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The present paper is concerned with the semilocal as well as the local convergence problems of Newton-Steffensen’s method to
solve nonlinear operator equations in Banach spaces. Under the assumption that the second derivative of the operator satisfies
𝛾-condition, the convergence criterion and convergence ball for Newton-Steffensen’s method are established.

1. Introduction

Let 𝑋 and 𝑌 be real or complex Banach spaces, let 𝐷 ⊂ 𝑋

be an open subset, and let 𝐹 : 𝐷 ⊂ 𝑋 → 𝑌 be the Fréchet
differentiable nonlinear operator. Approximating a solution
of a nonlinear equation

𝐹 (𝑥) = 0 (1)

is widely studied in both theoretical and applied areas of
mathematics.

One of the most famous methods to solve this problem is
Newton’s method defined by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹
󸀠

(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . , (2)

where 𝑥
0

∈ 𝐷 is an initial point. Usually, the study
about convergence issue of Newton’s method includes local
and semilocal convergence analyses. The local convergence
issue is, based on the information around a solution, to
seek estimates of the radii of convergence balls, while the
semilocal one is, based on the information around an initial
point, to give criteria ensuring the convergence. Among the
semilocal convergence results onNewton’smethod, one of the
famous results is Smale’s point estimate theory which gives
a convergence criterion of Newton’s method only based on
the information at the initial point for analytic functions; see
for example, [1–6]. To extend and improve Smale’s theory,

Wang and Han proposed in [7, 8] the notion of 𝛾-condition,
which is weaker than Smale’s assumption in [5] for analytic
operators.

There are several kinds of cubic generalizations for
Newton’s method. The most important family is the Euler-
Halley family and its variations which include Chebyshev’s
method andHalley’smethod as special cases; see for example,
[9–16] and references therein. However, the disadvantage of
this family is that the evaluation of the second derivative of
the operator 𝐹 is required at every step, the operation cost
of which may be very large in fact. To reduce the operation
cost but also retain the cubic convergence, Sharma in [17]
proposed the following Newton-Steffensen’s method which
avoids the computation of the second Fréchet derivative.
Let 𝑓 : R → R. The method is defined as follows:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓󸀠 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑔 (𝑥
𝑛
)
, 𝑛 = 0, 1, . . . ,

(3)

where 𝑔(𝑥
𝑛
) = ((𝑓(𝑦

𝑛
) − 𝑓(𝑥

𝑛
))/(𝑦
𝑛
− 𝑥
𝑛
)). The author

obtained cubic convergence for (3) under the assumption
that 𝑓 is sufficiently smooth in the neighborhood of the
solution.
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Motivated by the work mentioned above, we extend this
method to Banach spaces and present its semilocal and local
convergence. The extension is described as follows:

𝑦
𝑛
= 𝑥
𝑛
− 𝐹
󸀠

(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑥
𝑛
− [𝑦
𝑛
, 𝑥
𝑛
; 𝐹]
−1

𝐹 (𝑥
𝑛
) , 𝑛 = 0, 1, . . . ,

(4)

where the divided difference operator is defined by

[𝑦
𝑛
, 𝑥
𝑛
; 𝐹] = ∫

1

0

𝐹
󸀠

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) d𝑡. (5)

In Section 2, we introduce some preliminary notions and
important majorizing functions with properties. In Sections
3 and 4, we study the semilocal convergence and local
convergence results of Newton-Steffensen’s method under 𝛾-
condition, respectively.We obtain the uniqueness ball and the
convergence ball.

2. Notations and Preliminary Results

Throughout this paper, we assume that 𝑋 and 𝑌 are two
Banach spaces. Let 𝐷 ⊂ 𝑋 be an open subset and let
𝐹 : D ⊂ 𝑋 → 𝑌 be a nonlinear operator with the
continuous twice Fréchet derivative. For 𝑥 ∈ 𝑋 and 𝑟 >

0, we use B(𝑥, 𝑟) and B(𝑥, 𝑟) to denote the open ball with
radius 𝑟 and center 𝑥 and its closure, respectively. Let 𝑥 ∈

𝐷 be such that 𝐹󸀠(𝑥)−1 exists and B(𝑥, 𝑟) ⊂ 𝐷.
Let 𝛾 be some positive constant and 0 < 𝑟 ⩽ (1/𝛾). We

say that 𝐹 satisfies 𝛾-condition on B(𝑥, 𝑟) if the following
relation holds:

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

2𝛾

(1 − 𝛾 ‖𝑥 − 𝑥‖)
3
, 𝑥 ∈ B (𝑥, 𝑟) . (6)

For simplicity, we write

𝑟
0
= (1 −

1

√2
)

1

𝛾
. (7)

The lemma below is useful in the next two sections.

Lemma 1. Suppose that 𝑟 ⩽ 𝑟
0
and that 𝐹 satisfies 𝛾-

condition (6) on B(𝑥, 𝑟). Then for any 𝑥 ∈

B(𝑥, 𝑟), 𝐹󸀠(𝑥)−1 exists and the following inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

(1 − 𝛾 ‖𝑥 − 𝑥‖)
2

2(1 − 𝛾 ‖𝑥 − 𝑥‖)
2

− 1

. (8)

Proof. We can derive the following relation:

𝐼 − 𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥)

= −∫

1

0

𝐹
󸀠

(𝑥)
−1

𝐹
󸀠󸀠

(𝑥 + 𝑡 (𝑥 − 𝑥)) (𝑥 − 𝑥) d𝑡.
(9)

For any 𝑥 ∈ 𝐵(𝑥, 𝑟), it follows from 𝛾-condition and 𝑟 ⩽

𝑟
0
that

󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽ ∫

1

0

2𝛾 ‖𝑥 − 𝑥‖

(1 − 𝛾 ‖𝑥 − 𝑥‖ 𝑡)
3
d𝑡

=
1

(1 − 𝛾 ‖𝑥 − 𝑥‖)
2
− 1 < 1.

(10)

Then, by Banach lemma, one has that 𝐹󸀠(𝑥)−1 exists and the
following inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

1

1 − [(1/(1 − 𝛾 ‖𝑥 − 𝑥‖)
2

) − 1]

=
(1 − 𝛾 ‖𝑥 − 𝑥‖)

2

2(1 − 𝛾 ‖𝑥 − 𝑥‖)
2

− 1

.

(11)

Let 𝛽 > 0 be some positive constant. The following
majorizing function ℎ introduced by Wang and Han in [18]
will be used to obtain a Smale-type semilocal convergence
criterion:

ℎ (𝑡) = 𝛽 − 𝑡 +
𝛾𝑡
2

1 − 𝛾𝑡
, 𝑡 ∈ [0,

1

𝛾
) . (12)

Let {𝑠
𝑛
} and {𝑡

𝑛
} denote the corresponding sequences

generated by Newton-Steffensen’s method for the majorizing
function ℎ with the initial point 𝑡

0
= 0; that is,

𝑠
𝑛
= 𝑡
𝑛
−

ℎ (𝑡
𝑛
)

ℎ󸀠 (𝑡
𝑛
)
,

𝑡
𝑛+1

= 𝑡
𝑛
− (

ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

)

−1

ℎ (𝑡
𝑛
) , 𝑛 = 0, 1, . . . .

(13)

The following lemma taken from [19] describes some
useful properties about ℎ.

Lemma 2. Suppose that

𝛼 := 𝛽𝛾 ⩽ 3 − 2√2. (14)

Then ℎ has two zeros in [0, 1/𝛾) denoted by 𝑡
∗ and 𝑡

∗∗. They
satisfy the following relations:

𝛽 ⩽ 𝑡
∗

⩽ 𝑟
0
⩽ 𝑡
∗∗

⩽
1

2𝛾
. (15)

Moreover, ℎ is decreasing monotonically in interval [0, 𝑟
0
],

while it is increasing monotonically in interval [𝑟
0
, 1/(2𝛾)].

The lemma below describes the convergence property of
the sequences {𝑠

𝑛
} and {𝑡

𝑛
}, which is crucial for the semilo-

cal convergence analysis of Newton-Steffensen’s method (4)
under 𝛾-condition.



Abstract and Applied Analysis 3

Lemma 3. Suppose that (14) holds. Let {𝑠
𝑛
} and {𝑡

𝑛
} be the

sequences generated by (13). Then

0 ⩽ 𝑡
𝑛
< 𝑠
𝑛
< 𝑡
𝑛+1

< 𝑡
∗

∀𝑛 ⩾ 0. (16)

Moreover, {𝑠
𝑛
} and {𝑡

𝑛
} converge increasingly to the same

point 𝑡∗.

Proof. To show that (16) holds for 𝑛 = 0, we note that 0 =

𝑡
0
< 𝑠
0
= 𝛽 and that 𝑡

1
= (𝛽(1 − 𝛾𝛽)/(1 − 2𝛾𝛽)). By (15), we

have

1 − 𝛾𝛽

1 − 2𝛾𝛽
> 1. (17)

This implies that 𝑡
1
> 𝛽 = 𝑠

0
. It remains to show that 𝑡

1
<

𝑡
∗ for the case 𝑛 = 0. To this end, we define a real function as

Φ (𝑡) = 1 −
𝛾𝑡

1 − 𝛾𝑡
, 𝑡 ∈ [0, +∞) . (18)

It is clear that Φ(𝑡) = −(ℎ(𝑡) − 𝛽)/𝑡 and that Φ(𝑡) is
decreasing monotonically in [0, +∞). It follows from (15)
that Φ(𝛽) > Φ(𝑡

∗

). In view of the fact that 𝑡∗ is the unique
zero of ℎ in [0, 𝑟

0
], we obtain 𝛽/𝑡

∗

= Φ(𝑡
∗

) < Φ(𝛽). This is
equivalent to

𝑡
∗

>
𝛽

1 − (𝛾𝛽/ (1 − 𝛾𝛽))
= 𝑡
1
. (19)

Hence (16) holds for 𝑛 = 0.
Now we assume that

0 ⩽ 𝑡
𝑛−1

< 𝑠
𝑛−1

< 𝑡
𝑛
< 𝑡
∗ for some 𝑛 ⩾ 1. (20)

From Lemma 2, we have ℎ(𝑡) ⩾ 0, for each 𝑡 ∈ [0, 𝑡
∗

],
and ℎ(𝑡

𝑛
)/ℎ
󸀠

(𝑡
𝑛
) < 0. The later one implies that 𝑠

𝑛
> 𝑡
𝑛
.

Define function

𝑁(𝑡) = 𝑡 −
ℎ (𝑡)

ℎ󸀠 (𝑡)
, 𝑡 ∈ [0, 𝑡

∗

] . (21)

Then, 𝑁󸀠(𝑡) = ℎ(𝑡)ℎ
󸀠󸀠

(𝑡)/ℎ
󸀠

(𝑡)
2

> 0, which implies that 𝑁 is
increasing monotonically in [0, 𝑡

∗

]. Hence, we have

𝑠
𝑛
= 𝑡
𝑛
−

ℎ (𝑡
𝑛
)

ℎ󸀠 (𝑡
𝑛
)
< 𝑡
∗

−
ℎ (𝑡
∗

)

ℎ󸀠 (𝑡∗)
= 𝑡
∗

. (22)

Since ℎ is convex in [0, 𝑡
∗

], we get ℎ󸀠(𝑡
𝑛
) < (ℎ(𝑠

𝑛
) − ℎ(𝑡

𝑛
))/

(𝑠
𝑛
− 𝑡
𝑛
) and so 𝑠

𝑛
< 𝑡
𝑛+1

.
Furthermore, we claim that

𝑡
󸀠

− (
ℎ (𝑡) − ℎ (𝑡

󸀠

)

𝑡 − 𝑡󸀠
)

−1

ℎ (𝑡
󸀠

)

< 𝑡
󸀠󸀠

− (
ℎ (𝑡
󸀠󸀠

) − ℎ (𝑡)

𝑡󸀠󸀠 − 𝑡
)

−1

ℎ (𝑡
󸀠󸀠

)

(23)

for all 𝑡󸀠, 𝑡, 𝑡󸀠󸀠 ∈ [0, 𝑡
∗

] and 𝑡
󸀠

< 𝑡 < 𝑡
󸀠󸀠. Indeed, it follows

from the convexity of ℎ that

−
ℎ (𝑡
󸀠󸀠

)

ℎ󸀠 (𝑡)
⩽ −(

ℎ (𝑡
󸀠󸀠

) − ℎ (𝑡)

𝑡󸀠󸀠 − 𝑡
)

−1

ℎ (𝑡
󸀠󸀠

)

⩽ −
ℎ (𝑡
󸀠󸀠

)

ℎ󸀠 (𝑡󸀠󸀠)
,

−
ℎ (𝑡
󸀠

)

ℎ󸀠 (𝑡󸀠)
⩽ −(

ℎ (𝑡) − ℎ (𝑡
󸀠

)

𝑡 − 𝑡󸀠
)

−1

ℎ (𝑡
󸀠

)

⩽ −
ℎ (𝑡
󸀠

)

ℎ󸀠 (𝑡)
,

(24)

from which we have

(𝑡
󸀠󸀠

− 𝑡
󸀠

) +
ℎ (𝑡
󸀠

) − ℎ (𝑡
󸀠󸀠

)

ℎ󸀠 (𝑡)
⩽ (𝑡
󸀠󸀠

− 𝑡
󸀠

) + (𝑇
󸀠󸀠

− 𝑇
󸀠

)

⩽ (𝑡
󸀠󸀠

− 𝑡
󸀠

) −
ℎ (𝑡
󸀠󸀠

)

ℎ󸀠 (𝑡󸀠󸀠)
+

ℎ (𝑡
󸀠

)

ℎ󸀠 (𝑡󸀠)
,

(25)

where

𝑇
󸀠

= −(
ℎ (𝑡) − ℎ (𝑡

󸀠

)

𝑡 − 𝑡󸀠
)

−1

ℎ (𝑡
󸀠

) ,

𝑇
󸀠󸀠

= −(
ℎ(𝑡
󸀠󸀠

) − ℎ(𝑡)

𝑡󸀠󸀠 − 𝑡
)

−1

ℎ (𝑡
󸀠󸀠

) .

(26)

Noting that −1 < ℎ
󸀠

(𝑡) < 0 for all 𝑡 ∈ [0, 𝑡
∗

], we obtain

(𝑡
󸀠󸀠

− 𝑡
󸀠

) +
ℎ (𝑡
󸀠

) − ℎ (𝑡
󸀠󸀠

)

ℎ󸀠 (𝑡)
> (𝑡
󸀠󸀠

− 𝑡
󸀠

) + [ℎ (𝑡
󸀠󸀠

) − ℎ (𝑡
󸀠

)]

⩾ 0.

(27)

Then (23) follows. By (23), we conclude that

𝑡
𝑛+1

= 𝑡
𝑛
− (

ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

)

−1

ℎ (𝑡
𝑛
)

< 𝑡
∗

− (
ℎ (𝑡
∗

) − ℎ (𝑠
𝑛
)

𝑡∗ − 𝑠
𝑛

)

−1

ℎ (𝑡
∗

) = 𝑡
∗

.

(28)

Therefore, (16) holds for all 𝑛 ⩾ 0. The inequlities
in (16) imply that {𝑠

𝑛
} and {𝑡

𝑛
} converge increasingly to

some same points, say 𝜏. Clearly 𝜏 ∈ [0, 𝑡
∗

] and 𝜏 is
a zero of ℎ in [0, 𝑡

∗

]. Noting that 𝑡∗ is the unique zero
of ℎ in [0, 𝑟

0
], one has that 𝜏 = 𝑡

∗.Theproof is complete.
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3. Convergence Criterion

Throughout this subsection, let 𝑥
0
∈ 𝐷 be the initial point

such that the inverse 𝐹
󸀠

(𝑥
0
)
−1 exists and let B(𝑥

0
, 𝑟
0
) ⊂ 𝐷,

where 𝑟
0
is defined by (7). Moreover, we assume

that 𝐹 satisfies 𝛾-condition on B(𝑥
0
, 𝑟
0
); that is, the

following relation holds:

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹
󸀠󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

2𝛾

(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩)
3
,

𝑥 ∈ B (𝑥
0
, 𝑟
0
) .

(29)

Then, for any 𝑥 ∈ B(𝑥
0
, 𝑟
0
), it follows from Lemma 1

that 𝐹󸀠(𝑥)−1 exists and the following inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
⩽

(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩)
2

2(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩)
2

− 1

. (30)

Below we list two useful lemmas.
Recall that the divided difference operator [𝑦, 𝑥; 𝐹] is

defined by (5). The following lemma gives the expressions of
some desired estimates in the proof of Lemma 5.

Lemma 4. Let 𝑥 ∈ B(𝑥
0
, 𝑟
0
). Define

𝑦 := 𝑥 − 𝐹
󸀠

(𝑥)
−1

𝐹 (𝑥) , 𝑥 := 𝑥 − [𝑦, 𝑥; 𝐹]
−1

𝐹 (𝑥) . (31)
Then the following formulas hold:

(i) [𝑦, 𝑥; 𝐹] − 𝐹
󸀠

(𝑥
0
) = ∫
1

0

∫
1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑠[(𝑥 − 𝑥

0
) + 𝑡(𝑦 −

𝑥)])[(𝑥 − 𝑥
0
) + 𝑡(𝑦 − 𝑥)] d𝑠 d𝑡.

(ii) 𝑥 − 𝑦 = −𝐹
󸀠

(𝑥)
−1

∫
1

0

∫
1

0

𝐹
󸀠󸀠

(𝑥 + 𝑠𝑡(𝑦 − 𝑥))(𝑦 − 𝑥)(𝑥 −

𝑥)𝑡 d𝑠 d𝑡.
(iii) 𝐹(𝑥) = ∫

1

0

∫
1

0

𝐹
󸀠󸀠

(𝑥 + 𝑡(𝑦 − 𝑥) + 𝑠𝑡(𝑥 − 𝑦))(𝑥 − 𝑥)(𝑥 −

𝑦)𝑡 d𝑠 d𝑡.

Proof. For (i), we notice that

[𝑦, 𝑥; 𝐹] − 𝐹
󸀠

(𝑥
0
) = ∫

1

0

[𝐹
󸀠

(𝑥 + 𝑡 (𝑦 − 𝑥)) − 𝐹
󸀠

(𝑥
0
)] d𝑡

= ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑠 [(𝑥 − 𝑥

0
) + 𝑡 (𝑦 − 𝑥)])

× [(𝑥 − 𝑥
0
) + 𝑡 (𝑦 − 𝑥)] d𝑠 d𝑡.

(32)
As for (ii), one has

𝑥 − 𝑦 = 𝐹
󸀠

(𝑥)
−1

𝐹 (𝑥) − [𝑦, 𝑥; 𝐹]
−1

𝐹 (𝑥)

= 𝐹
󸀠

(𝑥)
−1

[𝐹
󸀠

(𝑥) − ∫

1

0

𝐹
󸀠

(𝑥 + 𝑡 (𝑦 − 𝑥)) d𝑡]

× (𝑥 − 𝑥)

= −𝐹
󸀠

(𝑥)
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥 + 𝑠𝑡 (𝑦 − 𝑥)) (𝑦 − 𝑥) (𝑥 − 𝑥) 𝑡 d𝑠 d𝑡.

(33)

Similarly, we obtain

𝐹 (𝑥) = 𝐹 (𝑥) − 𝐹 (𝑥) − [𝑦, 𝑥; 𝐹] (𝑥 − 𝑥)

= ∫

1

0

𝐹
󸀠

(𝑥 + 𝑡 (𝑥 − 𝑥)) (𝑥 − 𝑥) d𝑡

− ∫

1

0

𝐹
󸀠

(𝑥 + 𝑡 (𝑦 − 𝑥)) (𝑥 − 𝑥) d𝑡

= ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥 + 𝑡 (y − 𝑥) + 𝑠𝑡 (𝑥 − 𝑦))

× (𝑥 − 𝑥) (𝑥 − 𝑦) 𝑡 d𝑠 d𝑡.

(34)

The proof is complete.

Lemma 5. Suppose that (14) holds. Then the
sequence {𝑥

𝑛
} generated by (4) with the initial point 𝑥

0
is

well defined and the following estimates hold for any natural
number 𝑛 ⩾ 1:

(i) ‖𝑦
𝑛−1

−𝑥
𝑛−1

‖ ⩽ 𝑠
𝑛−1

−𝑡
𝑛−1

, ‖𝑥
𝑛
−𝑥
𝑛−1

‖ ⩽ 𝑡
𝑛
−𝑡
𝑛−1

, ‖𝑥
𝑛
−

𝑦
𝑛−1

‖ ⩽ 𝑡
𝑛
− 𝑠
𝑛−1

.

(ii) ‖[𝑦
𝑛−1

, 𝑥
𝑛−1

; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)‖ ⩽ −((𝑠

𝑛−1
− 𝑡
𝑛−1

)/(ℎ(𝑠
𝑛−1

) −

ℎ(𝑡
𝑛−1

))).

(iii) ‖𝐹󸀠(𝑥
0
)
−1

𝐹(𝑥
𝑛
)‖ ⩽ ℎ(𝑡

𝑛
)(‖𝑥
𝑛
− 𝑥
𝑛−1

‖/(𝑡
𝑛
− 𝑡
𝑛−1

))
2

(‖𝑦
𝑛−1

− 𝑥
𝑛−1

‖/(𝑠
𝑛−1

− 𝑡
𝑛−1

)).

Proof. For the case 𝑛 = 1 in (i), it is clear that ‖𝑦
0
− 𝑥
0
‖ ⩽

𝛽 = 𝑠
0
− 𝑡
0
. By Lemma 4 and (29), we have

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

([𝑦
0
, 𝑥
0
; 𝐹] − 𝐹

󸀠

(𝑥
0
))
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
0
)
−1

×∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑠𝑡 (𝑦

0
− 𝑥
0
)) (𝑦
0
− 𝑥
0
) 𝑡 d𝑠 d𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 (𝑠
0
− 𝑡
0
) 𝑡

[1 − 𝛾 (𝑠
0
− 𝑡
0
) 𝑠𝑡]
3
d𝑠 d𝑡

=
ℎ (𝑠
0
) − ℎ (𝑡

0
)

𝑠
0
− 𝑡
0

+ 1.

(35)

In view of the monotonicity of ℎ, one has that (ℎ(𝑠
0
) −

ℎ(𝑡
0
))/(𝑠
0
− 𝑡
0
) < 0. Hence, we get from Banach lemma

that [𝑦
0
, 𝑥
0
; 𝐹]
−1 exists and satisfies

󵄩󵄩󵄩󵄩󵄩
[𝑦
0
, 𝑥
0
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

⩽
1

1 − (((ℎ (𝑠
0
) − ℎ (𝑡

0
)) / (𝑠

0
− 𝑡
0
)) + 1)

= −
𝑠
0
− 𝑡
0

ℎ (𝑠
0
) − ℎ (𝑡

0
)
.

(36)
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Combining (36) inequality with the definitions
of {𝑠
𝑛
} and {𝑡

𝑛
} given in (13), one has

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩󵄩
[𝑦
0
, 𝑥
0
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

⩽ −
𝑠
0
− 𝑡
0

ℎ (𝑠
0
) − ℎ (𝑡

0
)
ℎ (𝑡
0
)

= 𝑡
1
− 𝑡
0
.

(37)

As for the estimate ‖𝑥
1
− 𝑦
0
‖, by Lemma 4, we have

𝑥
1
− 𝑦
0
= −𝐹
󸀠

(𝑥
0
)
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑠𝑡 (𝑦

0
− 𝑥
0
))

× (𝑦
0
− 𝑥
0
) (𝑥
1
− 𝑥
0
) 𝑡 d𝑠 d𝑡.

(38)

This together with the obtained bounds ‖𝑦
0
− 𝑥
0
‖, ‖𝑥
1
−

𝑥
0
‖ and (29) yields that

󵄩󵄩󵄩󵄩𝑥1 − 𝑦
0

󵄩󵄩󵄩󵄩 ⩽ ∫

1

0

∫

1

0

2𝛾 (𝑠
0
− 𝑡
0
) (𝑡
1
− 𝑡
0
)

(1 − 𝛾 (𝑠
0
− 𝑡
0
) 𝑠𝑡)
3
𝑡 d𝑠 d𝑡

× (

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑠
0
− 𝑡
0

)(

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑡
1
− 𝑡
0

)

= (𝑡
1
− 𝑠
0
) (

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑠
0
− 𝑡
0

)(

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑡
1
− 𝑡
0

) .

(39)

This implies that statement (i) holds for 𝑛 = 1.
Statement (ii) for the case 𝑛 = 1 is justified by (36).

Below, we consider the case 𝑛 = 1 for (iii). First we have the
following expression of 𝐹(𝑥

1
) due to Lemma 4:

𝐹 (𝑥
1
) = ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
) + 𝑠𝑡 (𝑥

1
− 𝑦
0
))

× (𝑥
1
− 𝑥
0
) (𝑥
1
− 𝑦
0
) 𝑡 d𝑠 d𝑡,

(40)

from which we obtain that
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
1
)
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 (𝑡
1
− 𝑡
0
) (𝑡
1
− 𝑠
0
) 𝑡

[1 − 𝛾 (𝑡 (𝑠
0
− 𝑡
0
) + 𝑠𝑡 (𝑡

1
− 𝑠
0
))]
3
d𝑠 d𝑡

× (

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑡
1
− 𝑡
0

)

2

(

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑠
0
− 𝑡
0

)

= ℎ (𝑡
1
) (

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑡
1
− 𝑡
0

)

2

(

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩

𝑠
0
− 𝑡
0

) .

(41)

Therefore statement (iii) holds for 𝑛 = 1.
Assume that statements (i)–(iii) are true for 𝑛 = 𝑘(⩾ 1).

Below, we will show that they also hold for 𝑛 = 𝑘 + 1. First,
by statement (i), we have

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
0

󵄩󵄩󵄩󵄩 ⩽

𝑘−1

∑

𝑖=0

󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥
𝑖

󵄩󵄩󵄩󵄩 ⩽

𝑘−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
)

= 𝑡
𝑘
< 𝑡
∗

< 𝑟
0
.

(42)

Hence, 𝐹󸀠(𝑥
𝑘
)
−1 exists by Lemma 1.

Note that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩
⩽ ℎ (𝑡

𝑘
) (43)

by the inductive hypotheses of (i) and (iii). Then it follows
from (30) and (13) that

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩

⩽ −
ℎ (𝑡
𝑘
)

ℎ󸀠 (𝑡
𝑘
)
= 𝑠
𝑘
− 𝑡
𝑘
.

(44)

Hence by (29), (44), Lemma 4, and the inductive hypothesis
of (i), we have

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

([𝑦
𝑘
, 𝑥
𝑘
; 𝐹] − 𝐹

󸀠

(𝑥
0
))
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
0
)
−1

∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
0
+ 𝑠 [(𝑥

𝑘
− 𝑥
0
) + 𝑡 (𝑦

𝑘
− 𝑥
𝑘
)])

× [(𝑥
𝑘
− 𝑥
0
) + 𝑡 (𝑦

𝑘
− 𝑥
𝑘
)] d𝑠 d𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾

[1 − 𝛾𝑠 (𝑡
𝑘
+ 𝑡 (𝑠
𝑘
− 𝑡
𝑘
))]
3

× [𝑡
𝑘
+ 𝑡 (𝑠
𝑘
− 𝑡
𝑘
)] d𝑠 d𝑡

= ∫

1

0

(
1

[1 − 𝛾 (𝑡
𝑘
+ 𝑡 (𝑠
𝑘
− 𝑡
𝑘
))]
2
− 1) d𝑡

=
ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)

𝑠
𝑘
− 𝑡
𝑘

+ 1 < 1.

(45)

It follows from Banach lemma that [𝑦
𝑘
, 𝑥
𝑘
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
) exists

and satisfies

󵄩󵄩󵄩󵄩󵄩
[𝑦
𝑘
, 𝑥
𝑘
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

⩽
1

1 − (((ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)) / (𝑠

𝑘
− 𝑡
𝑘
)) + 1)

= −
𝑠
𝑘
− 𝑡
𝑘

ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)
.

(46)

Hence, (ii) holds for 𝑛 = k + 1.
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Combining (46) with the inductive hypothesis (iii), one
has

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩󵄩
[𝑦
𝑘
, 𝑥
𝑘
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩

⩽ −(
ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)

𝑠
𝑘
− 𝑡
𝑘

)

−1

ℎ (𝑡
𝑘
)

× (

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩

𝑡
𝑘
− 𝑡
𝑘−1

)

2

(

󵄩󵄩󵄩󵄩𝑦𝑘−1 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩

𝑠
𝑘−1

− 𝑡
𝑘−1

)

= (𝑡
𝑘+1

− 𝑡
𝑘
)

× (

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩

𝑡
𝑘
− 𝑡
𝑘−1

)

2

(

󵄩󵄩󵄩󵄩𝑦𝑘−1 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩

𝑠
𝑘−1

− 𝑡
𝑘−1

) ,

(47)

which implies that ‖𝑥
𝑘+1

− 𝑥
𝑘
‖ ⩽ 𝑡
𝑘+1

− 𝑡
𝑘
.

On the other hand, by (29), (30), (44), and Lemma 4, we
conclude that

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑦
𝑘

󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹
󸀠󸀠

(𝑥
𝑘
+ 𝑠𝑡 (𝑦

𝑘
− 𝑥
𝑘
))
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

𝑘

󵄩󵄩󵄩󵄩 𝑡 d𝑠 d𝑡

⩽
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

× ∫

1

0

∫

1

0

2𝛾
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

𝑘

󵄩󵄩󵄩󵄩 𝑡

[1 − 𝛾 (
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩 + 𝑠𝑡
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩)]
3
d𝑠 d𝑡

⩽
(1 − 𝛾𝑡

𝑘
)
2

2(1 − 𝛾𝑡
𝑘
)
2

− 1

× ∫

1

0

∫

1

0

2𝛾 (𝑠
𝑘
− 𝑡
𝑘
) (𝑡
𝑘+1

− 𝑡
𝑘
) 𝑡

[1 − 𝛾 (𝑡
𝑘
+ 𝑠𝑡 (𝑠

𝑘
− 𝑡
𝑘
))]
3
d𝑠 d𝑡

× (

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

𝑘

󵄩󵄩󵄩󵄩

(𝑠
𝑘
− 𝑡
𝑘
) (𝑡
𝑘+1

− 𝑡
𝑘
)

)

= −
1

ℎ󸀠 (𝑡
𝑘
)
(𝑡
𝑘+1

− 𝑡
𝑘
) (

ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)

𝑠
𝑘
− 𝑡
𝑘

− ℎ
󸀠

(𝑡
𝑘
))

× (

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

𝑘

󵄩󵄩󵄩󵄩

(𝑠
𝑘
− 𝑡
𝑘
) (𝑡
𝑘+1

− 𝑡
𝑘
)

)

= (𝑡
𝑘+1

− 𝑠
𝑘
) (

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

𝑘

󵄩󵄩󵄩󵄩

(𝑠
𝑘
− 𝑡
𝑘
) (𝑡
𝑘+1

− 𝑡
𝑘
)

) ,

(48)

which leads to ‖𝑥
𝑘+1

− 𝑦
𝑘
‖ ⩽ 𝑡
𝑘+1

− 𝑠
𝑘
. Thus, (i) holds for 𝑛 =

𝑘 + 1.

Next, we will show that (iii) also holds for 𝑛 = 𝑘 + 1. In
fact, by using Lemma 4, (29), (44), and (48), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 (𝑡
𝑘+1

− 𝑡
𝑘
) (𝑡
𝑘+1

− 𝑠
𝑘
)

[1 − 𝛾 (𝑡
𝑘
+ 𝑡 (𝑠
𝑘
− 𝑡
𝑘
) + 𝑠𝑡 (𝑡

𝑘+1
− 𝑠
𝑘
))]
3
𝑡 d𝑠 d𝑡

⋅ (

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑡
𝑘+1

− 𝑡
𝑘

)

2

(

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑠
𝑘
− 𝑡
𝑘

)

= (ℎ (𝑡
𝑘+1

) − ℎ (𝑡
𝑘
) −

𝑡
𝑘+1

− 𝑡
𝑘

𝑠
𝑘
− 𝑡
𝑘

(ℎ (𝑠
𝑘
) − ℎ (𝑡

𝑘
)))

⋅ (

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑡
𝑘+1

− 𝑡
𝑘

)

2

(

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑠
𝑘
− 𝑡
𝑘

)

⩽ ℎ (𝑡
𝑘+1

) (

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑡
𝑘+1

− 𝑡
𝑘

)

2

(

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

𝑠
𝑘
− 𝑡
𝑘

) .

(49)

Therefore statement (iii) holds for 𝑛 = 𝑘 + 1. Hence (i)–(iii)
hold for all 𝑛 ⩾ 0. Furthermore, by statement (i), one has, for
any 𝑛 ⩾ 0, ‖𝑥

𝑛
− 𝑥
0
‖ ⩽ 𝑡
𝑛
< 𝑡
∗

< 𝑟
0
. Thus by Lemma 1 we

know that 𝐹󸀠(𝑥
𝑛
)
−1 exists for each 𝑛 ⩾ 1; that is, {𝑥

𝑛
} is well

defined. The proof is complete.

Recall that {𝑠
𝑛
} and {𝑡

𝑛
} are defined in (13). Based on the

preceding useful lemmas, we are now ready to prove a Smale-
type semilocal convergence theorem for Newton-Steffensen’s
method (4) under 𝛾-condition.

Theorem 6. Suppose that (14) holds. Then the
sequence {𝑥

𝑛
} generated by (4) with the initial point 𝑥

0
is

well defined and converges to a solution 𝑥
∗

∈ B(𝑥
0
, 𝑡∗) of (1)

with Q-cubic rate, and this solution 𝑥
∗ is unique in B(𝑥

0
, 𝑟),

where 𝑡
∗

⩽ 𝑟 < 𝑡
∗∗. Moreover, the following error bounds

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ⩽ (𝑡
∗

− 𝑡
𝑛
) (

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑚

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑚

)

3
𝑛−𝑚

∀𝑛 ⩾ 𝑚 ⩾ 0 (50)

are valid, where 𝑡
∗ and 𝑡

∗∗ are defined in Lemma 2.

Proof. The uniqueness ball can be obtained by Theorem 5.2
in [19]. It follows from Lemma 1 that {𝑥

𝑛
} is well defined. In

addition, from Lemmas 3 and 5 (i), we can see that {𝑥
𝑛
} is

convergent to a limit, say 𝑥
∗. Below, we show that 𝑥∗ is a

solution of (1). It follows from Lemma 5 (iii) that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
⩽ ℎ (𝑡

𝑛
) ∀𝑛 ⩾ 0. (51)

Letting 𝑛 → ∞ in the preceding relation gives that the
limit 𝑥∗ is a solution of (1). Moreover, we have

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ⩽ 𝑡
∗

− 𝑡
𝑛
. (52)
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Next, we verify that estimate (62) is true. By (29) and
Lemma 5, one has

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑦
𝑛

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
𝑛
)
−1

× [∫

1

0

𝐹
󸀠

(𝑥
𝑛
) (𝑥
∗

− 𝑥
𝑛
) d𝑡 + 𝐹 (𝑥

𝑛
) − 𝐹 (𝑥

∗

)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
𝑛
)
−1

×∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
𝑛
+ 𝑠𝑡 (𝑥

∗

− 𝑥
𝑛
)) (𝑥
∗

− 𝑥
𝑛
)
2

𝑡 d𝑠 d𝑡
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⩽
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑛
)
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

1

0

∫

1

0

𝐹
󸀠

(𝑥
0
)
−1

𝐹
󸀠󸀠

(𝑥
𝑛
+ 𝑠𝑡 (𝑥

∗

− 𝑥
𝑛
))

×(𝑥
∗

− 𝑥
𝑛
)
2

𝑡 d𝑠 d𝑡
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⩽
(1 − 𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
0

󵄩󵄩󵄩󵄩)
2

2(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

0

󵄩󵄩󵄩󵄩)
2

− 1

× ∫

1

0

∫

1

0

2𝛾(𝑡
∗

− 𝑡
𝑛
)
2

𝑡

[1 − 𝛾 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

0
+ 𝑠𝑡 (𝑥∗ − 𝑥

𝑛
)
󵄩󵄩󵄩󵄩)]
3
d𝑠 d𝑡

⩽ (𝑡
∗

− 𝑠
𝑛
) (

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

2

.

(53)

In order to estimate ‖𝑥
𝑛+1

− 𝑥
∗

‖, we first notice that

[𝑦
𝑛
, 𝑥
𝑛
; 𝐹] (𝑥

𝑛+1
− 𝑥
∗

)

= ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
𝑛
+ 𝑧
𝑠,𝑡

𝑛
) (𝑥
∗

− 𝑦
𝑛
) (𝑥
∗

− 𝑥
𝑛
) 𝑡 d𝑠 d𝑡,

(54)

where 𝑧
𝑠,𝑡

𝑛
= 𝑡(𝑦

𝑛
− 𝑥
𝑛
) + 𝑠𝑡(𝑥

∗

− 𝑦
𝑛
). This together with

Lemma 5(i), (29), (52), and (53) gives that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

[𝑦
𝑛
, 𝑥
𝑛
; 𝐹] (𝑥

𝑛+1
− 𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾
󵄩󵄩󵄩󵄩𝑥
∗

− y
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 𝑡

[1 − 𝛾 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

0

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝑠𝑡 (𝑥∗ − 𝑦
𝑛
))]
3
d𝑠 d𝑡

⩽ ∫

1

0

∫

1

0

2𝛾 (𝑡
∗

− 𝑠
𝑛
) (𝑡
∗

− 𝑡
𝑛
) 𝑡

[1 − 𝛾 (𝑡
𝑛
+ 𝑡 (𝑠
𝑛
− 𝑡
𝑛
) + 𝑠𝑡 (𝑡∗ − 𝑠

𝑛
))]
3
d𝑠 d𝑡

× (

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

3

= (−ℎ (𝑡
𝑛
) −

ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

(𝑡
∗

− 𝑡
𝑛
))(

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

3

= (𝑡
𝑛+1

− 𝑡
∗

) (
ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

)(

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

3

.

(55)

Combining the above inequality with (46), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽

󵄩󵄩󵄩󵄩󵄩
[𝑦
𝑛
, 𝑥
𝑛
; 𝐹]
−1

𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

[𝑦
𝑛
, 𝑥
𝑛
; 𝐹] (𝑥

𝑛+1
− 𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

⩽ −(
ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

)

−1

(𝑡
𝑛+1

− 𝑡
∗

)

× (
ℎ (𝑠
𝑛
) − ℎ (𝑡

𝑛
)

𝑠
𝑛
− 𝑡
𝑛

)(

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

3

⩽ (𝑡
∗

− 𝑡
𝑛+1

) (

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑛

)

3

.

(56)

Therefore, the error estimate (62) follows. Also, from the
previous inequality, we know that the convergence rate
of {𝑥
𝑛
} to 𝑥

∗ is 𝑄-cubic. This completes the proof.

One typical and important class of examples satisfying 𝛾-
condition is the one of analytic functions. Smale [5] studied
the convergence and error estimation of Newton’s method (2)
under the hypotheses that 𝐹 is analytic and satisfies

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
(𝑛)

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽ 𝑛!𝛾
𝑛−1

, 𝑛 ⩾ 2, (57)

where 𝑥 is a fixed point in 𝐷 and 𝛾 is defined by

𝛾 := sup
𝑛>1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥)
−1

𝐹
(𝑛)

(𝑥)

𝑛!

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/(𝑛−1)

. (58)

The following lemma taken from [20] shows that an
analytic operator satisfies 𝛾-condition.

Lemma 7. Let 𝑟
0
and 𝛾 be defined by (7) and (86),

respectively. Suppose that 𝐹 is analytic and satisfies (85).
Then 𝐹 satisfies 𝛾-condition

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

2𝛾

(1 − 𝛾 ‖𝑥 − 𝑥‖)
3 (59)

on 𝐵(𝑥, 𝑟
0
).

According to this lemma, we can conclude that the
semilocal results obtained inTheorem 6 also hold when 𝐹 is
an analytic operator.
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Corollary 8. Suppose that (14) holds. Suppose that 𝐹 is ana-
lytic and satisfies

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1

𝐹
(𝑛)

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
⩽ 𝑛!𝛾
𝑛−1

, 𝑛 ⩾ 2, (60)

where 𝛾 is defined by

𝛾 := sup
𝑛>1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
0
)
−1

𝐹
(𝑛)

(𝑥
0
)

𝑛!

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/(𝑛−1)

. (61)

Then the sequence {𝑥
𝑛
} generated by (4) with the initial

point 𝑥
0
is well defined and converges to a solution 𝑥

∗

∈

B(𝑥
0
, 𝑡∗) of (1) with Q-cubic rate and this solution 𝑥

∗ is
unique in B(𝑥

0
, 𝑟), where 𝑡

∗

⩽ 𝑟 < 𝑡
∗∗. Moreover, the

following error bounds

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ⩽ (𝑡
∗

− 𝑡
𝑛
) (

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑚

󵄩󵄩󵄩󵄩

𝑡∗ − 𝑡
𝑚

)

3
𝑛−𝑚

∀𝑛 ⩾ 𝑚 ⩾ 0 (62)

are valid, where 𝑡
∗ and 𝑡

∗∗ are defined in Lemma 2.

4. Convergence Ball

Now we begin to study the local convergence properties for
Newton-Steffensen’s method (4) under 𝛾-condition. Recall
that 𝑟

0
is defined by (7). Throughout this section, suppose

that 𝑥∗ ∈ 𝐷 such that 𝐹(𝑥∗) = 0, B(𝑥∗, 𝑟
0
) ⊂ 𝐷, and the

inverse 𝐹
󸀠

(𝑥
∗

)
−1 exists. Moreover, we assume that 𝐹 satisfies

the 𝛾-condition on B(𝑥∗, 𝑟
0
); that is, the following relation

holds:
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

𝐹
󸀠󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩
⩽

2𝛾

(1 − 𝛾 ‖𝑥 − 𝑥∗‖)
3
, 𝑥 ∈ B (𝑥

∗

, 𝑟
0
) .

(63)

Then, for any 𝑥 ∈ B(𝑥∗, 𝑟
0
), it follows from Lemma 1 that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
⩽

(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩)
2

2(1 − 𝛾 ‖𝑥 − 𝑥∗‖)
2

− 1

. (64)

Let

𝑟
1
:=

(5 − √17)

(4𝛾)
. (65)

Define function 𝐺 as follows:

𝐺 (𝑡) =
𝛾𝑡

1 − 4𝛾𝑡 + 2𝛾2𝑡2
, 𝑡 ∈ (0, 𝑟

1
) . (66)

It is clear that 𝑟
1

∈ (0, 𝑟
0
) and that 𝐺(𝑟

1
) = 1.

Moreover, 𝐺 increases monotonically in (0, 𝑟
1
).

Theorem 9. Let 𝑟
1
be defined in (65). Then, for

any 𝑥
0

∈ 𝐵(𝑥
∗

, 𝑟
1
), the sequence {𝑥

𝑛
} generated by (4)

converges to 𝑥
∗ and satisfies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽ 𝑞

3
𝑛

−1 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , 𝑛 = 0, 1, . . . , (67)

where

𝑞 = 𝐺 (𝑡
0
) < 1, 𝑡

0
=
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 . (68)

Proof. For 𝑛 = 0, 1, . . ., we write 𝑡
𝑛
= ‖𝑥
𝑛
−𝑥
∗

‖. It is sufficient
to show that

𝑡
𝑛+1

⩽ 𝑡
𝑛
,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽ (

𝐺 (𝑡
𝑛
)

𝑡
𝑛

)

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
3

,

𝑛 = 0, 1, . . . .

(69)

In fact, by noticing the monotonicity of 𝐺/𝑡, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽ (

𝐺 (𝑡
𝑛
)

𝑡
𝑛

)

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
3

⩽ (
𝐺(𝑡
0
)

𝑡
0

)

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
3

= (
𝑞

𝑡
0

)

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
3

, 𝑛 = 0, 1, . . . .

(70)

From this we can easily establish (67) by mathematical
induction.

We now prove (69). First we get the following expression
of 𝑥
𝑛+1

− 𝑥
∗:

𝑥
𝑛+1

− 𝑥
∗

= [𝑦
𝑛
, 𝑥
𝑛
; 𝐹]
−1

× [∫

1

0

𝐹
󸀠

(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (𝑥
𝑛
− 𝑥
∗

) d𝑡

− (𝐹 (𝑥
𝑛
) − 𝐹 (𝑥

∗

)) ]

= [𝑦
𝑛
, 𝑥
𝑛
; 𝐹]
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
∗

+ (1 − 𝑡) (𝑥
𝑛
− 𝑥
∗

) + 𝑠𝑡 (𝑦
𝑛
− 𝑥
∗

))

× (𝑦
𝑛
− 𝑥
∗

) (𝑥
𝑛
− 𝑥
∗

) 𝑡 d𝑠 d𝑡.
(71)

Similarly, we also have

𝑦
𝑛
− 𝑥
∗

= 𝑥
𝑛
− 𝐹
󸀠

(𝑥
𝑛
)
−1

𝐹
󸀠

(𝑥
𝑛
) − 𝑥
∗

= 𝐹
󸀠

(𝑥
𝑛
)
−1

× [𝐹 (𝑥
∗

) − 𝐹 (𝑥
𝑛
) + 𝐹
󸀠

(𝑥
𝑛
) (𝑥
𝑛
− 𝑥
∗

)]

= 𝐹
󸀠

(𝑥
𝑛
)
−1

× ∫

1

0

[𝐹
󸀠

(𝑥
𝑛
+ 𝑡 (𝑥

∗

− 𝑥
𝑛
)) − 𝐹

󸀠

(𝑥
𝑛
)]

× (𝑥
∗

− 𝑥
𝑛
) d𝑡

= 𝐹
󸀠

(𝑥
𝑛
)
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
𝑛
+ 𝑠𝑡 (𝑥

∗

− 𝑥
𝑛
)) (𝑥
∗

− 𝑥
𝑛
)
2

𝑡 d𝑠 d𝑡.

(72)
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This together with (63) and (64) yields

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑛
)
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

1

0

∫

1

0

𝐹
󸀠

(𝑥
∗

)
−1

𝐹
󸀠󸀠

(𝑥
𝑛
+ 𝑠𝑡 (𝑥

∗

− 𝑥
𝑛
)) 𝑡 𝑑𝑠 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

⩽ (
1

(1 − 𝛾
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑥
𝑛

󵄩󵄩󵄩󵄩)
2
− 2)

× ∫

1

0

∫

1

0

2𝛾

[1 − 𝛾
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑠𝑡 (𝑥∗ − 𝑥

𝑛
) − 𝑥∗

󵄩󵄩󵄩󵄩]
3
d𝑠 d𝑡

×
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

= (
1

(1 − 𝛾𝑡
𝑛
)
2
− 2)

× ∫

1

0

∫

1

0

2𝛾

[1 − 𝛾 (1 − 𝑠𝑡) 𝑡
𝑛
]
3
d𝑠 d𝑡

×
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

=
𝛾

1 − 4𝛾𝑡
𝑛
+ 2𝛾2𝑡2

𝑛

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

= (
𝐺 (𝑡
𝑛
)

𝑡
𝑛

)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

.

(73)

On the other hand, we notice that

𝐹
󸀠

(𝑥
∗

)
−1

([𝑦
𝑛
, 𝑥
𝑛
; 𝐹] − 𝐹

󸀠

(𝑥
∗

))

= 𝐹
󸀠

(𝑥
∗

)
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
∗

+ 𝑠 (1 − 𝑡) (𝑥
𝑛
− 𝑥
∗

)

+𝑠𝑡 (𝑦
𝑛
− 𝑥
∗

))

× [(1 − 𝑡) (𝑥
𝑛
− 𝑥
∗

) + 𝑡 (𝑦
𝑛
− 𝑥
∗

)] d𝑠 d𝑡.
(74)

It follows from (63) that
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

([𝑦
𝑛
, 𝑥
𝑛
; 𝐹] − 𝐹

󸀠

(𝑥
∗

))
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 [(1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩]

[1 − 𝛾 (𝑠 (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗

󵄩󵄩󵄩󵄩 + 𝑠𝑡
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥∗

󵄩󵄩󵄩󵄩)]
3
d𝑠 d𝑡.

(75)

For the case 𝑛 = 0, by (88) and (73), we get
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

∗󵄩󵄩󵄩󵄩 ⩽ 𝐺 (𝑡
0
)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 . (76)

Combining Lemma 2 with (75) and (76), we obtain
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

([𝑦
0
, 𝑥
0
; 𝐹] − 𝐹

󸀠

(𝑥
∗

))
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 [(1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

∗󵄩󵄩󵄩󵄩]

[1 − 𝛾 (𝑠 (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥∗

󵄩󵄩󵄩󵄩 + 𝑠𝑡
󵄩󵄩󵄩󵄩𝑦0 − 𝑥∗

󵄩󵄩󵄩󵄩)]
3
d𝑠 d𝑡

⩽ ∫

1

0

∫

1

0

2𝛾 [(1 − 𝑡) 𝑡
0
+ 𝑡𝑡
0
]

[1 − 𝛾 (𝑠 (1 − 𝑡) 𝑡
0
+ 𝑠𝑡𝑡
0
)]
3
d𝑠 d𝑡

=
1

(1 − 𝛾𝑡
0
)
2
− 1 < 1.

(77)

It follows from Banach lemma that
󵄩󵄩󵄩󵄩󵄩
[𝑦
0
, 𝑥
0
; 𝐹]
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
⩽

1

1 − ((1/(1 − 𝛾𝑡
0
)
2

) − 1)

=
(1 − 𝛾𝑡

0
)
2

2(1 − 𝛾𝑡
0
)
2

− 1

.

(78)

This together with (63), (71) and (76) yields
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

∗󵄩󵄩󵄩󵄩

⩽
󵄩󵄩󵄩󵄩󵄩
[𝑦
0
, 𝑥
0
; 𝐹]
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

× ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
∗

+ (1 − 𝑡) (𝑥
0
− 𝑥
∗

)

+𝑠𝑡 (𝑦
0
− 𝑥
∗

)) 𝑡 d𝑠 d𝑡󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

⩽
(1 − 𝛾𝑡

0
)
2

2(1 − 𝛾𝑡
0
)
2

− 1

× ∫

1

0

∫

1

0

2𝛾

[1 − 𝛾 ((1 − 𝑡) 𝑡
0
+ 𝑠𝑡𝑡
0
)]
3
𝑡 d𝑠 d𝑡

× 𝐺 (𝑡
0
)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩
3

=
(1 − 𝛾𝑡

0
)
2

2(1 − 𝛾𝑡
0
)
2

− 1

1

𝑡
0

(
1

(1 − 𝛾𝑡
0
)
2
−

1

(1 − 𝛾𝑡
0
)
)

× 𝐺 (𝑡
0
)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩
3

= (
𝐺 (𝑡
0
)

𝑡
0

)

2

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩
3

.

(79)

Hence (69) holds for 𝑛 = 0.
Now assume that the inequalities in (69) hold for up to

some 𝑛 ⩾ 1. Then by (73), one has
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 = 𝐺 (𝑡
𝑛+1

) 𝑡
𝑛+1

⩽ 𝐺 (𝑡
0
) 𝑡
𝑛+1

⩽ 𝑡
𝑛+1

. (80)
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Thus (75) can be further reduced to
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

([𝑦
𝑛+1

, 𝑥
𝑛+1

; 𝐹] − 𝐹
󸀠

(𝑥
∗

))
󵄩󵄩󵄩󵄩󵄩

⩽ ∫

1

0

∫

1

0

2𝛾 [(1 − 𝑡) 𝑡
𝑛+1

+ 𝑡𝑡
𝑛+1

]

[1 − 𝛾 (𝑠 (1 − 𝑡) 𝑡
𝑛+1

+ 𝑠𝑡𝑡
𝑛+1

)]
3
d𝑠 d𝑡

=
1

(1 − 𝛾𝑡
𝑛+1

)
2
− 1 < 1.

(81)

Using Banach lemma again, one has

󵄩󵄩󵄩󵄩󵄩
[𝑦
𝑛+1

, 𝑥
𝑛+1

; 𝐹]
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
⩽

(1 − 𝛾𝑡
𝑛+1

)
2

2(1 − 𝛾𝑡
𝑛+1

)
2

− 1

. (82)

This together with (63), (71), and (73) yields
󵄩󵄩󵄩󵄩𝑥𝑛+2 − 𝑥

∗󵄩󵄩󵄩󵄩

⩽
󵄩󵄩󵄩󵄩󵄩
[𝑦
𝑛+1

, 𝑥
𝑛+1

; 𝐹]
−1

𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

⋅ ∫

1

0

∫

1

0

𝐹
󸀠󸀠

(𝑥
∗

+ (1 − 𝑡) (𝑥
𝑛+1

− 𝑥
∗

)

+𝑠𝑡 (𝑦
𝑛+1

− 𝑥
∗

)) 𝑡 d𝑠 d𝑡󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

⩽
(1 − 𝛾𝑡

𝑛+1
)
2

2(1 − 𝛾𝑡
𝑛+1

)
2

− 1

× ∫

1

0

∫

1

0

2𝛾

[1 − 𝛾 ((1 − 𝑡) 𝑡
𝑛+1

+ 𝑠𝑡𝑡
𝑛+1

)]
3
𝑡 d𝑠 d𝑡

× 𝐺 (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩
3

=
(1 − 𝛾𝑡

𝑛+1
)
2

2(1 − 𝛾𝑡
𝑛+1

)
2

− 1

×
1

𝑡
𝑛+1

(
1

(1 − 𝛾𝑡
𝑛+1

)
2
−

1

(1 − 𝛾𝑡
𝑛+1

)
)

× 𝐺 (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩
3

= (
𝐺 (𝑡
𝑛+1

)

𝑡
𝑛+1

)

2

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩
3

.

(83)

Thus

𝑡
𝑛+2

≤ 𝐺(𝑡
𝑛+1

)
2

𝑡
𝑛+1

≤ 𝐺(𝑡
0
)
2

𝑡
𝑛+1

≤ 𝑡
𝑛+1

. (84)

This and (83) show that the inequalities in (69) hold for 𝑛 +

1 and hence they hold for each 𝑛. The proof is complete.

Applying Lemma 7 to the above theorem, we get the
following corollary:

Corollary 10. Suppose that 𝐹 is analytic and satisfies

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
−1

𝐹
(𝑛)

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
⩽ 𝑛!𝛾
𝑛−1

, 𝑛 ⩾ 2, (85)

where 𝛾 is defined by

𝛾 := sup
𝑛>1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹
󸀠

(𝑥
∗

)
−1

𝐹
(𝑛)

(𝑥
∗

)

𝑛!

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/(𝑛−1)

. (86)

Let 𝑟
1
and 𝐺 be defined by (65) and (66), respectively. Then,

for any 𝑥
0

∈ 𝐵(𝑥
∗

, 𝑟
1
), the sequence {𝑥

𝑛
} generated by (4)

converges to 𝑥
∗ and satisfies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ⩽ 𝑞

3
𝑛

−1 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , 𝑛 = 0, 1, . . . , (87)

where

𝑞 = 𝐺 (𝑡
0
) < 1, 𝑡

0
=
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 . (88)
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