

2

)

3

∇𝑠

= (

𝜋

2

)

3

(1 − 𝜌 (0)) ,

(56)

we get 16 ≥ 𝜋
2, and from

16 (1 − 𝜌 (0))

𝜋

2

− 0 ≥ ∫

1

𝜌(0)

(

𝜋

2

)

5

(𝑠) ∇𝑠

= (

𝜋

2

)

5

(1 − 𝜌 (0)) ,

(57)

we get 256 ≥ 𝜋
4. Thus, V(𝑡) = 𝜋/2 is the upper solution.

Theorem 8 implies that IBVP has a solution 𝑥(𝑡) such that

0 ≤ 𝑥 (𝑡) ≤

𝜋

2

, 𝑡 ∈ [𝜌 (0) , 1)
T
. (58)
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