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We investigate the number of periodic solutions of second-order asymptotically linear difference system.Themain tools are Morse
theory and twist number, and the discussion in this paper is divided into three cases. As the system is resonant at infinity, we use
perturbation method to study the compactness condition of functional. We obtain some new results concerning the lower bounds
of the nonconstant periodic solutions for discrete system.

1. Introduction

In this paper we are interested in the lower bound of the
number of periodic solutions for second-order autonomous
difference system
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Discrete systems have been investigated by many authors
using various methods, and many interesting results have
obtained; see [1–7] and references therein. The critical point
theory [8, 9] is a useful tool to investigate differential
equations, which is developed to study difference equations.
Using minimax methods in critical point theory, Guo and
Yu [10, 11] investigated the existence of periodic and subhar-
monic solutions of system (1), where nonlinearity 𝑓 is either
sublinear or superlinear. In this paper, we assume that
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where | ⋅ | denotes the usual norm inR𝑁. Moreover there exist
functions𝐹,𝐺 such that𝐹󸀠
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the gradient of function.

System (1) can be regarded as discrete analogous of the
following differential system:

−Δ𝑢 = 𝑓 (𝑢) . (3)

A great deal of research has been devoted to (3). For example,
by using minimax theory, Rabinowitz [12] has given some
interesting results, and Mawhin and Willem [9] obtained
some results using the critical point theory. Moreover, there
is a vast literature on the problems concerning periodic
solutions, BVP, asymptotically behavior of solutions, and so
forth.

Morse theory [8, 9, 13–16] has been used to solve
the asymptotically linear problem. Chang [17], Amann and
Zehnder [18] obtained the existence of three distinct solutions
via Morse theory, where (3) was nonresonant at infinity.
Moreover, the resonant case has been considered in [19–
23]. The estimate of number of periodic solutions of (3) was
established in [24]. Motivated by [24], we will use Morse
theory to consider the lower bound of number of periodic
solutions for system (1).

Throughout this paper we employ some standard nota-
tions. Denote by R,Z the real number and the integer sets,
respectively.R𝑁 is the real space with dimension𝑁.𝑍[𝑎, 𝑏] =
{𝑎, 𝑎 + 1, . . . , 𝑏} if 𝑎 ≤ 𝑏 and 𝑎, 𝑏 ∈ Z. 𝐴𝑇 or 𝑥𝑇 denotes the
transpose of matrix 𝐴 or vector 𝑥.

If 𝑔(𝑡) and 𝐺(𝑡) are bounded on R𝑁, and system (1)
is 𝑝-resonant at ∞, then functional 𝐽 does not satisfy the
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compactness condition of the Palais-Smale type. Therefore
our discussion will be divided into three cases. Moreover, we
assume that

(P2) 𝐽 has a finite number of nondegenerated critical
points;

(P3) all 𝑝-periodic solutions of system (1) are not 𝑝-
resonant;
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Now we state the main results as follows.

Theorem 1. Assume that (P1)–(P4) hold, and system (1) is not
𝑝-resonant at∞. Then
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where 𝑛(𝑝) is the number of the nonconstant 𝑝-periodic
solutions of system (1), Θ is the global twist number (see (32)),
and ℎ will be defined in Section 3.

Theorem 2. Assume that (P1)–(P4) hold, system (1) is 𝑝-
resonant at ∞, and 𝑔(𝑡) is bounded in R𝑁, lim

|𝑡| → +∞
𝐺(𝑡) =

−∞. Then (4) is valid.

Theorem 3. Assume that (P1)–(P4) hold, system (1) is 𝑝-
resonant at∞, and 𝑔(𝑡), 𝐺(𝑡) are bounded in R𝑁. Then

𝑛 (𝑝) ≥
1

2
Θ𝑝 − ℎ (𝑝𝑁 + 1) . (5)

Remark 4. Benci and Fortunato [24] studied asymptotically
linear equation (3). Theorem 1 extends and generalizes the
analogous results in [24], andTheorems 2-3 are new results.

The organization of this paper is organized as follows. In
Section 2 we study the compactness condition for functional
𝐽. Some facts aboutMorse theory andnecessary preliminaries
are given in Section 3. In Section 4 the main results are
proved.

2. (PS) Condition

We say that a 𝐶1-functional 𝜙 on Hilbert space 𝑋 satisfies
the Palais-Smale (PS) condition, if every sequence {𝑥(𝑗)
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where (⋅, ⋅) and | ⋅ | are the usual inner product and norm
in R𝑁, respectively. Obviously, 𝐸

𝑝
is a Hilbert space with

dimension 𝑝𝑁 and homeomorphism to R𝑝𝑁.
By the variational method, the 𝑝-periodic solutions of (1)
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Consider eigenvalue problem
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where [⋅] stands for the greatest-integer function. In terms of
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Let us recall the definition of resonance (see [24]).
A 𝑝-periodic solution {𝑥

𝑛
} of (1) is called 𝑝-resonance,
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denotes the Hessian matrix of 𝐹 and 𝜎(⋅) is the spectrum
of matrix. We say that (1) is 𝑝-resonant at ∞, if there exists
𝜆
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(𝑘𝜋/𝑝) ∈ 𝜎(𝐴
∞
).

Lemma 5. Assume that (P1) and (P4) hold, and system (1) is
not 𝑝-resonant at ∞. Then functional 𝐽 (see (8)) satisfies the
(PS) condition.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽;
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By 𝑊0
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it follows a contradiction. Therefore {𝑢
(𝑗)
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𝑝
. This completes the proof.

Here and in the sequel, the letter𝛿will be indiscriminately
used to denote various positive constants whose exact values
are irrelevant, and 𝜀 ∈ (0, 1) is arbitrarily small. Moreover we
also denote by 𝑐 the various positive constants in this paper.

Lemma 6. Assume that (P1) and (P4) hold. System (1) is 𝑝-
resonant at ∞, 𝑔(𝑡) is bounded in R𝑁, and lim

|𝑡| → +∞
𝐺(𝑡) =

−∞. Then 𝐽 satisfies the (PS) condition.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽;

that is, {𝐽(𝑥(𝑗)
)} is bounded, and 𝐽󸀠

(𝑥
(𝑗)
) → 0 as 𝑗 → ∞.

Since system (1) is 𝑝-resonant at ∞, 𝑊0
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follows that {𝑢(𝑗)
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. Next we prove

that {𝑤(𝑗)
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∑
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𝑛
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𝑛
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∑
𝑝
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𝐺(𝑤

(𝑗)

𝑛
)| ≤ sup

𝑡∈𝐸𝑝
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𝐺(𝑤

(𝑗)

𝑛
)

is bounded. It is easy to see fromassumption lim
|𝑡| → +∞

𝐺(𝑡) =

−∞ that {𝑤(𝑗)
} is bounded. The proof is completed.

If we assume that𝐺(𝑡), 𝑔(𝑡) are bounded and system (1) is
𝑝-resonant at∞, then functional 𝐽 does not satisfy the (PS)
condition. In order to overcome the difficult arising from the
lack of compactness condition, we use a suitable penalization
technique (one can refer to [20, 24]) and add a perturbation
term to the functional 𝐽. Define

𝜑
𝑅
(𝑡) = {

(𝑡 − 𝑅)
4
, if 𝑡 > 𝑅,

0, if 𝑡 ≤ 𝑅,
(17)

where 𝑅 is a positive real number and the penalized func-
tional is given by

𝐽
𝑅
(𝑥) = 𝐽 (𝑥) + 𝜑

𝑅
(‖𝑤‖

2
) , (18)

where 𝑥 = 𝑢 + V + 𝑤 ∈ 𝑊
+
⊕𝑊

−
⊕𝑊

0. Obviously, if 𝑥 ∈ 𝐸
𝑝
is

a critical point of 𝐽
𝑅
with ‖𝑤‖2

≤ 𝑅, then 𝑥 is also the critical
point of 𝐽.

Lemma 7. Assume that (P1) and (P4) hold, 𝐺(𝑡), 𝑔(𝑡) are
bounded in R𝑁, and system (1) is 𝑝-resonant at ∞. Then 𝐽

𝑅

satisfies the (PS) condition. Moreover, for any critical point 𝑥
of 𝐽

𝑅
, there exists 𝑀 > 0 such that ‖𝑢 + V‖ ≤ 𝑀, where

𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
, 𝑢 ∈ 𝑊

+
, V ∈ 𝑊−, and 𝑤 ∈ 𝑊

0.

Proof. Let {𝑥(𝑗)
} ⊂ 𝐸

𝑝
be the (PS) sequence for functional 𝐽

𝑅
;

that is, {𝐽
𝑅
(𝑥

(𝑗)
)} is bounded in 𝐸

𝑝
, and for any 𝜑 ∈ 𝐸

𝑝
,

⟨𝐽
󸀠

𝑅
(𝑥

(𝑗)
) , 𝜑⟩ = 𝑜 (

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩) as 𝑗 󳨀→ ∞. (19)

Similarly to the proof of Lemma 5, we need only to prove that
{𝑤

(𝑗)
} is bounded in 𝐸

𝑝
.

Taking 𝜑 = 𝑤
(𝑗) in (19), it follows that 𝑜(‖𝑤(𝑗)

‖) =

⟨𝐽
󸀠

𝑅
(𝑥

(𝑗)
), 𝑤

(𝑗)
⟩ ≥ −𝑐‖𝑤‖+2‖𝑤‖

2
𝜑

󸀠

𝑅
(‖𝑤‖

2
). By the definition of

𝜑
𝑅
, it follows that {𝑤(𝑗)

} is bounded. Therefore the penalized
functional 𝐽

𝑅
satisfies the (PS) condition.

Let 𝑥 be the critical point of 𝐽
𝑅
, then

0 = ⟨𝐽
󸀠

𝑅
(𝑥) , 𝑢 − V⟩ = 𝐼 (𝑢) − 𝐼 (V)

−

𝑝

∑

𝑛=1

(𝑔 (𝑥
𝑛
) , 𝑢

𝑛
− V

𝑛
) ≥ 𝛿‖𝑢 + V‖2

− 𝜀‖𝑢 + V‖2
− 𝑐 ‖𝑢 + V‖ .

(20)

So there is a𝑀 > 0 such that ‖ 𝑢 + V ‖≤ 𝑀, and the proof is
completed.

3. Preliminaries

Let 𝐸 be a real Hilbert space, and let 𝜙 be a 𝐶2-functional on
𝐸. We denote by crit(𝜙) = {𝑥 ∈ 𝐸 | 𝜙

󸀠
(𝑥) = 0} the set of

critical points of 𝜙, 𝜙𝑐
= {𝑥 ∈ 𝐸 | 𝜙(𝑥) ≤ 𝑐} the level set

of 𝜙, and 𝜙𝑏

𝑎
= {𝑥 ∈ 𝐸 | 𝑎 ≤ 𝜙(𝑥) ≤ 𝑏}. In the following we

suppose that 𝜙 is a𝐶2-functional on𝐸which satisfies the (PS)
condition.



4 Abstract and Applied Analysis

Definition 8 (see [9, 14]). Let 𝑥 be a critical point of 𝜙. The
Morse index of 𝑥 by 𝑚(𝑥, 𝜙) is defined as the supremum of
the dimensions of the vector subspace of 𝐸 on which 𝜙

󸀠󸀠

(𝑥) is
negative definite. The nullity of 𝑥 by ](𝑥, 𝜙) is defined as the
dimension of Ker𝜙

󸀠󸀠

(𝑥). A critical point 𝑥 will be said to be
nondegenerate if 𝜙

󸀠󸀠

(𝑥) is invertible.
Denote by𝑚

∞
, ]

∞
the Morse index and nullity of∞ for

functional 𝐽. By (10),𝑚
∞
= dim𝑊

−
, ]

∞
= dim𝑊

0.
A set𝐾 ⊂ 𝐸 is called critical set if𝐾 ⊂ 𝜙

−1
(𝑐) ∩ crit(𝜙) for

some 𝑐 ∈ R. A critical set 𝐾 is called discrete nondegenerate
critical manifold, if 𝐾 is connected and 𝑚(𝑥, 𝜙) does not
depend on 𝑥 ∈ 𝐾.

Definition 9. The Poincare polynomial of the pair (𝜙𝑏
, 𝜙

𝑎
)

is defined by 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) = ∑

∞

𝑛=0
dim𝐻

𝑛
(𝜙

𝑏
, 𝜙

𝑎
; Γ)𝜆

𝑛
, where

𝐻
𝑛
(𝜙

𝑏
, 𝜙

𝑎
; Γ) denotes the 𝑛th singular relative homology

of the pair (𝜙
𝑏
, 𝜙

𝑎
) with coefficients in field Γ. Define

the topological Morse index of critical set 𝐾 as 𝑖
𝜆
(𝐾) =

∑
∞

𝑛=0
dim𝐻

𝑛
(𝜙

𝑐
, 𝜙

𝑐
\ 𝐾; Γ)𝜆

𝑛.
For simplicity, we write𝑚(𝑥) and𝑚(𝐾) instead of𝑚(𝑥, 𝜙)

and 𝑚(𝐾, 𝜙), respectively. It is well known that if 𝑥 is a
nondegenerate critical point and 𝑚(𝑥) is finite, then 𝑖

𝜆
(𝑥) =

𝜆
𝑚(𝑥). If 𝐾 is a nondegenerate critical manifold and 𝑚(𝐾) is

finite, then 𝑖
𝜆
(𝐾) = 𝜆

𝑚(𝐾)
𝑄(𝜆), where 𝑄(𝜆) is a polynomial

with nonnegative integer coefficients (see [13, 15]).

Next we investigate 𝑃
𝜆
(𝐸, 𝜙

𝑎
) and use functional 𝐽 (see

(8)) or 𝐽
𝑅
(see (18)) instead of 𝜙, 𝐸

𝑝
instead of 𝐸.

Lemma 10 (see [19, 24]). Assume that (P1) and (P4) hold, and
system (1) is not 𝑝-resonant at ∞. Then there exists 𝑎 ∈ R,
𝑎 < 𝐽(crit (𝐽)) such that

𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞)
. (21)

Lemma 11. Assume that (P1) and (P4) hold, system (1) is 𝑝-
resonant at∞, lim

|𝑡| → +∞
𝐺(𝑡) = −∞, and 𝑔(𝑡) is bounded in

R𝑁. Then there exists 𝑎 ∈ R, and (21) is valid.

Proof. Write 𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
with 𝑢 ∈ 𝑊+

, V ∈ 𝑊−
, 𝑤 ∈

𝑊
0. Then there exist𝑀

1
> 0, 𝑀

2
> 0 such that ⟨𝐽󸀠

(𝑥), 𝑢⟩ ≥

𝛿‖𝑢‖
2
− 𝑐‖𝑢‖ > 0 as ‖𝑢‖ > 𝑀

1
, ⟨𝐽󸀠

(𝑥), V⟩ ≤ −𝛿‖V‖2
+ 𝑐‖V‖ < 0

as ‖V‖ > 𝑀
2
. Let 𝐵

𝑀1
= {𝑥 ∈ 𝐸

𝑝
| ‖𝑢‖ ≤ 𝑀

1
}, 𝐵

𝑀2
= {𝑥 ∈

𝐸
𝑝
| ‖V‖ ≤ 𝑀

2
}. By previous argument, it follows that 𝐽 has

no critical points in 𝐸
𝑝
\ (𝐵

𝑀1
∪ 𝐵

𝑀2
).

On the other hand, for all 𝑥 ∈ 𝐵
𝑀1

∪ 𝐵
𝑀2

,

𝐽 (𝑥) ≥ 𝑐 −

𝑝

∑

𝑛=1

𝐺(𝑢
𝑛
+ V

𝑛
+
󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 ⋅
𝑤

𝑛

󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩

) 󳨀→ +∞,

as ‖𝑤‖ 󳨀→ ∞.

(22)

Therefore there exists 𝑎
1
∈ R, such that 𝑎

1
< 𝐽(crit(𝐽)). For

𝑥 ∈ 𝐵
𝑀2

, we have

𝐽 (𝑥) ≥
1

2
𝛿‖𝑢‖

2
− 𝑐

−

𝑝

∑

𝑛=1

𝐺(
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 ⋅
𝑢

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

+ V
𝑛
+
󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 ⋅
𝑤

𝑛

󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩

) ,

(23)

hence 𝐽(𝑥) → +∞ as ‖ 𝑢 + 𝑤 ‖→ ∞, which implies
that 𝐽 is bounded from the following in 𝐵

𝑀2
. Let 𝑎 <

min{𝑎
1
, inf

𝑥∈𝐵𝑀2
𝐽(𝑥)}, then 𝐽𝑎

⊂ 𝐸
𝑝
\ 𝐵

𝑀2
, and 𝐽𝑎 is a strong

deformation retraction of 𝐸
𝑝
\ 𝐵

𝑀2
. By Lemma 6, 𝐽 satisfies

(PS) condition, and we have

𝐻
𝑛
(𝐸

𝑝
, 𝐽

𝑎
) ≅ 𝐻

𝑛
(𝐸

𝑝
, 𝐸

𝑝
\ 𝐵

𝑀2
)

≅ 𝐻
𝑛
(𝑊

−
,𝑊

−
\ 𝐵

𝑀2
) ≅ 𝛿

𝑛,𝑚(∞)
Γ.

(24)

So we obtain (21).

Lemma 12. Under the assumption of Theorem 3, there exists
𝑎 ∈ R such that 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) = 𝜆

𝑚(∞).

Proof. Let 𝑥 = 𝑢 + V +𝑤 ∈ 𝐸
𝑝
with 𝑢 ∈ 𝑊+, V ∈ 𝑊−, and𝑤 ∈

𝑊
0. Then there exist 𝑅

1
> 𝑅+1 such that all critical points of

𝐽
𝑅
are in 𝐵

𝑀1
∩ 𝐵

𝑀2
∩ 𝐵

𝑀3
, where 𝐵

𝑀1
and 𝐵

𝑀2
are the same

as in proof of Lemma 11, and 𝐵
𝑀3

= {𝑥 ∈ 𝐸
𝑝
| ‖𝑤‖

2
≤ 𝑅

1
}. In

fact,

⟨𝐽
󸀠

𝑅
(𝑥) , 𝑢⟩ = ⟨𝐽

󸀠
(𝑥) , 𝑢⟩ > 0, 𝑥 ∉ 𝐵

𝑀1
,

⟨𝐽
󸀠

𝑅
(𝑥) , V⟩ = ⟨𝐽

󸀠
(𝑥) , V⟩ < 0, 𝑥 ∉ 𝐵

𝑀2
,

⟨𝐽
󸀠

𝑅
(𝑥) , 𝑤⟩ ≥ −𝑐 ‖𝑤‖ + 8‖𝑤‖

2
(‖𝑤‖

2
− 𝑅)

3

≥ 8‖𝑤‖
2
− 𝑐 ‖𝑤‖ > 0, 𝑥 ∉ 𝐵

𝑀3
.

(25)

Similarly, for 𝑥 ∈ 𝐵
𝑀2

, 𝐽
𝑅
(𝑥) ≥ (1/2)𝛿‖𝑢‖

2
+ 𝜑

𝑅
(‖𝑤‖

2
) −

𝑐 − ∑
𝑝

𝑛=1
𝐺(𝑥

𝑛
), and 𝐽

𝑅
(𝑥) → +∞ as ‖𝑢 + 𝑤‖ → ∞, which

implies that 𝐽
𝑅
(𝑥) is bounded from the following in 𝐵

𝑀2
. Let

𝑎
0
= inf

𝑥∈𝐵𝑀2
𝐽

𝑅
(𝑥). If 𝑎 < min{𝑎

0
, 𝐽

𝑅
(crit(𝐽

𝑅
))}, by 𝐽

𝑅
satisfies

(PS) condition, and methods of strong deformation retract,
we have 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) = 𝜆

𝑚(∞). The proof is completed.

Assume that on Hilbert space 𝐸 there is an action of
discrete group𝐺, and denote by fix(𝐺) the fixed points set for
the 𝐺 action; that is, fix(𝐺) = {𝑥 ∈ 𝐸 | 𝑔𝑥 = 𝑥, ∀𝑔 ∈ 𝐺}. The
functional 𝜙 is called 𝐺 invariant, if 𝜙(𝑔𝑥) = 𝜙(𝑥), ∀𝑥 ∈ 𝐸,
and ∀𝑔 ∈ 𝐺. In the following, 𝑍

𝑝
denotes a cyclic group of 𝑝

order. In terms of Proposition 8.2 and Proposition 8.5 in [13],
we have following lemma.

Lemma 13. Assume that 𝜙 is a 𝐶2-functional on an Hilbert
space 𝐸 and satisfies (PS) condition. Let 𝑎, 𝑏 (𝑏 possible ∞)
be two regular values of 𝜙. Assume that 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) = 𝑐𝑟𝑖𝑡(𝜙) ∩

𝜙
−1
(𝑎, 𝑏) consists only of critical sets, and then the following

Morse relation holds:

∑

𝐾⊂crit(𝜙𝑏
𝑎
)

𝑖
𝜆
(𝐾) = 𝑃

𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) , (26)

where 𝑄(𝜆) is a polynomial with nonnegative integer coeffi-
cients. If all the critical points of 𝜙 in 𝜙𝑏

𝑎
are nondegenerate and

have finite Morse index, then (26) can be written as

∑

𝑥∈𝑐𝑟𝑖𝑡(𝜙
𝑏
𝑎
)

𝜆
𝑚(𝑥)

= 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) . (27)
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Now if 𝜙 is 𝑍
𝑝
invariant, and 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) ∩ 𝑓𝑖𝑥(𝑍

𝑝
) consists only

of nondegenerate critical points having finiteMorse index, then
(26) becomes

∑

𝑥∈𝑐𝑟𝑖𝑡(𝜙
𝑏
𝑎
)∩𝑓𝑖𝑥(𝑍𝑝)

𝜆
𝑚(𝑥)

+ (1 + 𝜆)𝑍 (𝜆)

= 𝑃
𝜆
(𝜙

𝑏
, 𝜙

𝑎
) + (1 + 𝜆)𝑄 (𝜆) ,

(28)

where 𝑍(𝜆) is a formal series with nonnegative integer
coefficients. Moreover if 𝑐𝑟𝑖𝑡(𝜙𝑏

𝑎
) − 𝑓𝑖𝑥(𝑍

𝑝
) consists only of

nondegenerate critical manifolds having finite Morse index,
then

𝑍 (𝜆) = ∑

𝐾⊂𝑐𝑟𝑖𝑡(𝜙
𝑏
𝑎
)−𝑓𝑖𝑥(𝑍𝑝)

𝜆
𝑚(𝐾)

. (29)

Remark 14. By (29), our main goal in this paper is to estimate
𝑍(1) which gives a lower bound of the number of the
nonconstant critical points of 𝐽 in 𝐸

𝑝
.

Lemma 15. Let 𝑧 = {𝑧
𝑛
} be a critical point of functional

𝐽. Denote by 𝜏2

1
, 𝜏

2

2
, . . . , 𝜏

2

𝑙
the positive eigenvalues (repeated

according to their multiplicity) of 𝐹
󸀠󸀠

(𝑧
𝑛
), where 𝜏

𝑗
> 0, 𝑗 ∈

𝑍[1, 𝑙]. Under the assumption (P2), we have ♯(𝑧, 𝐽) = 𝑙 +

2∑
𝑙

𝑗=1
[(𝑝/𝜋) arcsin(𝜏

𝑗
/2)], where [⋅] denotes the greatest-

integer function and ♯(𝑧, 𝐽) is the number of eigenvalues 𝜆 < 0

such that ⟨𝐽
󸀠󸀠

(𝑧)𝑢, 𝑢⟩ = 𝜆‖𝑢‖
2.

Proof. By ⟨𝐽
󸀠󸀠

(𝑧)𝑢, 𝑢⟩ = ∑
𝑝

𝑛=1
[|Δ𝑢

𝑛
|
2
− (𝐹

󸀠󸀠

(𝑧
𝑛
)𝑢

𝑛
, 𝑢

𝑛
)] =

−∑
𝑝

𝑛=1
[(Δ

2
𝑢

𝑛−1
+ 𝐹
󸀠󸀠

(𝑧
𝑛
)𝑢

𝑛
, 𝑢

𝑛
)], we consider the equation

Δ
2
𝑦

𝑛−1
+ 𝐹

󸀠󸀠

(𝑧
𝑛
)𝑦

𝑛
= −𝜆𝑦

𝑛
, 𝑦

𝑛+𝑝
= 𝑦

𝑛
, where 𝑧 =

{𝑧
𝑛
} is the critical point of 𝐽. It is easy to see that 𝜆

𝑘,𝑗
=

4sin2
(𝑘𝜋/𝑝)−𝜏

2

𝑗
are eigenvalues ofΔ2

𝑦
𝑛−1

+𝐹
󸀠󸀠

(𝑧
𝑛
)𝑦

𝑛
onR𝑁,

where 𝑛, 𝑘 ∈ 𝑍[1, 𝑝], 𝑗 ∈ 𝑍[1, 𝑙]. Therefore the number of
negative eigenvalues 𝜆

𝑘,𝑗
is just what we are looking for; the

proof is completed.

Definition 16. For any critical point 𝑧 of 𝐽, there are 𝑙

positive eigenvalues (repeated according to theirmultiplicity)
of 𝐹

󸀠󸀠

(𝑧
𝑛
), which will be denoted by 𝜏2

1
, . . . , 𝜏

2

𝑙
. The number

𝜌(𝑧) = (2𝑝/𝜋)∑
𝑙

𝑗=1
arcsin(𝜏

𝑗
/2) is called twist number of

𝑧. Moreover the twist number of ∞ is defined by 𝜌(∞) =

(2𝑝/𝜋)∑
𝑙(∞)

𝑗=1
arcsin(𝜏

𝑗
/2), where 𝑙(∞) is the number of the

positive eigenvalues (repeated according to theirmultiplicity)
of 𝐴

∞
.

Let 𝑧 = {𝑧
𝑛
} be a constant critical point of functional 𝐽;

that is, 𝑧
1
= 𝑧

2
= ⋅ ⋅ ⋅ = 𝑧

𝑝
. By Lemma 15 and Definition 16,

it is easy to deduce the following relation between the Morse
index and the twist number as follows:

𝜌 (𝑧) 𝑝 − 𝑝𝑁 ≤ 𝑚 (𝑧, 𝐽) ≤ 𝜌 (𝑧) 𝑝 + 𝑝𝑁. (30)

In view of the number 𝑙 or 𝑙(∞) of the positive eigenvalues
(repeated according to their multiplicity) of 𝐹

󸀠󸀠

(𝑧) or𝐴
∞
, the

constant critical point 𝑧 is called 𝜏-positive (resp., 𝜏-negative)
if 𝑙 is even (resp., odd). On the contrary, the virtual critical

point∞ is called 𝜏-positive (resp., 𝜏-negative) if 𝑙(∞) is odd
(resp., even), see [24].

We denote by ℎ
1
and ℎ

2
the number of 𝜏-positive and 𝜏-

negative critical points of 𝐽. If𝐴
∞
is invertible, then ℎ

1
−ℎ

2
=

(−1)
𝑙(∞). Thus, if we consider ∞ as a virtual critical point,

we have that the number of 𝜏-positive critical points equals
the number of 𝜏-negative critical points. However, if 𝐴

∞
is

singular, the result is not hold in general. If we introduce
|ℎ

1
− ℎ

2
| virtual critical points having twist number zero,

where they are considered as 𝜏-positive if ℎ
1
< ℎ

2
and as

𝜏-negative if ℎ
1
> ℎ

2
, then the number of 𝜏-positive critical

points is also equal to the number of 𝜏-negative critical points.
Let ℎ = max{ℎ

1
, ℎ

2
}, which has been used in (4) and (5).

We denote by 𝑥
1
, . . . , 𝑥

ℎ
the 𝜏-positive critical points and by

𝑦
1
, . . . , 𝑦

ℎ
the 𝜏-negative critical points such that

𝜌 (𝑥
1
) ≤ ⋅ ⋅ ⋅ ≤ 𝜌 (𝑥

ℎ
) , 𝜌 (𝑦

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝜌 (𝑦

ℎ
) . (31)

Then the global twist number Θ of the system (1) is defined
by

Θ =

ℎ

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜌 (𝑥𝑖
) − 𝜌 (𝑦

𝑖
)
󵄨󵄨󵄨󵄨 .

(32)

4. Proof of Main Results

Proof of Theorem 1. Theargument is analogous to one used by
Benci and Fortunato in [24]. Set 𝑚(𝑧) = 𝑚(𝑧, 𝐽). Under the
assumption (P2), let 𝑧

1
, . . . , 𝑧

𝑛
be the nondegenerate constant

critical points of 𝐽.
By Lemmas 5 and 10, functional 𝐽 satisfies (PS) condition,

and there exists sufficiently small 𝑎 ∈ R such that 𝑃
𝜆
(𝐽

𝑏
, 𝐽

𝑎
) =

𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞), where 𝑏 = ∞. Since 𝐽 is 𝐶2 and 𝑍
𝑝

invariant functional on 𝐸
𝑝
, then by assumption (P3), we have

∑
𝑛

𝑖=1
𝜆

𝑚(𝑧𝑖) + (1 + 𝜆)𝑍(𝜆) = 𝜆
𝑚(∞)

+ (1 + 𝜆)𝑄(𝜆); that is,
𝑛

∑

𝑖=1

𝜆
𝑚(𝑧𝑖) − 𝜆

𝑚(∞)
= (1 + 𝜆) (𝑄 (𝜆) − 𝑍 (𝜆)) . (33)

Let 𝑚
𝑖
, 𝑓

𝑖
(𝑖 ∈ 𝑍[1, ℎ]) denote the Morse indices of the

𝜏-positive and 𝜏-negative critical points (including ∞) of 𝐽,
and without loss of generalities, assume that∞ is 𝜏-negative.
So 𝑚(∞) = 𝑓

𝑗
for some 𝑗 ∈ 𝑍[1, ℎ], where ℎ is referred to

(31). Then (33) becomes
ℎ

∑

𝑖=1, 𝑖 ̸= 𝑗

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
+
𝜆

𝑚𝑗 − 𝜆
𝑚(∞)

1 + 𝜆
= 𝑄 (𝜆) − 𝑍 (𝜆) . (34)

Set 𝑄(𝜆) = ∑
𝑠
𝑞

𝑠
𝜆

𝑠, 𝑍(𝜆) = ∑
𝑠
𝑧

𝑠
𝜆

𝑠, and 𝐵(𝜆) = 𝑄(𝜆) −

𝑍(𝜆) = ∑
𝑠
𝑏

𝑠
𝜆

𝑠, where 𝑞
𝑠
, 𝑧

𝑠
are nonnegative integer and

𝑏
𝑠
= 𝑞

𝑠
− 𝑧

𝑠
.

By Remark 14, the lower bound of the number of noncon-
stant 𝑝-periodic solutions for system (1) is to estimate 𝑍(1).
Since 𝑞

𝑠
≥ 0, 𝑧

𝑠
≥ 0, then

𝑛 (𝑝) = ∑

𝑠

𝑧
𝑠
≥ ∑

𝑏𝑠<0

𝑧
𝑠
= ∑

𝑏𝑠<0

(𝑞
𝑠
− 𝑏

𝑠
) ≥ −∑

𝑏𝑠<0

𝑏
𝑠
. (35)

Let 𝐵−
= −∑

𝑏𝑠<0
𝑏

𝑠
. By (35), we turn our attention to estimate

𝐵
−.
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If 𝑙 is even (resp., odd), by Lemma 15,𝑚(𝑧, 𝐽) is also even
(resp., odd). Therefore by the definition of 𝜏-positive and 𝜏-
negative critical points of 𝐽,𝑚

𝑖
(𝑖 ∈ 𝑍[1, ℎ]) are evennumbers,

𝑓
𝑖
are odd numbers for 𝑖 ̸= 𝑗, 𝑖 ∈ 𝑍[1, ℎ], and 𝑓

𝑗
= 𝑚(∞) is a

even number.
Set𝑀

1
= {𝑟 | 𝑚

𝑟
> 𝑓

𝑟
, 𝑟 ∈ 𝑍[1, ℎ], 𝑟 ̸= 𝑗},𝑀

2
= {𝑟 | 𝑚

𝑟
<

𝑓
𝑟
, 𝑟 ∈ 𝑍[1, ℎ], 𝑟 ̸= 𝑗}, and

𝐶 (𝜆) = ∑

𝑟∈𝑀1

𝜆
𝑚𝑟 + 𝜆

𝑓𝑟

1 + 𝜆
, 𝐷 (𝜆) = ∑

𝑟∈𝑀2

𝜆
𝑚𝑟 + 𝜆

𝑓𝑟

1 + 𝜆
,

𝐸 (𝜆) =
𝜆

𝑚𝑗 − 𝜆
𝑓𝑗

1 + 𝜆
.

(36)

By (34), we have 𝐵(𝜆) = 𝑄(𝜆) − 𝑍(𝜆) = ∑
𝑠
𝑏

𝑠
𝜆

𝑠
= 𝐶(𝜆) +

𝐷(𝜆) + 𝐸(𝜆), and

𝐶 (𝜆) = ∑

𝑟∈𝑀1

𝑚𝑟−1

∑

𝑖=𝑓𝑟

𝑐
𝑟,𝑖
𝜆

𝑖
, 𝐷 (𝜆) = ∑

𝑟∈𝑀2

𝑓𝑟−1

∑

𝑖=𝑚𝑟

𝑑
𝑟,𝑖
𝜆

𝑖
, (37)

where 𝑐
𝑟,𝑖

= (−1)
𝑖+1, 𝑑

𝑟,𝑖
= (−1)

𝑖. Meanwhile, if 𝑚
𝑗
> 𝑓

𝑗
,

𝐸(𝜆) = ∑
𝑚𝑗−1

𝑖=𝑓𝑗
𝑒

𝑖,1
𝜆

𝑖, 𝑒
𝑖,1

= (−1)
𝑖+1. If 𝑚

𝑗
< 𝑓

𝑗
, 𝐸(𝜆) =

∑
𝑓𝑗−1

𝑖=𝑚𝑗
𝑒

𝑖,2
𝜆

𝑖, 𝑒
𝑖,2
= (−1)

𝑖. Clearly 𝐸(𝜆) = 0 if𝑚
𝑗
= 𝑓

𝑗
.

A straight analysis shows that 𝐵−
= (1/2)∑

ℎ

𝑟=1
|𝑚

𝑟
−𝑓

𝑟
| −

((ℎ − 1)/2). By (30) and the definition of global twist number
that refer to (32), we have 𝑛(𝑝) ≥ (1/2)Θ𝑝 − ℎ(𝑝𝑁 + (1/2)) +

(1/2). It completes the proof of Theorem 1.

Proof of Theorem 2. Under the assumptions ofTheorem 2, by
Lemmas 6 and 11, functional 𝐽 satisfies (PS) condition, and
there exists 𝑎 ∈ R such that 𝑃

𝜆
(𝐽

𝑏
, 𝐽

𝑎
) = 𝑃

𝜆
(𝐸

𝑝
, 𝐽

𝑎
) = 𝜆

𝑚(∞),
for 𝑏 = ∞.

Similarly, we have ∑𝑛

𝑖=1
𝜆

𝑚(𝑧𝑖) + (1 + 𝜆)𝑍(𝜆) = 𝜆
𝑚(∞)

+

(1 + 𝜆)𝑄(𝜆), where 𝑧
𝑖
(𝑖 ∈ 𝑍[1, 𝑛]) are nondegenerate critical

points of 𝐽. The remainder is the same as that of Theorem 1.

The following lemma is needed to proveTheorem 3.

Lemma 17. If all assumptions in Theorem 3 hold, then there
exists 𝑄 > 0 (independent of 𝑅) such that

𝑚(𝑥, 𝐽
𝑅
) + ] (𝑥, 𝐽

𝑅
) ≤ 𝑚 (∞) + ] (∞) , (38)

where 𝑥 = 𝑢+V+𝑤with 𝑢 ∈ 𝑊+
, V ∈ 𝑊−

, 𝑤 ∈ 𝑊
0
, ‖𝑤‖ ≥ 𝑄,

and 𝑚(𝑥, 𝐽
𝑅
), ](𝑥, 𝐽

𝑅
) denote the Morse index and nullity of

critical point 𝑥 for functional 𝐽
𝑅
, respectively.

Proof. Let 𝑥 = 𝑢 + V + 𝑤 ∈ 𝐸
𝑝
be a critical point of 𝐽

𝑅
. By

Lemma 7, we have ‖𝑢 + V‖ ≤ 𝑀. Therefore ‖𝑥‖ → ∞ if and
only if ‖𝑤‖ → ∞. Since

⟨𝐽
󸀠󸀠

𝑅
(𝑥) 𝑢, 𝑢⟩ =

𝑝

∑

𝑛=1

[
󵄨󵄨󵄨󵄨Δ𝑢𝑛

󵄨󵄨󵄨󵄨

2

− (𝐴
∞
𝑢

𝑛
, 𝑢

𝑛
)

− (𝑔
󸀠
(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
)] ≥ 𝛿‖𝑢‖

2

−

𝑝

∑

𝑛=1

(𝑔
󸀠
(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
) ,

(39)

by assumption (P1), there exists 𝜀 ∈ (0, 𝛿) such that
𝑝

∑

𝑛=1

(𝑔
󸀠
(𝑥

𝑛
) 𝑢

𝑛
, 𝑢

𝑛
)

=

𝑝

∑

𝑛=1

(𝑔
󸀠
(‖𝑤‖ ⋅

𝑤
𝑛

‖𝑤‖
+ 𝑢

𝑛
+ V

𝑛
)𝑢

𝑛
, 𝑢

𝑛
)

≤ 𝜀‖𝑢‖
2
,

(40)

as ‖𝑤‖ → ∞. Therefore there exists 𝑄 > 0 such that
⟨𝐽
󸀠󸀠

𝑅
(𝑥)𝑢, 𝑢⟩ > 0 as ‖𝑤‖ ≥ 𝑄. It follows that relation (38) is

valid, and the proof is completed.

Proof of Theorem 3. Let 𝐿 = 𝑚(∞) + ](∞), and denote by
𝑧

1
, . . . , 𝑧

𝑛
the constant critical points of 𝐽.We assume,without

loss of generalities,𝑚(𝑧
𝑖
, 𝐽) ≥ 𝐿+1 as 𝑖 ∈ 𝑍[1, 𝑟],𝑚(𝑧

𝑖
, 𝐽) < 𝐿

as 𝑖 ∈ 𝑍[𝑟 + 1, 𝑛]. Clearly 𝐿 ≤ 𝑝𝑁.
Set 𝐻

1
= {𝑥 ∈ crit(𝐽

𝑅
) | ‖𝑤‖ > 𝑄}, 𝐻

2
= {𝑥 ∈ crit(𝐽

𝑅
) ∩

fix(𝑍
𝑝
) | ‖𝑤‖ ≤ 𝑄}, and 𝐻

3
= crit(𝐽

𝑅
) − (𝐻

1
∪ 𝐻

2
), where

𝑥 = 𝑢 + V + 𝑤 is the decomposition of 𝑥 ∈ 𝐸
𝑝
with 𝑤 ∈ 𝑊

0

and 𝑄 is large enough.
By Lemma 17,𝐻

1
contains only critical points of 𝐽

𝑅
which

have 𝑚(𝑥, 𝐽
𝑅
) + ](𝑥, 𝐽

𝑅
) ≤ 𝐿. 𝐻

2
= {𝑧

𝑖
| 𝑖 ∈ 𝑍[1, 𝑛]}, since

𝐽
𝑅
(𝑥) = 𝐽(𝑥) as ‖𝑤‖ ≤ 𝑄.𝐻

3
⊂ crit(𝐽)−fix(𝑍

𝑝
), since𝜑

𝑅
(𝑥) =

0 when ‖𝑤‖ ≤ 𝑄. Moreover by assumption (P3),𝐻
3
contains

only nondegenerate critical manifolds.
Since 𝐽

𝑅
satisfies (PS) condition, by Lemma 13, relation

(28) reads

∑

𝑥∈𝐻1

𝑖
𝜆
(𝑥) + ∑

𝑥∈𝐻2

𝑖
𝜆
(𝑥) + ∑

𝐾⊂𝐻3

𝑖
𝜆
(𝐾)

= 𝑃
𝜆
(𝐸

𝑝
, 𝐽

𝑎

𝑅
) + (1 + 𝜆)𝑄 (𝜆) ,

(41)

that is,

∑

𝑥∈𝐻1

𝑖
𝜆
(𝑥) +

𝑟

∑

𝑖=1

𝑖
𝜆
(𝑧

𝑖
) +

𝑛

∑

𝑖=𝑟+1

𝑖
𝜆
(𝑧

𝑖
)

+ (1 + 𝜆)𝑍 (𝜆) = 𝜆
𝑚(∞)

+ (1 + 𝜆)𝑄 (𝜆) ,

(42)

where 𝑍(𝜆) = ∑
𝐾⊂𝐻3

𝜆
𝑚(𝐾). For 𝑍(𝜆) = ∑

∞

𝑖=0
𝑧

𝑖
𝜆

𝑖, we set
𝑍

𝑙
= ∑

∞

𝑖=𝑙
𝑧

𝑖
𝜆

𝑖, where 𝑙 ∈ N. And analogous notation can be
introduced for 𝑄(𝜆). Then, considering the terms of degree
≥ 𝐿 + 1 in (42), we have

𝑟

∑

𝑖=1

𝜆
𝑚(𝑧𝑖 ,𝐽)

+ 𝑏
𝐿
𝜆

𝐿+1
= (1 + 𝜆) 𝐵 (𝜆) , (43)

where 𝑏
𝐿
= 𝑧

𝐿
− 𝑞

𝐿
, 𝐵(𝜆) = 𝑄

𝐿+1
(𝜆) − 𝑍

𝐿+1
(𝜆). Clearly

𝑛 (𝑝) = ∑

𝑠

𝑧
𝑠
≥ ∑

𝑏𝑠≤0,𝑠≥𝐿+1

𝑧
𝑠

= ∑

𝑏𝑠≤0,𝑠≥𝐿+1

(𝑞
𝑠
− 𝑏

𝑠
) ≥ − ∑

𝑏𝑠≤0,𝑠≥𝐿+1

𝑏
𝑠
= 𝐵

−
,

(44)

that is, 𝐵− is the absolute value of the sum of the negative
coefficients of 𝐵(𝜆). Next we estimate the number 𝐵−.
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Let 𝑥
1
, . . . , 𝑥

ℎ1
and 𝑦

1
, . . . , 𝑦

ℎ2
(ℎ

1
+ ℎ

2
= 𝑟) be the 𝜏-

positive and 𝜏-negative critical points of 𝐽with nonzero twist
numbers, whose order satisfies (31), and 𝑥

𝑖
, 𝑦

𝑗
∈ {𝑧

1
, . . . , 𝑧

𝑟
},

𝑖 ∈ 𝑍[1, ℎ
1
], 𝑗 ∈ 𝑍[1, ℎ

2
]. Without loss of generalities, assume

ℎ
1
≥ ℎ

2
, and introduce ℎ

3
(= ℎ

1
−ℎ

2
) virtual 𝜏-negative critical

points 𝑦
𝑖
(𝑖 ∈ 𝑍[1, ℎ

3
]) having twist number 0 and Morse

index 0; that is,
𝜌 (𝑦

𝑖
) = 0, 𝑓

𝑖
= 𝑚 (𝑦

𝑖
, 𝐽) = 0, 𝑖 ∈ 𝑍 [1, ℎ

3
] . (45)

For 𝑖 ∈ 𝑍[1, ℎ
1
], set 𝑚

𝑖
= 𝑚(𝑥

𝑖
, 𝐽), 𝑓

𝑖
= 𝑚(𝑦

𝑖
, 𝐽), where

𝑦
𝑗+ℎ3

= 𝑦
𝑗
, 𝑗 ∈ 𝑍[1, ℎ

2
]. Then (43) can be written as

∑
ℎ1

𝑖=1
𝜆

𝑚𝑖 +∑
ℎ1

𝑖=ℎ3+1
𝜆

𝑓𝑖 + 𝑏
𝐿
𝜆

𝐿+1
= (1 + 𝜆)𝐵(𝜆). Setting 𝜆 = −1,

then 𝑏
𝐿
= −ℎ

3
if 𝐿 is odd, and 𝑏

𝐿
= ℎ

3
if 𝐿 is even. So

𝐵 (𝜆) =

ℎ3

∑

𝑖=1

𝜆
𝑚𝑖 + 𝜆

𝐿+1

1 + 𝜆
+

ℎ1

∑

𝑖=ℎ3+1

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
, if 𝐿 is even,

𝐵 (𝜆) =

ℎ3

∑

𝑖=1

𝜆
𝑚𝑖 − 𝜆

𝐿+1

1 + 𝜆
+

ℎ1

∑

𝑖=ℎ3+1

𝜆
𝑚𝑖 + 𝜆

𝑓𝑖

1 + 𝜆
, if 𝐿 is odd.

(46)

A straight analysis shows that 𝐵−
= ∑

ℎ3

𝑖=1
[(1/2)(𝑚

𝑖
− 𝐿) − 1] +

∑
ℎ

𝑖=ℎ3+1
(1/2)|𝑚

𝑖
− 𝑓

𝑖
| if 𝐿 is even, and 𝐵−

= ∑
ℎ3

𝑖=1
(1/2)(𝑚

𝑖
−

𝐿) + ∑
ℎ

𝑖=ℎ3+1
(1/2)(|𝑚

𝑖
− 𝑓

𝑖
| − 1) if 𝐿 is odd. Therefore

𝐵
−
≥

ℎ3

∑

𝑖=1

1

2
(𝑚

𝑖
− 𝐿 − 2) +

ℎ

∑

𝑖=ℎ3+1

1

2
(
󵄨󵄨󵄨󵄨𝑚𝑖

− 𝑓
𝑖

󵄨󵄨󵄨󵄨 − 1) . (47)

By (30) and (45), we have

𝑚
𝑖
= 𝑚

𝑖
− 𝑓

𝑖
≥ (𝜌 (𝑥

𝑖
) − 𝜌 (𝑦

𝑖
)) 𝑝 − 𝑝𝑁, 𝑖 ∈ 𝑍 [1, ℎ

3
] ,

󵄨󵄨󵄨󵄨𝑚𝑖
− 𝑓

𝑖

󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝜌 (𝑥𝑖

) − 𝜌 (𝑦
𝑖
)
󵄨󵄨󵄨󵄨 𝑝 − 2𝑝𝑁, 𝑖 ∈ 𝑍 [ℎ

3
+ 1, ℎ] .

(48)

In view of (45), (47), and (48), we have

𝐵
−
≥
1

2

ℎ

∑

𝑖=1

𝑝
󵄨󵄨󵄨󵄨𝜌 (𝑥𝑖

) − 𝜌 (𝑦
𝑖
)
󵄨󵄨󵄨󵄨

−
1

2
𝑝𝑁ℎ

3
−
1

2
𝐿ℎ

3
− 𝑝𝑁ℎ

2
− ℎ

3

−
1

2
ℎ

2
≥
1

2
Θ𝑝 − ℎ (𝑝𝑁 + 1) .

(49)

The proof is completed.

Remark 18. Although𝐴
∞
is invertible under the assumptions

of Theorem 3, we do not make use of (42) directly, because
we consider only the terms of degree ≥ 𝐿 + 1 in proof of
Theorem 3.
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