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This paper introduces higher-order solutions of the stochastic nonlinear differential equations with theWiener-Hermite expansion
and perturbation (WHEP) technique. The technique is used to study the quadratic nonlinear stochastic oscillatory equation with
different orders, different number of corrections, and different strengths of the nonlinear term. The equivalent deterministic
equations are derived up to third order and fourth correction. Amodel numerical integral solver is developed to solve the resulting
set of equations. The numerical solver is tested and validated and then used in simulating the stochastic quadratic nonlinear
oscillatory motion with different parameters.The solution ensemble average and variance are computed and compared in all cases.
The current work extends the use of WHEP technique in solving stochastic nonlinear differential equations.

1. Introduction

Analysis of the response of linear and nonlinear systems
subjected to random excitations is of considerable interest
to the fields of mechanical and structural engineering [1].
Stochastic differential equations based on the white noise
process provide a powerful tool for dynamically modeling
complex and uncertain aspects. In many practical situations,
it may be appropriate to assume that the nonlinear term
affecting the phenomena under study is small enough; then
its intensity is controlled by means of a small parameter, say
𝜀 [2].

According to [3], the solution of stochastic partial differ-
ential equations (SPDEs) using Wiener-Hermite expansion
(WHE) has the advantage of converting the problem to a
system of deterministic equations that can be solved effi-
ciently using the standard deterministic numerical methods.
The main statistics, such as the mean, covariance, and
higher-order statistical moments, can be calculated by simple
formulae involving only the deterministic Wiener-Hermite
coefficients. In WHE approach, there is no randomness

directly involved in the computations. One does not have
to rely on pseudorandom number generators, and there is
no need to solve the stochastic PDEs repeatedly for many
realizations. Instead, the deterministic system is solved only
once.

The application of theWHE [4–10] aims at finding a trun-
cated series solution to the solution process of a stochastic
differential equation.The truncated series is composed of two
major parts: the first is the Gaussian part which consists of
the first two terms, while the rest of the series constitutes
the non-Gaussian part. In nonlinear cases, there exist always
difficulties in solving the resultant set of deterministic inte-
grodifferential equations got from the applications of a set of
comprehensive averages on the stochastic integrodifferential
equation obtained after the direct application ofWHE. Many
authors introduced different methods to face these obstacles.
Among them, the WHE with perturbation (WHEP) tech-
nique [4] was introduced using the perturbation technique
to solve perturbed nonlinear problems.

TheWHEwas originally started anddeveloped byWiener
in 1938 and 1958 [11]. Wiener constructed orthonormal
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random bases for expanding homogeneous chaos depending
on white noise and used it to study problems in statistical
mechanics. Cameron and Martin [12] developed a more
explicit and intuitive formulation for WHE (now known
as Wiener chaos expansion, WCE). Their development is
based on an explicit discretization of the white noise pro-
cess through its Fourier expansion, which was missed in
Wiener’s original formalism.This approach is much easier to
understand and more convenient to use and hence replaced
Wiener’s original formulation. Since Cameron and Martin’s
work, WHE has become a useful tool in stochastic analysis
involving white noise (Brownian motion) [3]. We will denote
it by Imamura formulation [13]. Another formulation was
suggested and applied by Imamura and his coworkers [13,
14]. They have developed a theory of turbulence involving
a truncated WHE of the velocity field. The randomness is
taken up by a white-noise function associated, in the original
version of the theory, with the initial state of the flow.
The mechanical problem then reduces to a set of coupled
integrodifferential equations for deterministic kernels. In [1],
the WHE (Imamura formulation [13]) was used to compute
the nonstationary random vibration of a Duffing oscillator
which has cubic nonlinearity under white-noise excitation.
Solutions up to second order are obtained by solving the
equivalent deterministic system by an iterative scheme. El-
Tawil and his coworkers [4–10, 15, 16] used the WHEP
technique to solve a perturbed nonlinear stochastic diffusion
equation and the quadratic and cubic nonlinear stochastic
oscillatory equation with first-order approximations.

In [17], the analysis of nonlinear random vibration has
been studied using several methods, such as equivalent
linearization method [18], stochastic averaging method [19],
the WHE approach with nonstationary excitations [1], the
WHEP technique [15], eigenfunction expansions [20], and
themethod of detailed balance [21]. All of the abovemethods
are applied and used for nonlinear randomoscillations of real
systems subjected to random nonstationary (or stationary)
excitations.

According to [5, 6], quadrate oscillation arises through
many applied models in applied sciences and engineering
when studying oscillatory systems [22].These systems can be
exposed to a lot of uncertainties through the external forces,
the damping coefficient, the frequency, and/or the initial or
boundary conditions. These input uncertainties cause the
output solution process to be also uncertain. For most of
the cases, getting the probability density function (p.d.f.)
of the solution process may be impossible. So, developing
approximate techniques (through which approximate statis-
ticalmoments can be obtained) is an important and necessary
work.There aremany techniques which can be used to obtain
statistical moments of such problems. The main goal of this
paper is to introduce higher-order WHEP solutions and to
suggest a numerical solver suitable to handle the equivalent
deterministic system.

In [16], the WHEP technique is generalized to 𝑛th
nonlinearity, general order of WHE, and general number of
corrections. Also, the extension to handle white noise inmore
than one variable and general nonlinearities are outlined.The
generalized algorithm is implemented and linked toMathML

[23] script language to print out the resulting equivalent
deterministic system.

In the current work, the WHE formulation suggested by
Meecham and his coworkers (Imamura formulation) is used
to solve the stochastic nonlinear differential models of the
form

𝐿 (𝑥 (𝑡)) = −𝜀𝑥
𝑛

+ 𝑓 (𝑡) + 𝑔 (𝑡)𝑁 (𝑡) ,

𝑡 ∈ (0, 𝑇]

(1)

with the proper set of initial conditionswhichwill be assumed
to be deterministic. The differential operator 𝐿 is a general
linear operator. The nonlinearity is introduced as losses of
degree 𝑛 > 1 strengthened by a deterministic small parameter
(𝜀). For the quadratic nonlinearity, 𝑛 will be equal 2. The
uncertainty is introduced through white noise𝑁(𝑡) scaled by
a deterministic envelope function 𝑔(𝑡). The function 𝑓(𝑡) is a
deterministic forcing function. Theorem 1 will be used in the
derivation of the WHEP technique.

Theorem 1. The solution of (1), if exists, is a power series in 𝜀;
that is, 𝑥(𝑡) = ∑

∞

𝑖=0
𝜀
𝑖

𝑥
𝑖
(𝑡).

Proof. Using Picard’s method which generates a sequence of
approximations that converge to the solution; that is, the
solution is obtained as 𝑥(𝑡) = lim

𝑘→∞
𝑥
(𝑘)

(𝑡) where the 𝑘th
approximation is computed as

𝐿 (𝑥
(𝑘)

(𝑡)) = −𝜀[𝑥
(𝑘−1)

(𝑡)]

𝑛

+ 𝑓 (𝑡) + 𝑔 (𝑡)𝑁 (𝑡) ,

𝑘 ≥ 1,

(2)

apply the inverse operator, 𝐿−1, on both sides to get

𝑥
(𝑘)

(𝑡) = −𝜀𝐿
−1

([𝑥
(𝑘−1)

(𝑡)]

𝑛

)

+ 𝐿
−1

(𝑓 (𝑡) + 𝑔 (𝑡)𝑁 (𝑡)) .

(3)

Let 𝑥(0)(𝑡) = 𝐿
−1

(𝑓(𝑡) + 𝑔(𝑡)𝑁(𝑡)) which is the solution at
𝜀 = 0.

Then the Picard’s 𝑘th approximation is computed as

𝑥
(𝑘)

(𝑡) = 𝑥
(0)

(𝑡) − 𝜀𝐿
−1

([𝑥
(𝑘−1)

(𝑡)]

𝑛

) . (4)

Now, we need to prove that the 𝑘th approximation is a power
series in 𝜀; that is, it can be written as

𝑥
(𝑘)

(𝑡) =

𝑀𝑘

∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡) , (5)

where𝑀
𝑘
+ 1 is the number of terms in the series. Using the

mathematical induction, we need to prove that a power series
solution will be obtained at 𝑘 = 1 and at 𝑘 + 1 provided that
the 𝑘th approximation is a power series solution.
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At 𝑘 = 1, the Picard’s 1st approximation will be 𝑥
(1)

(𝑡) =

𝑥
(0)

(𝑡) − 𝜀𝐿
−1

([𝑥
(0)

(𝑡)]

𝑛

), which is a power series in 𝜀. Now
we need to prove that 𝑥(𝑘+1)(𝑡) is a power series in 𝜀 given
that 𝑥

(𝑘)

(𝑡) is a power series in 𝜀. The Picard’s (𝑘 + 1)th
approximation is computed as

𝑥
(𝑘+1)

(𝑡) = 𝑥
(0)

(𝑡) − 𝜀𝐿
−1

([𝑥
(𝑘)

(𝑡)]

𝑛

) , (6)

or, after substituting the power series of 𝑥(𝑘)(𝑡), we get

𝑥
(𝑘+1)

(𝑡) = 𝑥
(0)

(𝑡) − 𝜀𝐿
−1

([

𝑀𝑘

∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡)]

𝑛

) . (7)

The second term in the right hand side can be expanded using
the multinomial theorem to get

[

𝑀𝑘

∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡)]

𝑛

= ∑

ℎ

𝑐
ℎ

𝑀𝑘

∏

𝑖=0

[𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡)]

𝑗
𝑖

ℎ

, (8)

where 𝑐
ℎ

= 𝑛!/∏
𝑀𝑘

𝑖=0
𝑗
𝑖

ℎ
! and the counter ℎ runs over all the

(
𝑛+𝑀𝑘

𝑛
) combinations of the positive integers 𝑗

0

ℎ
, 𝑗
1

ℎ
, . . . , 𝑗

𝑀𝑘

ℎ

such that∑𝑀𝑘
𝑖=0

𝑗
𝑖

ℎ
= 𝑛. In a more simplified form, we can write

[

𝑀𝑘

∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡)]

𝑛

= ∑

ℎ

𝑐
ℎ
𝜀
𝑤ℎ

𝑀𝑘

∏

𝑖=0

[𝑥
(𝑘)

𝑖
(𝑡)]

𝑗
𝑖

ℎ

, (9)

where 𝑤
ℎ

= ∑
𝑀𝑘

𝑖=0
𝑖𝑗
𝑖

ℎ
. Let ∏𝑀𝑘

𝑖=0
[𝑥
(𝑘)

𝑖
(𝑡)]
𝑗
𝑖

ℎ
= V
ℎ
(𝑡); then the

expansion takes the form

[

𝑀𝑘

∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
(𝑡)]

𝑛

= ∑

ℎ

𝑐
ℎ
𝜀
𝑤ℎV
ℎ
(𝑡) . (10)

Substitute in Picard’s (𝑘 + 1)th approximation to get

𝑥
(𝑘+1)

(𝑡) = 𝑥
(0)

(𝑡) − 𝜀𝐿
−1

(∑

ℎ

𝑐
ℎ
𝜀
𝑤ℎV
ℎ
(𝑡)) (11)

or

𝑥
(𝑘+1)

(𝑡) = 𝑥
(0)

(𝑡) − ∑

ℎ

𝑐
ℎ
𝜀
1+𝑤ℎ

𝐿
−1

(V
ℎ
(𝑡)) , (12)

which is a power series in 𝜀. This completes the proof. We
note that the previous theorem is applied also in case of
deterministic force term; that is, 𝑔(𝑡) = 0. Also, the theorem
is applied if the unknown function 𝑥 is a function of more
than one variable [16].

This paper is organized as follows. In Section 2, the
WHEP technique is reviewed and the generalized WHEP
derivation steps are outlined. The deterministic set of equa-
tions equivalent to the stochastic nonlinear oscillatory equa-
tion are tabulated in Section 3. The analytical and numer-
ical solutions of the oscillatory equation are described in
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Figure 2:The convergence order of the developed numerical solver.

Section 4. The simulations up to third order and fourth
correction are shown in Section 5.

2. WHEP Technique

As a consequence of the completeness of theWiener-Hermite
set [1], any arbitrary stochastic process can be expanded
in terms of the Weiner-Hermite polynomial set, and this
expansion converges to the original stochastic process with
probability one.
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Figure 3: First-order response mean and variance for (a) 𝜀 = 0.1, (b) 𝜀 = 0.3, and (c) 𝜀 = 0.5.
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Figure 4: First-order response mean and variance for (a) 𝜀 = 0.7 and (b) 𝜀 = 1.0.

The solution function 𝑥(𝑡; 𝑤) can be expanded in terms
of Wiener-Hermite functionals as [4]

𝑥 (𝑡; 𝑤) = 𝑥
(0)

(𝑡) + ∫

∞

−∞

𝑥
(1)

(𝑡; 𝑡
1
)𝐻
(1)

(𝑡
1
; 𝑤) 𝑑𝑡

1

+ ∬

∞

−∞

𝑥
(2)

(𝑡; 𝑡
1
, 𝑡
2
)𝐻
(2)

(𝑡
1
, 𝑡
2
; 𝑤) 𝑑𝑡

1
𝑑𝑡
2

+ ∭

∞

−∞

𝑥
(3)

(𝑡; 𝑡
1
, 𝑡
2
, 𝑡
3
)

× 𝐻
(3)

(𝑡
1
, 𝑡
2
, 𝑡
3
; 𝑤) 𝑑𝑡

1
𝑑𝑡
2
𝑑𝑡
3
+ ⋅ ⋅ ⋅

(13)

or after eliminating the parameters, for the sake of brevity, we
get

𝑥 (𝑡; 𝑤) = 𝑥
(0)

(𝑡) +

∞

∑

𝑘=1

∫

𝑅
𝑘

𝑥
(𝑘)

𝐻
(𝑘)

𝑑𝜏
𝑘
, (14)

where 𝑑𝜏
𝑘

= 𝑑𝑡
1
𝑑𝑡
2
⋅ ⋅ ⋅ 𝑑𝑡
𝑘
and ∫

𝑅
𝑘
is a 𝑘-dimensional

integral over the variables 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
. The first term in the

expansion (14) is the nonrandom part or ensemble mean
of the function. The first two terms represent the normally
distributed (Gaussian) part of the solution. Higher-order
terms in the expansion depart more and more from the
Gaussian form [16]. The Gaussian approximation is usually a
bad approximation for nonlinear problems, especially when
high-order statistics are concerned [18].
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The components 𝑥(𝑗)(𝑡; 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑗
) are called the deter-

ministic kernels of the WHE of 𝑥(𝑡). They are functions
of time and space variables and fully account for the time
dependence of 𝑥(𝑡) as well as for its statistical properties [3].
𝑤 is a random output of a triple probability space (Ω, 𝐵, 𝑃),
where Ω is a sample space, 𝐵 is a 𝜎-algebra associated with
Ω, and 𝑃 is a probability measure. For simplicity, 𝑤 will be
dropped later on.

The functional𝐻(𝑛)(𝑡
1
, 𝑡
2
. . . , 𝑡
𝑛
) is the 𝑛th order Wiener-

Hermite time-independent functional. The WH functionals
form a complete set [1], and they satisfy the following

recurrence relation for 𝑛 ≥ 2:

𝐻
(𝑛)

(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝐻

(𝑛−1)

(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛−1
)𝐻
(1)

(𝑡
𝑛
)

−

𝑛−1

∑

𝑚=1

𝐻
(𝑛−2)

(𝑡
𝑛1
, 𝑡
𝑛2
, . . . , 𝑡

𝑛𝑛−2
)

× 𝛿 (𝑡
𝑛−𝑚

− 𝑡
𝑛
) ,

(15)

with 𝐻
(0)

= 1 and 𝐻
(1)

(𝑡
1
) = 𝑁(𝑡

1
): the white noise. By

construction, theWiener-Hermite functionals are symmetric
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Figure 7: The second-order response mean and variance for (a) 𝜀 = 0.1, (b) 𝜀 = 0.3, and (c) 𝜀 = 0.5.
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Figure 8: The second-order response mean and variance for (a) 𝜀 = 0.7 and (b) 𝜀 = 1.0.

in their arguments and are statistically orthonormal with
respect to the weighting function 𝑒

−(1/2)∑
𝑛

𝑖=1
𝜉
2
(𝑡𝑖); that is,

𝐸 [𝐻
(𝑖)

𝐻
(𝑗)

] = 0 ∀𝑖 ̸= 𝑗. (16)

The average of almost all Wiener-Hermite functionals van-
ishes, particularly,

𝐸 [𝐻
(𝑖)

] = 0 ∀𝑖 ≥ 1. (17)

The expectation and variance of the solution will be

𝐸 [𝑥 (𝑡)] = 𝑥
(0)

(𝑡) ,

Var [𝑥 (𝑡)] =

𝑚

∑

𝑘=1

(𝑘!) ∫

𝑅
𝑘

(𝑥
(𝑘)

𝑖
)

2

𝑑𝜏
𝑘
.

(18)

The WHE method can be elementarily used in solving
stochastic differential equations by expanding the solution
as well as the stochastic input processes via the WHE. The
resultant equation is more complex than the original one due
to being a stochastic integrodifferential equation. Taking a
set of ensemble averages together with using the statistical
properties of the WHE functionals, a set of deterministic
integrodifferential equations are obtained in the determin-
istic kernels 𝑥

(𝑖)

(𝑡; 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑖
), 𝑖 = 0, 1, 2, . . .. To obtain

approximate solutions of these deterministic kernels, one can
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Figure 9: The second-order response mean and variance for 𝜀 = 0.5 and time interval of 20 seconds.

use perturbation theory in the case of having a perturbed
system depending on a small parameter 𝜀. Expanding the
kernels as a power series of 𝜀, another set of simpler iterative
equations in the kernel series components are obtained.
This is the main algorithm of the WHEP algorithm [4].
The technique was successfully applied to several nonlinear
stochastic equations; see for example [4, 5, 10].

TheWHEP technique for general nonlinear exponent (𝑛),
general order (𝑚), and general number of corrections (NC)
follows the following steps [16].

(1) Truncate the expansion (14) to contain only𝑚+1 (𝑚 ≥

1) kernels 𝑥(𝑗), 0 ≤ 𝑗 ≤ 𝑚; that is, 𝑥(𝑡; 𝑤) = 𝑥
(0)

(𝑡) +

∑
𝑚

𝑘=1
∫
𝑅
𝑘
𝑥
(𝑘)

𝐻
(𝑘)

𝑑𝜏
𝑘
.

(2) Substitute into the stochastic oscillatory equation (1).

(3) Use themultinomial theorem to expand the quadratic
nonlinear term in (1), 𝑥𝑛, 𝑛 = 2.

(4) Multiply by 𝐻
(𝑗), 0 ≤ 𝑗 ≤ 𝑚, and then apply the

ensemble average. This will lead to (𝑚 + 1) equations
in the kernels 𝑥(𝑗), 0 ≤ 𝑗 ≤ 𝑚.

(5) For each kernel 𝑥(𝑗), 0 ≤ 𝑗 ≤ 𝑚, apply the pertur-
bation technique up to NC corrections; that is, 𝑥(𝑗) =
∑

NC
𝑖=0

𝜀
𝑖

𝑥
(𝑗)

𝑖
.

(6) Equate the coefficients of 𝜀𝑘, 0 ≤ 𝑘 ≤ NC, in both sides
to get NC+1 equations for each kernel𝑥(𝑗), 0 ≤ 𝑗 ≤ 𝑚.

This will lead to the following (𝑚+ 1)(NC+ 1) equations:

(𝑗!) 𝐿 (𝑥
(𝑗)

0
) = 𝛿
𝑗0
𝑓 (𝑡) + 𝛿

𝑗1
𝑔 (𝑡) 𝛿 (𝑡 − 𝑡

1
) ,

0 ≤ 𝑗 ≤ 𝑚,

(19)

(𝑗!) 𝐿 (𝑥
(𝑗)

𝑏
) = −∑

𝑓

𝑐
𝑓
𝐷
(𝑗)

𝑓,𝑏−1
𝐸
𝑗

𝑓
,

0 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑏 ≤ NC,

(20)

where

𝐷
(𝑗)

𝑓,𝑏−1
= ∫

𝑅
𝑧

(∑

Var
𝑐
−

𝑔

𝑚

∏

𝑖=0

NC
∏

𝑝=0

[𝑥
(𝑖)

𝑝
]

ℎ
𝑝

𝑔

)𝑑𝜏
𝑧
. (21)

And the expectations 𝐸𝑗
𝑓
are computed as

𝐸
𝑗

𝑓
= ⟨𝐻

(𝑗)

𝑚

∏

𝑖=0

(𝐻
(𝑖)

)

𝑘
𝑗

𝑓

⟩. (22)

It was explained in [16] how to get 𝐸𝑗
𝑓
in terms of the Dirac

delta functions and then use them to reduce the integrals
that appear in 𝐷

(𝑗)

𝑓,𝑏−1
. The summation ∑Var means that all

variations ℎ
𝑝

𝑞
, 0 ≤ 𝑞 ≤ 𝑚, 0 ≤ 𝑝 ≤ NC, that satisfy the

equality 𝑑 = ∑
𝑚

𝑞=0
∑

NC
𝑝=0

𝑝ℎ
𝑝

𝑞
are selected. This can be done

be a searching technique. For these variations, the factors
𝑐
𝑔

= 𝑘
𝑖

𝑓
!/∏

NC
𝑝=0

ℎ
𝑝

𝑔
! will be multiplied by each other to get
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Figure 10: The third-order response mean and variance for (a) 𝜀 = 0.1, (b) 𝜀 = 0.3, and (c) 𝜀 = 0.5.
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Figure 11: The third-order response mean and variance for (a) 𝜀 = 0.7 and (b) 𝜀 = 1.0.

𝑐
−

𝑔
; that is, 𝑐−

𝑔
= ∏Var𝑐𝑔. The Kronecker delta functions are

defined as

𝛿
𝑗𝑙
= {

1, 𝑗 = 𝑙

0, 𝑗 ̸= 𝑙.

(23)

The counter 𝑓, in the summation in the right hand side of
(20), runs over all of the (

𝑛+𝑚

𝑛
) combinations of the positive

integers 𝑘0
𝑓
, 𝑘
1

𝑓
, . . . , 𝑘

𝑚

𝑓
such that ∑𝑚

𝑖=0
𝑘
𝑖

𝑓
= 𝑛.

Equations (19) and (20) can always be solved using the
proper sequence. The first 𝑚 + 1 equations of (19) are solved
independently to get 𝑥(𝑗)

0
, 0 ≤ 𝑗 ≤ 𝑚; then they are used

to compute the other components in (20). For 𝑗 = 0, the

component 𝑢(0)
0

is obtained by solving 𝐿(𝑥
(0)

0
) = 𝑓(𝑡) with

the original initial and boundary conditions. For 𝑗 = 1, the
component 𝑥(1)

0
is obtained by solving 𝐿(𝑥

(1)

0
) = 𝑔(𝑡)𝛿(𝑡 − 𝑡

1
)

with zero initial and boundary conditions.The other compo-
nents 𝑢(𝑗)

0
, 𝑗 ≥ 2, will be zeros due to zero right hand side and

zero initial and boundary conditions. Equation (20) specifies
the solution sequence to be followed. The component 𝑥(𝑗)

𝑖
is

evaluated in terms of the previously computed components
𝑥
(𝑝)

𝑘
, 𝑝 ≤ 𝑗, 𝑘 < 𝑖. This means that the 1st corrections for

all kernels, 𝑥(𝑗)
1
, 0 ≤ 𝑗 ≤ 𝑚, are solved firstly and then the

2nd corrections for all kernels, 𝑥(𝑗)
2
, 0 ≤ 𝑗 ≤ 𝑚, . . . up to the

(NC)th corrections for all kernels 𝑥(𝑗)NC, 0 ≤ 𝑗 ≤ 𝑚.
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Figure 12: Comparison between the response mean and variance for the first, second, and third orders with number of corrections 1 and 2,
𝜀 = 0.3.

These results are consistent with the known results
obtained using WHE. In WHE, higher-order kernels are
driven by lower-order kernels, and at the bottom, the
Gaussian kernels are driven by the random forcing directly.
So, the lower-order kernels are usually dominant in magni-
tude [3].

The statistical properties of the solution will be calculated
as

𝐸 [𝑥 (𝑡)] =

NC
∑

𝑖=0

𝜀
𝑖

𝑥
(0)

𝑖
,

Var [𝑥 (𝑡)] =

𝑚

∑

𝑘=1

(𝑘!) ∫

𝑅
𝑘

(

NC
∑

𝑖=0

𝜀
𝑖

𝑥
(𝑘)

𝑖
)

2

𝑑𝜏
𝑘
.

(24)

If 𝑥(𝑗) = ∑
∞

𝑖=0
𝜀
𝑖

𝑥
(𝑗)

𝑖
, then it will be convergent if [16]

|𝜀| ≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
(𝑗)

𝑖

𝑥
(𝑗)

𝑖+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(25)

for 𝑡 ∈ [𝑡
0
, 𝑇]. This means that |𝜀| should obey an upper

bound condition after which divergence is obtained.

3. The Equivalent Deterministic Equations

Apply the previous WHEP algorithm to get the following
systems of equations of the quadratic (𝑛 = 2) nonlinear
oscillatory equation and first-order (𝑚 = 1) Gaussian
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Figure 13: Comparison between the response mean and variance for the first, second, and third orders with numbers of corrections 3 and 4,
𝜀 = 0.3.

approximation and different number of corrections (NC).
The initial conditions are assumed deterministic and hence
only the zero-order and zero-correction kernel equation
(𝐿(𝑥
(0)

0
) = 𝑓(𝑡)) will have the initial conditions (𝑥

0
and 𝑥̇

0
).

Other kernels equations will have zero initial conditions.
For the quadratic nonlinear oscillatory stochastic equa-

tion, the application of theWHEP technique will result in the
following set of equations (Tables 1, 2, and 3). The equations
will be written for the first, second, and third orders. For a
certain correction level, the deterministic system will include
also the equations from previous levels.

In case of zero initial conditions, 𝑓(𝑡) = 0 and 𝑔(𝑡) = 1;
that is, RHS = −𝜀𝜔

2

𝑥
2

+𝑁(𝑡), and we will have the following

reduced system of equations:

𝐿 (𝑥
(0)

0
) = 0, 𝐿 (𝑥

(1)

0
) = 𝛿 (𝑡 − 𝑡

1
) ,

𝐿 (𝑥
(0)

1
) = −𝜔

2

∫

𝑅

[𝑥
(1)

0
(𝑡
1
)]

2

𝑑𝑡
1
, 𝐿 (𝑥

(1)

1
) = 0,

𝐿 (𝑥
(0)

2
) = 0, 𝐿 (𝑥

(1)

2
) = −2𝜔

2

𝑥
(0)

1
𝑥
(1)

0
(𝑡
1
) ,

𝐿 (𝑥
(0)

3
) = −𝜔

2

[𝑥
(0)

1
]

2

− 2𝜔
2

∫

𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

2
(𝑡
1
) 𝑑𝑡
1
,

𝐿 (𝑥
(1)

3
) = 0,

𝐿 (𝑥
(0)

4
) = 0,



Journal of Applied Mathematics 15

Table 1: The equivalent deterministic system for first-order approximation with different number of corrections (NC).

NC = 1

𝐿 (𝑥
(0)

0
) = 𝑓(𝑡)

𝐿 (𝑥
(1)

0
) = 𝑔(𝑡)𝛿(𝑡 − 𝑡

1
)

𝐿 (𝑥
(0)

1
) = −𝜔

2

[𝑥
(0)

0
]

2

− 𝜔
2

∫
𝑅

[𝑥
(1)

0
(𝑡
1
)]

2

𝑑𝑡
1

𝐿 (𝑥
(1)

1
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

0
(𝑡
1
)

NC = 2
𝐿(𝑥
(0)

2
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

1
− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
)𝑥
(1)

1
(𝑡
1
)𝑑𝑡
1

𝐿 (𝑥
(1)

2
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

0
(𝑡
1
)

NC = 3
𝐿 (𝑥
(0)

3
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

2
− 𝜔
2

[𝑥
(0)

1
]

2

− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

2
(𝑡
1
) 𝑑𝑡
1
− 𝜔
2

∫
𝑅

[𝑥
(1)

1
(𝑡
1
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1
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(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

0
(𝑡
1
)

NC = 4
𝐿 (𝑥
(0)

4
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

3
− 2𝜔
2

𝑥
(0)

1
𝑥
(0)

2
− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

3
(𝑡
1
) 𝑑𝑡
1
− 2𝜔
2

∫
𝑅

𝑥
(1)

1
(𝑡
1
) 𝑥
(1)

2
(𝑡
1
) 𝑑𝑡
1

𝐿 (𝑥
(1)

4
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

3
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

3
𝑥
(1)

0
(𝑡
1
)

NC = 5

𝐿 (𝑥
(0)

5
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

4
− 2𝜔
2

𝑥
(0)

1
𝑥
(0)

3
− 𝜔
2

[𝑥
(0)

2
]

2

− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

4
(𝑡
1
) 𝑑𝑡
1

− 2𝜔
2

∫
𝑅

𝑥
(1)

1
(𝑡
1
) 𝑥
(1)

3
(𝑡
1
) 𝑑𝑡
1
− 𝜔
2

∫
𝑅

[𝑥
(1)

2
(𝑡
1
)]

2

𝑑𝑡
1

𝐿 (𝑥
(1)

5
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

4
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

3
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

3
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

4
𝑥
(1)

0
(𝑡
1
)

𝐿 (𝑥
(1)

4
) = −2𝜔

2

𝑥
(0)

1
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

3
𝑥
(1)

0
(𝑡
1
) ,

𝐿 (𝑥
(0)

5
) = −2𝜔

2

𝑥
(0)

1
𝑥
(0)

3

− 2𝜔
2

∫

𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

4
(𝑡
1
) 𝑑𝑡
1

− 𝜔
2

∫

𝑅

[𝑥
(1)

2
(𝑡
1
)]

2

𝑑𝑡
1
,

𝐿 (𝑥
(1)

5
) = 0.

(26)

4. Oscillatory Equation and
the Numerical Solver

For the linear oscillatory equation,

𝑥̈ + 2𝜔𝜁𝑥̇ + 𝜔
2

𝑥 = 𝑓 (𝑡) , (27)

the linear operator 𝐿 will be

𝐿 =

𝑑
2

𝑑𝑡
2
+ 2𝜔𝜁

𝑑

𝑑𝑡

+ 𝜔
2

. (28)

This means that the linear oscillatory equation can be written
as 𝐿(𝑥) = 𝑓(𝑡). The parameter 𝜔 is the undamped angular
frequency of the oscillator and 𝜉 is the damping ratio. The
initial conditions will be considered as 𝑥(0) = 𝑥

0
and 𝑥̇

0
(0) =

𝑥̇
0
. In case of zero initial conditions, the exact solution that

can be obtained using different methods such as the theory
of linear differential equations or the Laplace transform will
be the convolution

𝑥 (𝑡) = ℎ (𝑡) ∘ 𝑓 (𝑡) , (29)

where ℎ(𝑡) = (1/𝜔
𝑑
)𝑒
−𝜔𝜉𝑡 sin(𝜔

𝑑
𝑡) with 𝜔

𝑑
= 𝜔√1 − 𝜉

2,
assuming underdamping (𝜉 < 1).

For 𝑓(𝑡) = 𝑒
−𝑡, the solution will be 𝑥(𝑡) = ∫

𝑡

0

ℎ(𝑡 −

𝜏)𝑓(𝜏)𝑑𝜏, which results in

𝑥 (𝑡) =

1

1 − 2𝜔𝜉 + 𝜔
2

× (𝑒
−𝑡

− 𝑒
−𝜔𝜉𝑡 cos (𝜔

𝑑
𝑡)

+

1 − 𝜔𝜉

𝜔
𝑑

𝑒
−𝜔𝜉𝑡 sin (𝜔

𝑑
𝑡)) .

(30)

The numerical solution can be obtained for a model equation
and then used for all kernels in the proper sequence. The
model equation in this case will take the form

𝑥̈ + 𝑎
1
𝑥̇ + 𝑎
0
𝑥 = 𝑓 (𝑡) , (31)

where 𝑎
1
and 𝑎

0
are assumed constant. We can use any

difference scheme, but as we are working with a white noise,
the Dirac delta function 𝛿(𝑡 − 𝑎) is expected to appear in the
equations of some kernels. So, an integral numerical scheme
such as FEM or FVM will be more suitable as the integration
of the Dirac delta function is easier to be handled. In our
case, the finite volumemethod (FVM)will be considered.The
time axis where 𝑡 ∈ [0, 𝑇] will be discretized into 𝑛 equal
intervals of size Δ𝑡. The interval extending from 𝑡

𝑖−1
to 𝑡
𝑖
is

taken as the control volume.This technique in one dimension
will be equivalent to the trapezoidal integration rule. The
second-order linear equation (31) will be decomposed into
two simultaneous first-order equations. This can be done by
substituting 𝑥̇ = 𝑦, and then we will have

𝑥̇ = 𝑦 with 𝑥 (0) = 𝑥
0
,

̇𝑦 + 𝑎
1
𝑦 + 𝑎
0
𝑥 = 𝑓 (𝑡) with 𝑦

0
= 𝑥̇ (0) .

(32)
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Table 2: The equivalent deterministic systems for second-order approximation with different number of corrections (NC).

NC = 1

𝐿 (𝑥
(0)

0
) = 𝑓(𝑡)

𝐿 (𝑥
(1)

0
) = 𝑔 (𝑡) 𝛿 (𝑡 − 𝑡

1
)

2𝐿 (𝑥
(2)

0
) = 0

𝐿 (𝑥
(0)

1
) = −𝜔

2

[𝑥
(0)

0
]

2

− 𝜔
2

∫
𝑅

[𝑥
(1)

0
(𝑡
1
)]

2

𝑑𝑡
1

𝐿 (𝑥
(1)

1
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

0
(𝑡
1
)

2𝐿 (𝑥
(2)

1
) = −2𝜔

2

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

0
(𝑡
2
)

NC = 2
𝐿 (𝑥
(0)

2
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

1
− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

1
(𝑡
1
) 𝑑𝑡
1

𝐿 (𝑥
(1)

2
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

0
(𝑡
1
) − 4𝜔

2

∫
𝑅

𝑥
(1)

0
(𝑡
2
) 𝑥
(2)

1
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2

2𝐿 (𝑥
(2)

2
) = −4𝜔

2

𝑥
(0)

0
𝑥
(2)

1
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

1
(𝑡
2
)

NC = 3

𝐿 (𝑥
(0)

3
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

2
− 𝜔
2

[𝑥
(0)

1
]

2

− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

2
(𝑡
1
) 𝑑𝑡
1
− 𝜔
2

∫
𝑅

[𝑥
(1)

1
(𝑡
1
)]

2

𝑑𝑡
1
− 2𝜔
2

∫
𝑅
2 [𝑥
(2)

1
(𝑡
1
, 𝑡
2
)]

2

𝑑𝑡
1
𝑑𝑡
2

𝐿 (𝑥
(1)

3
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

0
(𝑡
1
) − 4𝜔

2

∫
𝑅

𝑥
(1)

0
(𝑡
2
)𝑥
(2)

2
(𝑡
1
, 𝑡
2
)𝑑𝑡
2

− 4𝜔
2

∫

𝑅

𝑥
(1)

1
(𝑡
2
)𝑥
(2)

1
(𝑡
1
, 𝑡
2
)𝑑𝑡
2

2𝐿 (𝑥
(2)

3
) = −4𝜔

2

𝑥
(0)

0
𝑥
(2)

2
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(0)

1
𝑥
(2)

1
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(1)

0
(𝑡
1
) 𝑥
(1)

2
(𝑡
2
)

− 2𝜔
2

𝑥
(1)

1
(𝑡
1
) 𝑥
(1)

1
(𝑡
2
) − 8𝜔

2

∫
𝑅

𝑥
(2)

1
(𝑡
1
, 𝑡
3
) 𝑥
(2)

1
(𝑡
2
, 𝑡
3
) 𝑑𝑡
3

NC = 4

𝐿 (𝑥
(0)

4
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

3
− 2𝜔
2

𝑥
(0)

1
𝑥
(0)

2
− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
)𝑥
(1)

3
(𝑡
1
)𝑑𝑡
1
− 2𝜔
2

∫
𝑅

𝑥
(1)

1
(𝑡
1
)𝑥
(1)

2
(𝑡
1
)𝑑𝑡
1

− 4𝜔
2

∫
𝑅
2 𝑥
(2)

1
(𝑡
1
, 𝑡
2
)𝑥
(2)

2
(𝑡
1
, 𝑡
2
)𝑑𝑡
1
𝑑𝑡
2

𝐿 (𝑥
(1)

4
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

3
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

3
𝑥
(1)

0
(𝑡
1
)

− 4𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
2
) 𝑥
(2)

3
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2
− 4𝜔
2

∫
𝑅

𝑥
(1)

1
(𝑡
2
) 𝑥
(2)

2
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2
− 4𝜔
2

∫
𝑅

𝑥
(1)

2
(𝑡
2
) 𝑥
(2)

1
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2

2𝐿 (𝑥
(2)

4
) = −4𝜔

2

𝑥
(0)

0
𝑥
(2)

3
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(0)

1
𝑥
(2)

2
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(0)

2
𝑥
(2)

1
(𝑡
1
, 𝑡
2
) − 4𝜔

2

𝑥
(1)

0
(𝑡
1
)𝑥
(1)

3
(𝑡
2
)

− 4𝜔
2

𝑥
(1)

1
(𝑡
1
)𝑥
(1)

2
(𝑡
2
) − 8𝜔

2

∫
𝑅

𝑥
(2)

1
(𝑡
1
, 𝑡
3
)𝑥
(2)

2
(𝑡
2
, 𝑡
3
)𝑑𝑡
3
− 8𝜔
2

∫
𝑅

𝑥
(2)

2
(𝑡
1
, 𝑡
3
)𝑥
(2)

1
(𝑡
2
, 𝑡
3
)𝑑𝑡
3

Integrate (32) along the control volume to get

∫

𝑡𝑖

𝑡𝑖−1

𝑥̇𝑑𝑡 = ∫

𝑡𝑖

𝑡𝑖−1

𝑦𝑑𝑡. (33)

Approximate the integral with the trapezoidal rule which is
of accuracy proportional to (Δ𝑡)

2 to get

𝑥
𝑖
= 𝑥
𝑖−1

+

Δ𝑡

2

(𝑦
𝑖−1

+ 𝑦
𝑖
) . (34)

Also, integrate (32) along the control volume and substitute
with 𝑥

𝑖
from (34) to get

𝑦
𝑖
=

4𝐹
𝑖−1

+ 𝑦
𝑖−1

(4 − 2𝑎
1
Δ𝑡 − 𝑎

0
(Δ𝑡)
2

) − 4𝑎
0
Δ𝑡𝑥
𝑖−1

4 + 2𝑎
1
Δ𝑡 + 𝑎

0
(Δ𝑡)
2

,

(35)

where 𝐹
𝑖−1

= ∫

𝑡𝑖

𝑡𝑖−1

𝑓(𝑡)𝑑𝑡 = 0.5(𝑓
𝑖−1

+ 𝑓
𝑖
)Δ𝑡. If the Dirac delta

function appears in the right hand side, a special treatment
for 𝐹
𝑖−1

is considered. In this case 𝐹
𝑖−1

= ∫

𝑡𝑖

𝑡𝑖−1

𝑞(𝑡)𝛿(𝑡 − 𝑡
1
)𝑑𝑡 =

𝑞(𝑡
𝑖
)when 𝑡

𝑖
= 𝑡
1
and 𝐹
𝑖−1

= 0when 𝑡
𝑖

̸= 𝑡
1
. Equation (35) will

be solved at each node 𝑡
𝑖
to get 𝑦

𝑖
and then (34) computed to

get 𝑥
𝑖
.

The numerical solution can be validated with the exact
solution in case of 𝑓(𝑡) = 𝑒

−𝑡 (see (30)). With 𝑥
0

= 𝑥̇
0

=

0, 𝜔 = 1, 𝜉 = 0.5, 𝑇 = 10, and Δ𝑡 = 0.1, the comparison

in Figure 1 shows that the numerical solution has sufficient
accuracy with a relative error of 0.03% atΔ𝑡 = 0.1.The overall
convergence rate of the developed scheme was tested, and it
has a convergence order of 1.5 as shown in Figure 2.

5. Results

The following output is simulated using the previous devel-
oped numerical solver. The solution (34) of the model
equation (31) is used to get all kernels with the proper right
hand side. The mean response and the response variance are
then calculated from the kernels using (24).

Figures 3 and 4 show the first-order response mean and
variance for different values of 𝜀. The simulations are done
for the case of zero initial conditions, zero deterministic
excitation, and unit envelope functionmultiplied by thewhite
noise. The angular frequency is 𝜔 = 1 and the damping ratio
is 𝜉 = 0.5. For the response mean, the 3rd and 4th corrections
are coincident. For the variance, the 2nd and 3rd corrections
are coincident and also the 4th and 5th corrections.

As it is shown in the figures, the nonlinearity strength
𝜀 greatly affects the amplitudes of the mean and variance.
It should not be increased after a certain value to obtain
a convergent solution. This value depends on the different
parameters of the problem. As the nonlinearity strength 𝜀

increases, we need higher number of corrections. For 𝜀 =

0.1 and at 𝑡 = 10 seconds, the ratio between the response
mean of each correction and the proceeding one is around
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Table 3: The equivalent deterministic system for third-order approximation with different number of corrections (NC).

NC = 1

𝐿 (𝑥
(0)

0
) = 𝑓(𝑡)

𝐿 (𝑥
(1)

0
) = 𝑔(𝑡)𝛿(𝑡 − 𝑡

1
)

2𝐿 (𝑥
(2)

0
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6𝐿 (𝑥
(3)

0
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𝐿 (𝑥
(0)

1
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2
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0
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− 𝜔
2
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𝑅

[𝑥
(1)

0
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1
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2
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𝑅

𝑥
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0
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1
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1
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2
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2

𝑥
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0
𝑥
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1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
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0
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1
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2

∫
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𝑥
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0
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2
)𝑥
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1
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1
, 𝑡
2
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2
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2
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2

𝑥
(0)

0
𝑥
(2)

1
(𝑡
1
, 𝑡
2
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2

𝑥
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0
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1
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1
(𝑡
2
)

6𝐿 (𝑥
(3)

2
) = −12𝜔

2

𝑥
(1)

0
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1
) 𝑥
(2)

1
(𝑡
2
, 𝑡
3
)

NC = 3

𝐿 (𝑥
(0)

3
) = −2𝜔

2

𝑥
(0)

0
𝑥
(0)

2
− 𝜔
2

[𝑥
(0)

1
]

2

− 2𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
1
)𝑥
(1)

2
(𝑡
1
)𝑑𝑡
1

− 𝜔
2

∫
𝑅

[𝑥
(1)

1
(𝑡
1
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2

𝑑𝑡
1
− 2𝜔
2

∫
𝑅
2 [𝑥
(2)

1
(𝑡
1
, 𝑡
2
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2

𝑑𝑡
1
𝑑𝑡
2

𝐿 (𝑥
(1)

3
) = −2𝜔

2

𝑥
(0)

0
𝑥
(1)

2
(𝑡
1
) − 2𝜔

2

𝑥
(0)

1
𝑥
(1)

1
(𝑡
1
) − 2𝜔

2

𝑥
(0)

2
𝑥
(1)

0
(𝑡
1
)

− 4𝜔
2

∫
𝑅

𝑥
(1)

0
(𝑡
2
) 𝑥
(2)

2
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2
− 4𝜔
2
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𝑅

𝑥
(1)

1
(𝑡
2
) 𝑥
(2)

1
(𝑡
1
, 𝑡
2
) 𝑑𝑡
2
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(2)

3
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2

𝑥
(0)

0
𝑥
(2)

2
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1
, 𝑡
2
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2

𝑥
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1
𝑥
(2)

1
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1
, 𝑡
2
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2

𝑥
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0
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1
)𝑥
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0.98, which is greater than 𝜀. This means that the condition
of convergence is satisfied and hence the solution converges
in this case. Also, the convergence condition is satisfied for
𝜀 = 0.3 and 𝜀 = 0.5. In case 𝜀 = 0.7, the ratio between
the 4th and 5th corrections is 0.6 and between the 2nd and
3rd corrections is 0.58. Both ratios are lesser than 0.7, which

means that we will have a divergent solution for 𝜀 = 0.7. Also,
𝜀 = 1.0 will produce a divergent solution.

Figures 5 and 6 show the first-order response mean and
variance using the same parameters in Figures 3 and 4, but
the envelope function 𝑔(𝑡) is taken as 𝑒

−0.5𝑡. As it is clear
from the figures, the effect of the nonlinearity strength 𝜀
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Figure 14: Comparison between the response mean and variance for the first, second, and third orders with numbers of corrections 1 and 2,
𝜀 = 1.0.

on the response variance is negligible. The multiplication of
𝑒
−0.5𝑡 attenuates the effect of the white noise and it becomes
negligible with the time increase. The variance vanishes with
the time and the solution becomes nearly deterministic. Also,
the response variance is nearly invariant with the number of
corrections.

Figures 7 and 8 show the second-order response mean
and variance using the same parameters in the first-order
simulations, Figures 3 and 4. Figure 9 shows the second-order
response mean and variance for longer time interval, 𝑇 = 20

seconds. This was done to ensure that 𝑇 = 10 seconds is a
sufficient interval for the responsemean and variance to reach
their steady state values. For the second-order approximation,

the response variance is computed practically as

Var [𝑥 (𝑡)]

= ∫

𝑅
1

((

NC
∑

𝑖=0

𝜀
𝑖

𝑥
(1)

𝑖
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2
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2
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𝜀
𝑖

𝑥
(2)

𝑖
)

2

𝑑𝑡
2
)𝑑𝑡
1
.

(36)

Figures 10 and 11 show the third-order response mean and
variance with the same parameters used in the first- and
second-orders simulations. For the third-order approxima-
tion, the response variance is computed practically, for time
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Figure 15: Comparison between the response mean and variance for the first, second, and third orders with numbers of corrections 3 and 4,
𝜀 = 1.0.

and memory saving, as

Var [𝑥 (𝑡)]
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(37)

Table 4 shows a comparison between the computing times
for different levels of correction for the third-order approx-
imation. The computing times for the response mean and
variance are also shown. The table displays also the order
of integrals in each level. The time step was 0.2 seconds
and the computations are done on Intel Core i5, 2.4GHz,
machine with W7, 32 bits. We can note that around 90% of
the computing time is consumed in level 4 (4th correction
level). This is due to the higher orders of integrals computed
in this level. As the level of correction increases, the order of
integral increases and hence the computational time will also
increase.
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Table 4: The computing time for each level and for the response
mean and variance compared with the total time.

Time (sec.) Order of integrals
Level 0 0.041 0
Level 1 0.015 1
Level 2 0.29 1 & 2
Level 3 0.82 1 & 2 & 3
Level 4 19.55 1 & 2 & 3 & 4
𝐸[𝑥] 0.0029 0
Var[𝑥] 0.16 1 & 2 & 3
Total time 20.88

Figures 12 and 13 show a comparison, at 𝜀 = 0.3,
between the response mean and variance for different orders
and different number of corrections. As it was described
earlier, the solution is convergent at 𝜀 = 0.3. As it is
shown in the figures, the response variance is more sensitive
to the approximation order than the response mean. The
variance converges as the approximation order increases.
This means that, for a convergent solution, higher-order
approximations are required for accurate prediction of the
stochastic response.

Figures 14 and 15 show a comparison, at 𝜀 = 1.0, between
the response mean and variance for different orders and
different number of corrections. In this case, the solution is
divergent. The response variance diverges as the approxima-
tion order increases and also as the correction level increases.

It is worth to note that the WHEP technique used in the
current work can be extended to solve stochastic PDEs with
white noise in multiple dimensions and of different colors as
described in [16].

6. Summary and Conclusions

The mean response of the quadratic nonlinear oscillatory
system subjected to nonstationary random excitation was
investigated using WHEP technique. The equivalent deter-
ministic equations are derived up to third order.The solution
is approximated up to fifth correction for the first order and
up to fourth correction for the second and third orders.
Numerical integral solution of the equivalent deterministic
set of equations was applied using the FVM. The numerical
treatment is validated after comparing the results with the
analytical solution. The numerical solver is utilized in sim-
ulating the mean and variance of the nonlinear stochastic
oscillatory motion with higher order, higher number of
corrections, anddifferent strengths of the nonlinear term.The
values of the nonlinearity strength required for convergent
solution are estimated. It was found that the numerical
solution is efficient, and higher-order approximations are
required for accurate prediction of the stochastic response.
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