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We adopt the Leray-Schauder degree theory and critical point theory to consider a second order Dirichlet boundary value problem
on time scales and obtain some existence theorems of weak solutions for the previous problem.

1. Introduction

In recent years, differential equations on time scales have
been studied extensively in the literature. There have been
many approaches to study the existence and multiplicity
of solutions for differential equations on time scales. The
variationalmethod is, to the best of our knowledge, novel, and
it may open a new approach to deal with nonlinear problems
on time scales. For more details about recent development in
the direction, we refer the reader to [1–12] and the references
therein. The two books [13, 14] by Bohner and Peterson
summarize some excellent results on time scales.

In [1, 2], the authors utilized variational techniques and
critical point theory to derive some sufficient conditions for
the existence of positive solutions for the following second
order dynamic equation with Dirichlet boundary conditions:

−𝑢

ΔΔ
(𝑡) = 𝑓 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) , Δ-a.e. 𝑡 ∈ 𝐽,

𝑢 (𝑎) = 0 = 𝑢 (𝑏) .

(1)

In [8], Zhou and Li studied Sobolev’s spaces on time
scales, and given their properties, as applications, they pre-
sented variationalmethods and critical point theory to obtain
the existence of solutions for the second order Hamiltonian
systems on time scales as follows:

𝑢

Δ
2

(𝑡) = ∇𝐹 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) , Δ-a.e. 𝑡 ∈ [0, 𝑇]

𝜅
2

T ,

𝑢 (0) = 𝑢 (𝑇) , 𝑢

Δ
(0) = 𝑢

Δ
(𝑇) ,

(2)

where 𝐹(𝑡, 𝑥) is Δ-measurable in 𝑡 for every 𝑥 ∈ R𝑁 and
continuously differentiable in 𝑥 for Δ-a.e. 𝑡 ∈ [0, 𝑇]T .

Motivated by the works cited previously, in this paper, we
study the second order Dirichlet boundary value problem on
time scales. Consider

−𝑢

ΔΔ
(𝑡) = 𝜆𝑢

𝜎
(𝑡) + ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) , Δ-a.e. 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑢 (𝑇) = 0,

(3)

wherewe say that a property holds forΔ-almost every 𝑡 ∈ 𝐴 ⊂

T or Δ-almost everywhere on 𝐴 ⊂ T , Δ-a.e., whenever there
exists a set 𝐸 ⊂ 𝐴 with null Lebesgue Δ-measure such that
this property holds for every 𝑡 ∈ 𝐴 \ 𝐸, 𝐽 := [0, 𝜌(𝑇)) ∩ T and
T ⊂ R is an arbitrary bounded time scale such that min T = 0

and max T = 𝑇.
We assume that 𝜆 is a parameter, ℎ ∈ CAR([0, 𝑇)T ,R),

[0, 𝑇)T := [0, 𝑇) ∩ T , where CAR([0, 𝑇)T ,R) means that
ℎ fulfils the Carathéodory conditions (see [15, Definition
3.2.22] and [2, (i) and (ii) in (H

2
)]). By virtue of the Leray-

Schauder degree theory, a result involving the existence of
weak solutions is established. Next, we utilize two critical
point theorems to investigate that problem (3) has at least
one weak solution and infinitely many weak solutions with
the parameter 𝜆 < 0, respectively. The results obtained here
improve some existing results in the literature.
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2. Preliminaries and an Existence Theorem via
Leray-Schauder Degree Theory

We first offer some related preliminaries concerning the
basic definitions and results on time scales. For conve-
nience, for 𝑓 ∈ 𝐿

2

Δ
([0, 𝑇)T ,R), we denote ∫

𝑇

0
|𝑓(𝑠)|

2
Δ𝑠 =

∫

[0,𝑇)T

|𝑓(𝑠)|

2
Δ𝑠. Let Sobolev’s space 𝑊

1,2

Δ,𝑇
be defined by (see

[1–3])

𝑊

1,2

Δ,𝑇
:= {𝑥 ∈ 𝐴𝐶 ([0, 𝑇]T ,R) : 𝑥

Δ
∈ 𝐿

2

Δ
([0, 𝑇)T ,R) ,

𝑥 (0) = 𝑥 (𝑇) = 0} ,

(4)

where 𝐴𝐶([0, 𝑇]T ,R) (see [3, Definition 2.9]) denotes the set
of absolutely continuous functions on [0, 𝑇]T . Then𝑊

1,2

Δ,𝑇
is a

Hilbert space with the inner product

(𝑢, V)1 = ∫

[0,𝑇)T

𝑢

Δ
(𝑡) VΔ (𝑡) Δ𝑡, (5)

and let ‖ ⋅ ‖

1
be the norm induced by the inner product (⋅, ⋅)

1

(see [1, page 1265] and [2, page 371]).

Lemma 1 (see [3, Proposition 3.7]). The immersion 𝑊

1,2

Δ,𝑇
󳨅→

𝐶([0, 𝑇]T ,R) is compact.
We firstly need to consider the following eigenvalue prob-

lem:

−𝑢

ΔΔ
(𝑡) = 𝜆𝑢

𝜎
(𝑡) , 𝑡 ∈ [0, 𝑇]T ,

𝑢 (0) = 𝑢 (𝑇) = 0.

(6)

For each V ∈ 𝑊

1,2

Δ,𝑇
, multiply by V𝜎(𝑡) on both sides of the

previous equation in (6) and integrate over [0, 𝑇)T to obtain

∫

[0,𝑇)T

−𝑢

ΔΔ
(𝑡) V𝜎 (𝑡) Δ𝑡 = 𝜆∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡. (7)

By (7) of [8], we obtain

∫

[0,𝑇)T

𝑢

Δ
(𝑡) VΔ (𝑡) Δ𝑡 = 𝜆∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡. (8)

Lemma 2 (see [9, Lemma 3.4] and [13, Theorem 4.95]). The
eigenvalues of (6)may be arranged as 0 < 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅ , and

𝜆

1
can be expressed by

𝜆

1
:= inf

𝑢∈𝑊
1,2

Δ,𝑇
,𝑢 ̸= 0

∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡

∫

[0,𝑇)T
|𝑢

𝜎
(𝑡)|

2
Δ𝑡

.

(9)

By Lemma 2, if there exists 𝑢
1
∈ 𝑊

1,2

Δ,𝑇
and ‖𝑢

1
‖

1
= 1, then we

have
1

𝜆

1

= ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡. (10)

Choosing 𝜑

𝜎

1
=

√
𝜆

1
𝑢

𝜎

1
, we can easily obtain

∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝜑

𝜎

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡 = 𝜆

1
∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡 = 1,

𝜆

1
= ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑

Δ

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡.

(11)

Moreover, we also have

∫

[0,𝑇)T

𝜑

Δ

1
(𝑡) VΔ (𝑡) Δ𝑡 = 𝜆

1
∫

[0,𝑇)T

𝜑

𝜎

1
(𝑡) V𝜎 (𝑡) Δ𝑡,

∀V ∈ 𝑊

1,2

Δ,𝑇
.

(12)

Lemma 3 (see [16, Corollary 3.3]). Let 𝑢 ∈ 𝑊

1,2

Δ,𝑇
. Then the

Wirtinger-type inequality is

∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡 ≤

1

𝜆

1

∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡, (13)

where 𝜆
1
is defined by Lemma 2.

Denote an operator 𝐴 : 𝑊

1,2

Δ,𝑇
→ 𝑊

1,2

Δ,𝑇
as follows

(𝐴𝑢, V) = ∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡, ∀𝑢, V ∈ 𝑊

1,2

Δ,𝑇
. (14)

By Hölders inequality and Lemma 3, we have
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡) V𝜎 (𝑡)󵄨󵄨

󵄨

󵄨

Δ𝑡

≤ (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

2
Δ𝑡)

1/2

≤

1

𝜆

1

‖𝑢‖1‖
V‖1, ∀𝑢, V ∈ 𝑊

1,2

Δ,𝑇
.

(15)

Then 𝐴 is a bounded linear operator. By Lemma 1, 𝐴 is com-
pact. Clearly,𝐴 is also symmetric, (𝐴𝑢, 𝑢) > 0 for𝑢𝜎 ̸≡ 0. Con-
sequently, the supremum 1/𝜆

1
is achieved byTheorem 6.3.12 in

[15]. Hence, (10)–(12) are true.

In what follows, we offer two lemmas involving Leray-
Schauder degree.

Lemma 4 (see [15, Proposition 5.2.22]). Let Ω be an open
bounded set in a Banach space 𝑋 and 𝐴 ∈ C(Ω,𝑋). Let
𝑥

0
∈ Ω be a unique solution in Ω of the equation 𝑥 = 𝐹(𝑥).

Assume that the Fréchet derivative𝐴󸀠(𝑥
0
) exists and 𝐼−𝐴

󸀠
(𝑥

0
)

is continuously invertible. Then

deg (𝐼 − 𝐴,Ω, 0) = (−1)

𝛽
,

where𝛽 = ∑

𝜆∈𝜎
(

𝐹
󸀠
(

𝑥
0))

∩R,𝜆>1

𝑚(𝜆) ,

(16)

and 𝑚(𝜆) is the multiplicity of the eigenvalue 𝜆 of the operator
𝐴

󸀠
(𝑥

0
).

Lemma 5 (see [15, Theorem 5.2.13]). Let Ω be an open
bounded set in a Banach space 𝑋. There exists a mapping
deg(𝐼 − 𝐴,Ω, 𝑦

0
) defined for all 𝐴 ∈ C(Ω,𝑋) and 𝑦

0
∈ 𝑋

such that 𝑥−𝐴(𝑥) ̸= 𝑦

0
, ∀𝑥 ∈ 𝜕Ω. This mapping has the homo-

topy invariance property: if𝐴, 𝐵 ∈ C(Ω,𝑋) and𝐻(𝑡, 𝑥) = (1−

𝑡)𝐴𝑥+𝑡𝐵𝑥, 𝑡 ∈ [0, 1], and 𝑥 ∈ Ω are such that 𝑥−𝐻(𝑡, 𝑥) ̸= 𝑦

0
,
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for every 𝑥 ∈ 𝜕Ω and 𝑡 ∈ [0, 1], then deg(𝐼 − 𝐴,Ω, 𝑦

0
) =

deg(𝐼 − 𝐵,Ω, 𝑦

0
).

Now, we list our hypotheses for (3).

(H1) 𝜆 is a parameter and 𝜆 ̸= 𝜆

𝑛
, where 𝜆

𝑛
are determined

by Lemma 2.

(H2) ℎ ∈ CAR ([0, 𝑇)T ,R); there exist 𝑓 ∈ 𝐿

2

Δ
([0, 𝑇)T ,R),

𝑐 > 0 and 𝛼 ∈ [0, 1) such that

ℎ (𝑡, 𝑥) ≤ 𝑓 (𝑡) + 𝑐|𝑥|

𝛼
, ∀𝑡 ∈ [0, 𝑇)T , 𝑥 ∈ R. (17)

(H3) ℎ is 𝛼-Lipschitz continuous with respect to the second
variable; that is, there exists a constant 𝑐 > 0, such that

󵄨

󵄨

󵄨

󵄨

ℎ (𝑡, 𝑥

1
) − ℎ (𝑡, 𝑥

2
)

󵄨

󵄨

󵄨

󵄨

≤ 𝑐

󵄨

󵄨

󵄨

󵄨

𝑥

1
− 𝑥

2

󵄨

󵄨

󵄨

󵄨

𝛼
,

∀𝑡 ∈ [0, 𝑇)T , 𝑥1, 𝑥2 ∈ R, 𝛼 as in (H2) .

(18)

Remark 6. We can take ℎ(𝑡, 𝑥) = 𝑓(𝑡)+𝑐|𝑥|

𝛼, where 𝑐, 𝑓, 𝛼 are
as in (H2). Clearly, it also satisfies (H3). In fact,

󵄨

󵄨

󵄨

󵄨

ℎ (𝑡, 𝑥

1
) − ℎ (𝑡, 𝑥

2
)

󵄨

󵄨

󵄨

󵄨

= 𝑐

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

1

󵄨

󵄨

󵄨

󵄨

𝛼
−

󵄨

󵄨

󵄨

󵄨

𝑥

2

󵄨

󵄨

󵄨

󵄨

𝛼󵄨
󵄨

󵄨

󵄨

󵄨

≤ 𝑐

󵄨

󵄨

󵄨

󵄨

𝑥

1
− 𝑥

2

󵄨

󵄨

󵄨

󵄨

𝛼
,

∀𝑥

1
, 𝑥

2
∈ R.

(19)

It is clear that (3) is equivalent to the following integral
equation:

∫

[0,𝑇)T

𝑢

Δ
(𝑡) VΔ (𝑡) Δ𝑡

= 𝜆∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡

+ ∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) V𝜎 (𝑡) Δ𝑡, ∀V ∈ 𝑊

1,2

Δ,𝑇
.

(20)

We define an operator 𝑆 : 𝑊

1,2

Δ,𝑇
→ 𝑊

1,2

Δ,𝑇
as follows:

(𝑆𝑢, V) = ∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) V𝜎 (𝑡) Δ𝑡, ∀𝑢, V ∈ 𝑊

1,2

Δ,𝑇
.

(21)

Lemma 7. 𝑆 is compact on 𝑊

1,2

Δ,𝑇
.

Proof. We first prove that there exists a ball 𝐵(0, 𝑅) ⊂ 𝑊

1,2

Δ,𝑇

(𝑅 > 0) such that 𝑆maps𝐵(0, 𝑅) into itself if𝑅 is large enough.
Indeed, (H2) leads to

‖𝑆𝑢‖1
= sup
‖V‖1=1

|𝑆𝑢, V|

= sup
‖V‖1=1

∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) V𝜎 (𝑡) Δ𝑡

≤ sup
‖V‖1=1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡))

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

× (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

2
Δ𝑡)

1/2

≤

1

√
𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝜎
(𝑡) + 𝑐

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝛼󵄨
󵄨

󵄨

󵄨

󵄨

2

Δ𝑡)

1/2

≤ √

2

𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑓

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

+

√

2𝑐

2

𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2𝛼
Δ𝑡)

1/2

≤ √

2

𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑓

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

+

√

2𝑐

2
𝑇

1−𝛼

𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

𝛼/2

≤ √

2

𝜆

1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑓

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

+

√

2𝑐

2
𝑇

1−𝛼

𝜆

1+𝛼

1

‖𝑢‖

𝛼

1
.

(22)

Let 𝜂

1
:=

√
2/𝜆

1
(∫

[0,𝑇)T

|𝑓

𝜎
(𝑡)|

2
Δ𝑡)

1/2

, and 𝜂

2
:=

√
2𝑐

2
𝑇

1−𝛼
/𝜆

1+𝛼

1
. For any 𝑢 ∈ 𝐵(0, 𝑅),

‖𝑆𝑢‖1
< 𝑅, provided 𝜂

1
+ 𝜂

2
𝑅

𝛼
< 𝑅. (23)

Therefore, the above claim is true. Meanwhile, we also arrive
at immediately 𝑆 is uniformly bounded on 𝐵(0, 𝑅). On the
other hand,we shall prove that 𝑆 is equicontinuous on𝐵(0, 𝑅).
By (H3) and Hölders inequality, we have

󵄩

󵄩

󵄩

󵄩

𝑆𝑢

1
− 𝑆𝑢

2

󵄩

󵄩

󵄩

󵄩1

≤ sup
‖V‖1=1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

ℎ (𝜎 (𝑡) , 𝑢

𝜎

1
(𝑡))−ℎ (𝜎 (𝑡) , 𝑢

𝜎

2
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

Δ𝑡)

≤ sup
‖V‖1=1

(∫

[0,𝑇)T

𝑐

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

1
(𝑡) − 𝑢

𝜎

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝛼
󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

Δ𝑡)

≤ 𝑐 sup
‖V‖1=1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

1
(𝑡) − 𝑢

𝜎

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

𝛼/2

× (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

2/(2−𝛼)
Δ𝑡)

(2−𝛼)/2
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≤ 𝑇

(1−𝛼)/(2−𝛼)
𝑐 sup
‖V‖1=1

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

1
(𝑡) − 𝑢

𝜎

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

𝛼/2

× (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

V𝜎 (𝑡)󵄨󵄨
󵄨

󵄨

2
Δ𝑡)

1/(2−𝛼)

≤

𝑇

(1−𝛼)/(2−𝛼)
𝑐

𝜆

1/(2−𝛼)+𝛼/2

1

󵄩

󵄩

󵄩

󵄩

𝑢

1
− 𝑢

2

󵄩

󵄩

󵄩

󵄩

𝛼

1
.

(24)

We have from Arzelà-Ascoli theorem 𝑆 is compact on
𝐵(0, 𝑅) ⊂ 𝑊

1,2

Δ,𝑇
.

Theorem 8. Assume that (H1)–(H3) hold; problem (3) has at
least a weak solution.

Proof. We will utilize Leray-Schauder degree to prove the
result. One is invited to verify that the existence of a solution
of (3) is equivalent to the existence of a solution of the
operator equation

𝑢 = 𝜆𝐴𝑢 + 𝑆𝑢, ∀𝑢 ∈ 𝑊

1,2

Δ,𝑇
, (25)

where 𝐴 and 𝑆 are defined by (14) and (21), respectively. For
the reason that𝐴 is bounded, linear, and compact on𝑊

1,2

Δ,𝑇
, we

easily see that Fréchet derivative (𝜆𝐴)

󸀠 exists and 𝐼 − (𝜆𝐴)

󸀠

is continuously invertible by (H1). Consequently, Lemma 4
implies

deg (𝐼 − 𝜆𝐴, 𝐵 (0, 𝑅) , 0) ̸= 0. (26)

So, to complete the proof, we have to find an admissible
homotopy connecting 𝐼 − 𝜆𝐴 − 𝑆(⋅) and 𝐼 − 𝜆𝐴. Define

𝐻(𝜏, 𝑢) = 𝑢 − 𝜆𝐴𝑢 − 𝜏𝑆𝑢, 𝜏 ∈ [0, 1] , 𝑢 ∈ 𝑊

1,2

Δ,𝑇
. (27)

We shall prove that there exists 𝑅 > 0 such that for all 𝑢 ∈

𝑊

1,2

Δ,𝑇
, ‖𝑢‖

1
= 𝑅, and 𝜏 ∈ [0, 1], we obtain

𝐻(𝜏, 𝑢) ̸= 0. (28)

If the claim is false, we can find sequences {𝑢

𝑛
} ⊂ 𝑊

1,2

Δ,𝑇
and

{𝑡

𝑛
} ⊂ [0, 1] such that ‖𝑢

𝑛
‖

1
→ ∞ and

𝑢

𝑛
− 𝜆𝐴𝑢

𝑛
− 𝜏

𝑛
𝑆𝑢

𝑛
= 0. (29)

Set V
𝑛
:= 𝑢

𝑛
/‖𝑢

𝑛
‖

1
and divide (29) by ‖𝑢

𝑛
‖

1
to get

V
𝑛
− 𝜆𝐴V

𝑛
− 𝜏

𝑛

𝑆𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩1

= 0. (30)

This is equivalent to

∫

[0,𝑇)T

VΔ
𝑛
(𝑡) 𝑤

Δ
(𝑡) Δ𝑡 = 𝜆∫

[0,𝑇)T

V𝜎
𝑛
(𝑡) 𝑤

𝜎
(𝑡) Δ𝑡

+ 𝜏

𝑛
∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩1

𝑤

𝜎
(𝑡) Δ𝑡,

(31)

for each 𝑤 ∈ 𝑊

1,2

Δ,𝑇
. Now, passing to suitable subsequences,

without loss of generality, we may assume that 𝜏
𝑛

→ 𝜏 ∈

[0, 1] and V
𝑛

→ V in 𝑊

1,2

Δ,𝑇
. Note that, similar with (22), we

find
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩1

𝑤

𝜎
(𝑡) Δ𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩1

󵄨

󵄨

󵄨

󵄨

𝑤

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

Δ𝑡

≤

(𝜂

1
+ 𝜂

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝛼

1
) ‖𝑤‖1

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩1

󳨀→ 0, 𝑛 󳨀→ ∞.

(32)

On the other hand, by the compactness of𝐴, we have𝐴V
𝑛

→

𝐴V (see [15, Proposition 2.2.4(iii)]). In (30), let 𝑛 → ∞; we
have V = 𝜆𝐴V, and V ∈ 𝑊

1,2

Δ,𝑇
satisfies ‖V‖

1
= 1. However, this

contradicts our assumption 𝜆 ̸= 𝜆

𝑛
, 𝑛 = 1, 2, . . .. This implies

that (28) holds. By Lemma 5 and (26), we have

deg (𝐼 − 𝜆𝐴 − 𝑆, 𝐵 (0, 𝑅) , 0) = deg (𝐼 − 𝜆𝐴, 𝐵 (0, 𝑅) , 0) ̸= 0.

(33)

Therefore, (3) has at least a weak solution.

3. Two Existence Theorems via
Critical Point Theory

We still use the Sobolev’s space 𝑊

1,2

Δ,𝑇
defined by (4), which is

equipped with the inner product

(𝑢, V)2 := ∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡 + ∫

[0,𝑇)T

𝑢

Δ
(𝑡) VΔ (𝑡) Δ𝑡,

(34)

and the corresponding norm

‖𝑢‖2
:= (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡 + ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡)

1/2

.

(35)

Now, we will establish the corresponding variational formu-
lations for problem (3) as follows:

𝜑 (𝑢) =

1

2

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡 − 𝜆∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

− ∫

[0,𝑇)T

𝐹 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) Δ𝑡,

(36)

where 𝐹(𝑡, 𝜉) = ∫

𝜉

0
ℎ(𝑡, 𝑠)d𝑠.

We now list our hypotheses for (3).

(H4) 𝐹(𝑡, 𝑥) is Δ-measurable in 𝑡 for every 𝑥 ∈ R and
continuously differentiable in 𝑥 for 𝑡 ∈ [0, 𝑇]T , and
there exist 𝜖

1
∈ 𝐶(R+

,R+
) and 𝜖

2
∈ 𝐿

1

Δ
([0, 𝑇]T ,R

+
)

|𝐹 (𝑡, 𝑥)| ≤ 𝜖

1 (|
𝑥|) 𝜖2 (

𝑡) , |ℎ (𝑡, 𝑥)| ≤ 𝜖

1 (|
𝑥|) 𝜖2 (

𝑡) ,

(37)

for all 𝑥 ∈ R and Δ-a.e. 𝑡 ∈ [0, 𝑇]T .
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(H5) There exist 𝑐
1
> 0 and 𝑝 > 0 such that

|𝐹 (𝑡, 𝑥)| ≤ 𝑐

1|
𝑥|

𝑝
, 𝑡 ∈ [0, 𝑇]T , 𝑢 ∈ R. (38)

(H6) There exist 𝜀
1
, 𝜀

2
> 0 such that

ℎ (𝑡, 𝑥) 𝑥 − 2𝐹 (𝑡, 𝑥) ≥ 𝜀

1 |
𝑥| − 𝜀

2
, 𝑡 ∈ [0, 𝑇]T , 𝑢 ∈ R.

(39)

(H7) lim
|𝑥|→∞

(𝐹(𝑡, 𝑥)/|𝑥|

2
) = +∞ uniformly for 𝑡 ∈

[0, 𝑇]T .

(H8) 𝐹(𝑡, −𝑥) = 𝐹(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇]T , 𝑢 ∈ R.

Remark 9. Let

𝐹 (𝑡, 𝑥) =

𝑛

∑

𝑖=1

1

(2𝑖)

2
𝑥

2𝑖
, (40)

where 𝑛 > 1 is a fixed positive integer. Then

ℎ (𝑡, 𝑥) =

𝑛

∑

𝑖=1

1

2𝑖

𝑥

2𝑖−1
. (41)

Direct computation shows

lim
|𝑥|→∞

𝐹 (𝑡, 𝑥)

|𝑥|

2
= lim
|𝑥|→∞

∑

𝑛

𝑖=1
(1/(2𝑖)

2
) 𝑥

2𝑖

|𝑥|

2
= +∞,

lim
|𝑥|→∞

ℎ (𝑡, 𝑥) 𝑥 − 2𝐹 (𝑡, 𝑥)

|𝑥|

= lim
|𝑥|→∞

∑

𝑛

𝑖=1
[1/2𝑖 − 1/2𝑖

2
] 𝑥

2𝑖

|𝑥|

= + ∞.

(42)

Clearly, (H4)–(H8) hold.
By (H4), we find 𝜑 ∈ 𝐶

1
(𝑊

1,2

Δ,𝑇
,R) (see [11, Theorem

2.27]), and for 𝑢, V ∈ 𝑊

1,2

Δ,𝑇
,

𝜑

󸀠
(𝑢) V = ∫

[0,𝑇)T

𝑢

Δ
(𝑡) VΔ (𝑡) Δ𝑡 − 𝜆∫

[0,𝑇)T

𝑢

𝜎
(𝑡) V𝜎 (𝑡) Δ𝑡

− ∫

[0,𝑇)T

ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) V𝜎 (𝑡) Δ𝑡.

(43)

Clearly, the existence of weak solutions for (3) is equivalent to
the existence of critical points for 𝜑. In what follows, we take
𝑎 := min{1, −𝜆} > 0, 𝑏 := max{1, −𝜆} > 0.

Lemma 10 (see [17, Theorem 1.2]). Suppose 𝑋 is a reflexive
Banach space with norm ‖ ⋅ ‖, and 𝜑 : 𝑋 → R ∪ {+∞} is
coercive and weak (sequentially) lower semicontinuous; that is,
the following conditions are fulfilled as follows:

(1) 𝜑(𝑢) → ∞ as ‖𝑢‖ → ∞, 𝑢 ∈ 𝑋.

(2) For any 𝑢 ∈ 𝑋, any sequence {𝑢
𝑚
} ⊂ 𝑋 such that 𝑢

𝑚
⇀

𝑢, there holds

𝜑 (𝑢) ≤ lim inf
𝑚→∞

𝜑 (𝑢

𝑚
) . (44)

Then 𝜑 is bounded from below and attains its infimum
on 𝑋.

Theorem 11. If (H4) and (H5) with 𝑝 ∈ (0, 2) hold, (3) has at
least a weak solution.

Proof. Our working space 𝑊

1,2

Δ,𝑇
is a Hilbert space, so it is

reflexive. By Lemma 2.1 and Theorem 3.3 in [8], we see 𝜑 is
weakly lower semicontinuous on 𝑊

1,2

Δ,𝑇
. On the other hand,

by (H5), we have

𝜑 (𝑢) ≥

𝑎

2

‖𝑢‖

2

2
− ∫

[0,𝑇)T

𝑐

1

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑝
Δ𝑡

≥

𝑎

2

‖𝑢‖

2

2
− 𝑐

1
𝑇

(2−𝑝)/2
‖𝑢‖

𝑝

2
,

(45)

and thus 𝜑(𝑢) → ∞ as ‖𝑢‖
2

→ ∞. Lemma 10 implies 𝜑 can
attain its infimum in𝑋; that is, (3) has at least a weak solution.
This completes the proof.

If 𝑋 is a Hilbert space, there exist (see [18]) {𝑒
𝑛
}

∞

𝑛=1
⊂ 𝑋

and {𝑓

𝑛
}

∞

𝑛=1
⊂ 𝑋

∗ such that 𝑓
𝑛
(𝑒

𝑚
) = 𝛿

𝑛,𝑚
, 𝑋 = span{𝑒

𝑛
: 𝑛 =

1, 2, . . .} and 𝑋

∗
= span𝑊

∗

{𝑓

𝑛
: 𝑛 = 1, 2, . . .}. For 𝑗, 𝑘 ∈ N,

denote 𝑋

𝑗
:= span{𝑒

𝑗
}, 𝑌

𝑘
:= ⊕

𝑘

𝑗=1
𝑋

𝑗
, and 𝑍

𝑘
:= ⊕

∞

𝑗=𝑘+1
𝑋

𝑗
.

Clearly, 𝑋 = ⊕

𝑗∈N𝑋𝑗
with dim𝑋

𝑗
< ∞ for all 𝑗 ∈ N. Since

𝑊

1,2

Δ,𝑇
is a Hilbert space, we can choose an orthonormal basis

{𝑒

𝑛
} such that

𝑊

1,2

Δ,𝑇
= span {𝑒

𝑛
: 𝑛 = 1, 2 . . .} , 𝑌

𝑘
:=

𝑘

⨁

𝑗=1

𝑋

𝑗
,

𝑍

𝑘
:=

∞

⨁

𝑗=𝑘+1

𝑋

𝑗
, where 𝑋

𝑗
:= span {𝑒

𝑗
} .

(46)

Definition 12 (see [19, Definition 1.1]). Assume that 𝑋 is a
Banach spacewith norm ‖⋅‖; we say that𝜑 ∈ 𝐶

1
(𝑋,R) satisfies

Cerami condition (C) if for all 𝑑 ∈ R,

(i) any bounded sequence {𝑢

𝑛
} ⊂ 𝑋 satisfying 𝜑(𝑢

𝑛
) →

𝑑, 𝜑󸀠(𝑢
𝑛
) → 0 possesses a convergent subsequence;

(ii) there exist 𝛿, 𝜉, 𝜌 > 0 such that for any 𝑢 ∈ 𝜑

−1
([𝑑 −

𝛿, 𝑑+𝛿])with ‖𝑢‖ ≥ 𝜉, ‖𝜑󸀠(𝑢)‖ ⋅ ‖𝑢‖ ≥ 𝜌. Denote 𝑆
𝜌
:=

{𝑢 ∈ 𝑋 : ‖𝑢‖ = 𝜌}. We will introduce the following
Fountain theorem under condition (C).

Lemma 13 (see [19, Proposition 1.2]). Assume that 𝜑 ∈

𝐶

1
(𝑋,R) satisfies condition (C), and 𝜑(−𝑢) = 𝜑(𝑢). For each

𝑘 ∈ N, there exists 𝜌
𝑘
> 𝑟

𝑘
> 0 such that

(i) 𝑏

𝑘
:= inf

𝑢∈𝑍
𝑘
∩𝑆
𝑟
𝑘

𝜑(𝑢) → +∞, 𝑘 → ∞;

(ii) 𝑎

𝑘
:= max

𝑢∈𝑌
𝑘
∩𝑆
𝜌
𝑘

𝜑(𝑢) ≤ 0.
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Then 𝜑 has a sequence of critical points 𝑢

𝑛
, such that

𝜑(𝑢

𝑛
) → +∞ as 𝑛 → ∞.

Lemma 14. Suppose that (H4), (H5), and (H6) hold; then 𝜑

satisfies the condition (C).

Proof. For all 𝑑 ∈ R, we assume that {𝑢
𝑛
} ∈ 𝑊

1,2

Δ,𝑇
is bounded

and

𝜑 (𝑢

𝑛
) 󳨀→ 𝑑, 𝜑

󸀠
(𝑢

𝑛
) 󳨀→ 0, 𝑛 󳨀→ ∞.

(47)

Going, if necessary, to a subsequence, we can assume that
𝑢

𝑛
⇀ 𝑢 in𝑊

1,2

Δ,𝑇
; then

(𝜑

󸀠
(𝑢

𝑛
) − 𝜑

󸀠
(𝑢)) (𝑢𝑛

− 𝑢)

= ∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ

𝑛
(𝑡) − 𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡 − 𝜆∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

𝑛
(𝑡) − 𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡

− ∫

[0,𝑇)T

[ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡)) − ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡))]

× [𝑢

𝜎

𝑛
(𝑡) − 𝑢

𝜎
(𝑡)] Δ𝑡.

(48)

Lemma 1 leads to

∫

[0,𝑇)T

[ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡)) − ℎ (𝜎 (𝑡) , 𝑢

𝜎
(𝑡))]

× [𝑢

𝜎

𝑛
(𝑡) − 𝑢

𝜎
(𝑡)] Δ𝑡 󳨀→ 0, 𝑛 󳨀→ ∞.

(49)

It follows that 𝑢
𝑛
⇀ 𝑢 in𝑊

1,2

Δ,𝑇
and (𝜑

󸀠
(𝑢

𝑛
)−𝜑

󸀠
(𝑢))(𝑢

𝑛
−𝑢) →

0, we see

∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ

𝑛
(𝑡) − 𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡

− 𝜆∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

𝑛
(𝑡) − 𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡 󳨀→ 0, 𝑛 󳨀→ ∞.

(50)

Clearly, it is equivalent to ‖ ⋅ ‖

2
, and then we have

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
− 𝑢

󵄩

󵄩

󵄩

󵄩2
󳨀→ 0, 𝑛 󳨀→ ∞. (51)

Hence, condition (i) of Definition 12 holds. Next, we prove
condition (ii) of Definition 12, suppose the contrary, there
exists a sequence {𝑢

𝑛
} ⊂ 𝑊

1,2

Δ,𝑇
such that

𝜑 (𝑢

𝑛
) 󳨀→ 𝑑,

󵄩

󵄩

󵄩

󵄩

󵄩

𝜑

󸀠
(𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩2
⋅

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩2
󳨀→ 0, 𝑛 󳨀→ ∞, (52)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩2
󳨀→ ∞, 𝑛 󳨀→ ∞. (53)

By (52), there exists a constant 𝜀
3
> 0 such that

𝜑 (𝑢

𝑛
) −

1

2

𝜑

󸀠
(𝑢

𝑛
) 𝑢

𝑛
≤ 𝑐

3
.

(54)

On the other hand, (H6) implies

𝜑 (𝑢

𝑛
) −

1

2

𝜑

󸀠
(𝑢

𝑛
) 𝑢

𝑛

= ∫

[0,𝑇)T

[

1

2

ℎ (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡)) 𝑢

𝜎

𝑛
(𝑡) − 𝐹 (𝜎 (𝑡) , 𝑢

𝜎

𝑛
(𝑡))] Δ𝑡

≥

1

2

𝜀

1
∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

𝑛
(𝑡)

󵄨

󵄨

󵄨

󵄨

Δ𝑡 −

1

2

𝜀

2
𝑇.

(55)

This, together with (54), leads to there is a constant 𝜀
4

> 0

such that max
𝑡∈[0,𝑇]T

|𝑢

𝜎

𝑛
(𝑡)| ≤ 𝜀

4
. By (H5), similar with (45),

we have

𝜑 (𝑢

𝑛
) ≥

𝑎

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

2
− ∫

[0,𝑇)T

𝑐

1

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎

𝑛
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑝
Δ𝑡 ≥

𝑎

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

2
− 𝑐

1
𝑇𝜀

𝑝

4
,

(56)

and thus 𝜑(𝑢

𝑛
) → ∞ if (53) holds, which contradicts

𝜑(𝑢

𝑛
) → 𝑑 in (52). This proves that 𝜑 satisfies condition

(C).

Theorem 15. Under assumptions (H4)–(H8) with 𝑝 > 2 in
(H5), problem (3) has infinitely many solutions.

Proof. (H8) and Lemma 14 enable us to obtain that 𝜑(𝑢) =

𝜑(−𝑢) and 𝜑 satisfies the condition (C). For any 𝑢 ∈ 𝑌

𝑘
, let

‖𝑢‖∗
:= (∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

1/2

,

(57)

and it is easy to verify that ‖ ⋅ ‖ defined by (57) is a norm of
𝑌

𝑘
. Since all the norms of a finite dimensional normed space

are equivalent, so there exists positive constant 𝜀
5
such that

𝜀

5
‖𝑢‖

2
≤ ‖𝑢‖

∗
. In view of (H7), there exist 𝜀

6
> 𝑏/2𝜀

2

5
and

󰜚 > 0 such that

𝐹 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) ≥ 𝜀

6

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
− 󰜚, 𝑡 ∈ [0, 𝑇]T , 𝑢 ∈ R.

(58)

This implies that

𝜑 (𝑢) =

1

2

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡 − 𝜆∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

− ∫

[0,𝑇)T

𝐹 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) Δ𝑡

≤

𝑏

2

‖𝑢‖

2

2
− 𝜀

6
𝜀

2

5
‖𝑢‖

2

2
+ 󰜚𝑇.

(59)

Since 𝑏/2 − 𝜀

6
𝜀

2

5
< 0; then there exists positive constant 𝑑

𝑘

such that

𝜑 (𝑢) ≤ 0, for each 𝑢 ∈ 𝑌

𝑘
, ‖𝑢‖ ≥ 𝑑

𝑘
. (60)
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Let 𝛽
𝑘
:= sup

𝑢∈𝑍
𝑘
,‖𝑢‖
2
=1
|𝑢(𝑡)|, 𝑡 ∈ [0, 𝑇]T . Then by Lemma 3.8

of [20] and Lemma 1 we obtain 𝛽

𝑘
→ 0, as 𝑘 → ∞. For any

𝑢 ∈ 𝑍

𝑘
, note that 𝑝 ∈ (1, 2), in view of (H5), we find that

𝜑 (𝑢) =

1

2

(∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

Δ
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

Δ𝑡 − 𝜆∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

2
Δ𝑡)

− ∫

[0,𝑇)T

𝐹 (𝜎 (𝑡) , 𝑢

𝜎
(𝑡)) Δ𝑡

≥

𝑎

2

‖𝑢‖

2

2
− 𝑐

1
∫

[0,𝑇)T

󵄨

󵄨

󵄨

󵄨

𝑢

𝜎
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑝
Δ𝑡

≥

𝑎

2

‖𝑢‖

2

2
− 𝑐

1
𝑇‖𝑢‖

𝑝

∞

≥

𝑎

2

‖𝑢‖

2

2
− 𝑐

1
𝑇𝛽

𝑝

𝑘
‖𝑢‖

𝑝

2
.

(61)

Choosing ‖𝑢‖

2
= 𝑟

𝑘
:= 1/𝛽

𝑘
, then 𝑟

𝑘
→ ∞ as 𝑘 → ∞, then

we have;

𝜑 (𝑢) ≥

𝑎

2

𝑟

2

𝑘
− 𝑐

1
𝑇 󳨀→ ∞, as 𝑘 󳨀→ ∞.

(62)

Hence, 𝑏

𝑘
:= inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝑟

𝑘

𝜑(𝑢) → ∞ as 𝑘 → ∞.
Combining this and (60), we can take 𝜌

𝑘
:= max{𝑑

𝑘
, 𝑟

𝑘
+ 1},

and thus 𝑎

𝑘
:= max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝜌

𝑘

𝜑(𝑢) ≤ 0. Up until now, we
have proved that the functional 𝜑 satisfies all the conditions
of Lemma 13; then 𝜑 has infinitely many solutions.
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