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We extend the secondNoether theorem to variational problems on time scales. As corollaries we obtain the classical secondNoether
theorem, the second Noether theorem for the ℎ-calculus and the second Noether theorem for the 𝑞-calculus.

1. Introduction

In 1915, general relativitywas almost a finished theory, but still
there was a problem regarding the conservation of energy.
David Hilbert asked for help Emmy Noether. She solved
the problem proving two remarkable theorems that relate to
the invariance of a variational integral with properties of its
Euler-Lagrange equations. These results were published in
1918 in the paper Invariante Variations probleme [1]. Noether
was described by many important scientists, such as Pavel
Alexandrov, Albert Einstein, Jean Dieudonné, and David
Hilbert, as themost important woman in the history ofmath-
ematics. In order to get a good exposition of the history of
Emmy Noether and her important contributions to funda-
mental physics and mathematics, we refer the reader to the
recent book [2]. This book explains very clearly that it took
too much time before mathematicians and physicists began
to recognize the importance of Noether’s theorems: until 1950
Noether’s theorems were poorly understood and Noether’s
name disappeared almost entirely.

The first theorem in [1], usually known as Noether’s theo-
rem, guarantees that the invariance of a variational integral
with respect to continuous symmetry transformations that
depend on 𝜌 parameters implies the existence of 𝜌 con-
served quantities along the Euler-Lagrange extremals. Such
transformations are global transformations. Noether’s theo-
rem explains all conservation laws of mechanics: conserva-
tion of energy comes from invariance of the system under

time translations; conservation of linear momentum comes
from invariance of the system under spacial translations;
conservation of angular momentum reflects invariance with
respect to spatial rotations.

The first Noether theorem is nowadays a well-known
tool in modern theoretical physics, engineering, and the cal-
culus of variations [3–9]. Inexplicably, it is still not well
known that the famous paper of Emmy Noether includes
another important result, the secondNoether theorem,which
applies to variational problems that are invariant under a
certain group of transformations, a so-called infinite contin-
uous group, which depends on arbitrary functions and their
derivatives (see also [10]). Such transformations are local
transformations because they can affect every part of the
system differently. Noether’s second theorem states that if
a variational integral has an infinite-dimensional Lie alge-
bra of infinitesimal symmetries parameterized linearly by 𝑟

arbitrary functions and their derivatives up to a given order
𝑚, then there are 𝑟 identities between Euler-Lagrange expre-
ssions and their derivatives up to order 𝑚. These identi-
ties Noether called them “dependencies.” For example, the
Bianchi identities, in the general theory of relativity, are
examples of such “dependencies.” Noether’s second theo-
rem has applications in general relativity, electrodynamics,
hydromechanics, quantum chromodynamics, and other
gauge field theories. Motivated by the important applications
of the second Noether theorem, our goal in this paper is
to generalize this result proving that the second Noether
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theorem is valid for an infinite number of time scales. As
we will see, in the particular case where the time scale T

is R, we get from our result the classical second Noether
theorem; when T = Z, we obtain the analogue of the second
Noether theorem for the difference calculus of variations;
when T = 𝑞

N0 (for some 𝑞 > 1), we obtain a new result:
the second Noether theorem for the 𝑞-calculus (quantum
calculus). For more on the theory of quantum calculus and
quantum calculus of variation, we refer to [11–21].

The theory of time scales was introduced in 1988 by
Hilger in his Ph.D. thesis [22] as a means of unifying theories
of differential calculus and difference calculus into a single
theory. With a short time this unification aspect has been
supplemented by the extension and generalization features.
The time scale calculus allows to considermore complex time
domains, such as ℎZ, T = 𝑞

N0 , or hybrid domains. The study
of the calculus of variations in the context of time scales had
its beginning only in 2004 with the paper [23] of Bohner
(see also [24]). Since then, the variational calculus on time
scales advanced fairly quickly, as can be verifiedwith the large
number of published papers on the subject [25–35]. Noether’s
first theorem has been extended to the variational calculus
on time scales using several approaches [4, 9, 36], while the
second Noether theorem on times scales is still not available
in the literature. So, there is evidently a need for a time scale
analogue of Noether’s second theorem.

The paper is organized as follows. In Section 2, we
review some preliminaries about single-variable variational
calculus on time scales; for example, we recall the Euler-
Lagrange equation for a delta variational problem. Our main
results are stated in Section 3. Namely, in Subsection 3.1, we
prove Noether’s second theorem for variational problems
involving a single delta integral (with and without trans-
formation of time) and in Section 3.2 we prove Noether’s
second theorem for variational problems involving multiple
delta integrals (without transformation of time). Section 4
provides a concrete example of application of our results.
Finally, in Section 5, we present some concluding remarks.

2. Preliminaries

In this paper, we assume the reader to be familiar with the
calculus on time scales. For a good introduction to the theory
of time scales, we refer to the well-known books in this field
[37, 38]. The first developments on time scale calculus were
done essentially using the delta-calculus. However, for some
applications, in particular to solve problems of the calculus
of variations and control theory in economics, it is often
more convenient to work backwards in time, that is, using
the nabla-calculus. In this paper, we are concerned with the
delta-calculus. It is clear that all the arguments used in the
proofs of our results can be modified to work for the nabla-
calculus. Inwhat follows, we review some preliminaries about
the variational calculus on time scales needed in this paper.

Let T be a given time scale, 𝑛 ∈ N, and let 𝐿 : T ×

R𝑛 × R𝑛 → R be continuous, together with its partial delta
derivatives of first and second order with respect to 𝑡 and
partial usual derivatives of the first and second order with
respect to the other variables. Suppose that 𝑎, 𝑏 ∈ T , and

𝑎 < 𝑏. We consider the following optimization problem on
T :

L [𝑦] = ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡 󳨀→ extremize, (1)

where the set of admissible functions are

D = {𝑦 | 𝑦 : [𝑎, 𝑏] ∩ T 󳨀→ R
𝑛

, 𝑦 ∈ 𝐶
1

rd ([𝑎, 𝑏] ∩ T ,R
𝑛

) ,

𝑦 (𝑎) = 𝛼, 𝑦 (𝑏) = 𝛽} ,

(2)

for some𝛼, 𝛽 ∈ R𝑛, andwhere𝜎 is the forward jumpoperator,
𝑦
Δ is the delta-derivative of 𝑦, and, for 𝑖 ∈ N,

𝐶
𝑖

rd ([𝑎, 𝑏] ∩ T ,R
𝑛

) := {𝑦 | 𝑦 : [𝑎, 𝑏] ∩ T 󳨀→ R
𝑛

,

𝑦
Δ
𝑖

is rd-continuous on [𝑎, 𝑏]
𝜅
𝑖

} .

(3)

As usual, 𝑦𝜎(𝑡) denotes 𝑦(𝜎(𝑡)) and [𝑎, 𝑏]
𝜅
𝑖

:= [𝑎, 𝜌
𝑖

(𝑏)],
where 𝜌 is the backward jump operator. By extremize, we
mean maximize or minimize.

In what follows, all intervals are time scales intervals; that
is, we simply write [𝑎, 𝑏] to denote the set [𝑎, 𝑏] ∩ T . Let 𝑦 :=

(𝑦
1
, . . . , 𝑦

𝑛
) and denote by 𝜕𝐿/𝜕𝑦

𝑘
the partial derivative of 𝐿

with respect to 𝑦
𝑘
.

Definition 1. We say that 𝑦
∗
∈ 𝐶
1

rd([𝑎, 𝑏],R
𝑛

) is a local mini-
mizer (resp., local maximizer) for problem (1) if there exists
𝛿 > 0 such that

L [𝑦
∗
] ≤ L [𝑦] (resp., L [𝑦

∗
] ≥ L [𝑦]) , (4)

for all 𝑦 ∈ 𝐶
1

rd([𝑎, 𝑏],R
𝑛

) satisfying the boundary conditions
𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽, and

󵄩󵄩󵄩󵄩𝑦 − 𝑦
∗

󵄩󵄩󵄩󵄩 := sup
𝑡∈[𝑎,𝑏]

𝜅

󵄨󵄨󵄨󵄨𝑦
𝜎

(𝑡) − 𝑦
𝜎

∗
(𝑡)

󵄨󵄨󵄨󵄨

+ sup
𝑡∈[𝑎,𝑏]

𝜅

󵄨󵄨󵄨󵄨󵄨
𝑦
Δ

(𝑡) − 𝑦
Δ

∗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
< 𝛿,

(5)

where | ⋅ | denotes a norm in R𝑛.

Definition 2. We say that 𝜂 ∈ 𝐶
1

rd([𝑎, 𝑏],R
𝑛

) is an admissible
variation for problem (1) provided that 𝜂(𝑎) = 𝜂(𝑏) = 0.

Definition 3. A function 𝑓 : [𝑎, 𝑏] × R → R is called conti-
nuous in the second variable, uniformly in the first variable,
if for each 𝜖 > 0, there exists 𝛿 > 0 such that |𝑥

1
− 𝑥
2
| < 𝛿

implies |𝑓(𝑡, 𝑥
1
) − 𝑓(𝑡, 𝑥

2
)| < 𝜖 for all 𝑡 ∈ [𝑎, 𝑏].

Lemma4 (see [23]). Suppose that 𝜂 := (𝜂
1
, . . . , 𝜂

𝑛
) is an admi-

ssible variation for problem (1) and 𝑦 := (𝑦
1
, . . . , 𝑦

𝑛
) ∈ D. Let

𝜙 : R → R and 𝑓 : [𝑎, 𝑏] × R → R be defined, respectively,
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by 𝜙(𝜖) := L[𝑦+𝜖𝜂] and 𝑓(𝑡, 𝜖) := 𝐿(𝑡, 𝑦
𝜎

(𝑡)+𝜖𝜂
𝜎

(𝑡), 𝑦
Δ

(𝑡)+

𝜖𝜂
Δ

(𝑡)). If 𝜕𝑓/𝜕𝜖 is continuous in 𝜖, uniformly in 𝑡, then

̇𝜙 (0) = ∫

𝑏

𝑎

𝑛

∑

𝑘=1

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) 𝜂
𝜎

𝑘
(𝑡)

+
𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) 𝜂
Δ

𝑘
(𝑡))Δ𝑡.

(6)

Next, we present the following result that is a fundamental
tool in the calculus of variations on time scales.

Theorem 5 (Euler-Lagrange equation on time scales [23]). If
𝑦
∗
is a weak local extremizer for problem (1) and 𝐿 satisfies

the assumption of Lemma 4, for every 𝑦 and 𝜂, then the
components of 𝑦

∗
satisfy the 𝑛 Euler-Lagrange equations:

Δ

Δ𝑡

𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) =
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ,

𝑘 = 1, . . . , 𝑛

(7)

for 𝑡 ∈ [𝑎, 𝑏]
𝜅.

It is well known that the forward jump operator, 𝜎, is not
delta differentiable for certain time scales. Also, the chain rule
as we know it from the classical calculus (i.e., when T = R) is
not valid in general. For this reason, we suppose that the time
scale T satisfies the following condition

(H) for each 𝑡 ∈ T , 𝜎(𝑡) = 𝑏
1
𝑡 + 𝑏
0
for some 𝑏

1
∈ R+ and

𝑏
0
∈ R.

Remark 6. Note that condition (H) implies that 𝜎 is delta
differentiable and 𝜎Δ(𝑡) = 𝑏

1
, 𝑡 ∈ T𝜅. Also note that condition

(H) describes, in particular, the differential calculus (T = R,
𝑏
1
= 1, 𝑏
0
= 0), the difference calculus (T = Z, 𝑏

1
= 1, 𝑏
0
= 1),

the ℎ-calculus (T = ℎZ := {ℎ𝑧 : 𝑧 ∈ Z}, 𝑏
1
= 1, 𝑏

0
= ℎ for

some ℎ > 0), and the 𝑞-calculus (T = 𝑞
N0 := {𝑞

𝑘

: 𝑘 ∈ N
0
} for

some 𝑞 > 1, 𝑏
1
= 𝑞, 𝑏
0
= 0).

Lemma 7 (see [27]). Let T be a time scale satisfying condition
(𝐻). If 𝑓 : T → R is two times delta differentiable, then

𝑓
𝜎Δ

(𝑡) = 𝑏
1
𝑓
Δ𝜎

(𝑡) , 𝑡 ∈ T
𝜅
2

. (8)

The next result is also useful for the proofs of our main
results.

Lemma 8 (cf. [35]). Assume that the time scale T satisfies
condition (𝐻), 𝑚 ∈ N, and 𝜂 ∈ 𝐶

2𝑚

rd ([𝑎, 𝑏],R) is such that
𝜂
Δ
𝑖

(𝑎) = 0 for all 𝑖 = 0, 1, . . . , 𝑚. Then, 𝜂𝜎Δ
𝑖−1

(𝑎) = 0 for each
𝑖 = 1, . . . , 𝑚.

3. Main Results

In this section, we formulate and prove the second Noether
theorem for single andmultiple integral variational problems.

3.1. Noether’s Second Theorem: Single Delta Integral Case. In
this subsection, we suppose that the time scale T satisfies
condition (H) and that𝐿 satisfies the assumption of Lemma 4,
for every 𝑦 and 𝜂. As usual, 𝜂Δ

0

and 𝜂
𝜎
0

denote 𝜂. Let 𝑚 be
a fixed natural number. We also assume that the time scale
interval [𝑎, 𝑏] has, at least, 2𝑚 + 1 points.

We begin with some technical results that will be useful
in the proofs of Theorems 16 and 22.

Lemma 9 (higher-order fundamental lemma of the calculus
of variations). Let T be a time scale satisfying condition (H)
and 𝑓

0
, 𝑓
1
, . . . , 𝑓

𝑚
∈ 𝐶rd([𝑎, 𝑏],R). If

∫

𝜌
𝑚−1
(𝑏)

𝑎

(

𝑚

∑

𝑖=0

𝑓
𝑖
(𝑡) 𝜂
𝜎
𝑚−𝑖
Δ
𝑖

(𝑡))Δ𝑡 = 0, (9)

for all 𝜂 ∈ 𝐶
2𝑚

rd ([𝑎, 𝑏],R) such that

𝜂 (𝑎) = 0, 𝜂 (𝜌
𝑚−1

(𝑏)) = 0,

...

𝜂
Δ
𝑚−1

(𝑎) = 0, 𝜂
Δ
𝑚−1

(𝜌
𝑚−1

(𝑏)) = 0,

(10)

then
𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖−1)/2

𝑓
Δ
𝑖

𝑖
(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑏]

𝜅
𝑚

. (11)

Proof. The proof is similar to the proof of Lemma 16 of [33].

Remark 10. We emphasize that the delta differentiability of
the functions 𝑓

0
, 𝑓
1
, . . . , 𝑓

𝑚
was not assumed in advance.

Lemma 11. Assume that the time scale T satisfies condition (H)
and 𝜂 ∈ 𝐶

2𝑚

rd ([𝑎, 𝑏],R) is such that,

𝜂
Δ
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚. (12)

Then,

𝜂
𝜎
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚. (13)

Proof. If 𝑎 is right-dense, the result is trivial. Suppose that 𝑎
is right-scattered. Since 𝜂Δ(𝑎) = (𝜂

𝜎

(𝑎) − 𝜂(𝑎))/(𝜎(𝑎) − 𝑎) = 0

and 𝜂(𝑎) = 0, we conclude that 𝜂𝜎(𝑎) = 0. Since 𝜂Δ
2

(𝑎) =

(𝜂
Δ

)
Δ

(𝑎) = ((𝜂
Δ

)
𝜎

(𝑎) − 𝜂
Δ

(𝑎))/(𝜎(𝑎) − 𝑎) = 0 and 𝜂
Δ

(𝑎) = 0,
then (𝜂Δ)𝜎(𝑎) = 0. Using Lemma 7, we get (𝜂𝜎)Δ(𝑎) = 0. Since
(𝜂
𝜎

)
Δ

(𝑎) = (𝜂
𝜎
2

(𝑎) − 𝜂
𝜎

(𝑎))/(𝜎(𝑎) − 𝑎) = 0 and 𝜂
𝜎

(𝑎) = 0, we
conclude that 𝜂𝜎

2

(𝑎) = 0.
Since 𝜂Δ

3

(𝑎) = (𝜂
Δ
2

)
Δ

(𝑎) = ((𝜂
Δ
2

)
𝜎

(𝑎) − 𝜂
Δ
2

(𝑎))/(𝜎(𝑎) −

𝑎) = 0 and 𝜂
Δ
2

(𝑎) = 0, then 𝜂
Δ
2
𝜎

(𝑎) = 0. Using Lemma 7, we
get (𝜂𝜎)Δ

2

(𝑎) = 0. Since (𝜂𝜎)Δ
2

(𝑎) = (𝜂
𝜎Δ𝜎

(𝑎)−𝜂
𝜎Δ

(𝑎))/(𝜎(𝑎)−

𝑎) = 0 and 𝜂𝜎Δ(𝑎) = 0, then 𝜂𝜎Δ𝜎(𝑎) = 0. Lemma 7proves that
𝜂
𝜎
2
Δ

(𝑎) = 0. Since 𝜂𝜎
2
Δ

(𝑎) = (𝜂
𝜎
3

(𝑎) − 𝜂
𝜎
2

(𝑎))/(𝜎(𝑎) − 𝑎) = 0

and 𝜂
𝜎
2

(𝑎) = 0, we get 𝜂𝜎
3

(𝑎) = 0. Repeating recursively this
process, we conclude the proof.
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Lemma 12. Assume that the time scale T satisfies condition
(H) and 𝜂 ∈ 𝐶

2(𝑚−1)

rd ([𝑎, 𝑏],R) is such that,

𝜂
Δ
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚 − 1. (14)

Then,

𝜂
𝜎Δ
𝑚−2

(𝑎) = 𝜂
𝜎
2
Δ
𝑚−3

(𝑎) = 𝜂
𝜎
3
Δ
𝑚−4

(𝑎) = . . . = 𝜂
𝜎
𝑚−2
Δ

(𝑎) = 0.

(15)

Proof. If 𝑎 is right-dense, the result is trivial. Suppose that 𝑎
is right-scattered. Since 𝜂

Δ
𝑚−1

(𝑎) = (𝜂
Δ
𝑚−2
𝜎

(𝑎) − 𝜂
Δ
𝑚−2

(𝑎))/

(𝜎(𝑎) − 𝑎) = 0 and 𝜂
Δ
𝑚−2

(𝑎) = 0, then 𝜂
Δ
𝑚−2
𝜎

(𝑎) = 0. Using
Lemma 7, we get 𝜂𝜎Δ

𝑚−2

(𝑎) = 0 (or use Lemma 8). Note that
𝜂
𝜎Δ
𝑚−2

(𝑎) = (𝜂
𝜎Δ
𝑚−3
𝜎

(𝑎) − 𝜂
𝜎Δ
𝑚−3

(𝑎))/(𝜎(𝑎) − 𝑎) = 0. Lemma 8
shows that 𝜂𝜎Δ

𝑚−3

(𝑎) = 0; hence, 𝜂𝜎Δ
𝑚−3
𝜎

(𝑎) = 0. Using
Lemma 7, we get 𝜂𝜎

2
Δ
𝑚−3

(𝑎) = 0. Next, we prove that 𝜂𝜎
2
Δ
𝑚−4

(𝑎) = 0. Since 𝜂𝜎Δ
𝑚−3

(𝑎) = (𝜂
𝜎Δ
𝑚−4
𝜎

(𝑎) − 𝜂
𝜎Δ
𝑚−4

(𝑎))/ (𝜎(𝑎) −

𝑎) = 0 and 𝜂
𝜎Δ
𝑚−4

(𝑎) = 0 (by Lemma 8), then 𝜂
𝜎Δ
𝑚−4
𝜎

(𝑎) =

0. Lemma 7 shows that 𝜂𝜎
2
Δ
𝑚−4

(𝑎) = 0. Since 𝜂
𝜎
2
Δ
𝑚−3

(𝑎) =

(𝜂
𝜎
2
Δ
𝑚−4
𝜎

(𝑎) − 𝜂
𝜎
2
Δ
𝑚−4

(𝑎))/(𝜎(𝑎) − 𝑎) = 0 and 𝜂
𝜎
2
Δ
𝑚−4

(𝑎) = 0,
then 𝜂

𝜎
2
Δ
𝑚−4
𝜎

(𝑎) = 0. Lemma 7 shows that 𝜂𝜎
3
Δ
𝑚−4

(𝑎) = 0.
Repeating recursively this process, we prove the intended
result.

Let 𝑦 := (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
). Firstly, we will prove the

secondNoether theoremwithout transformation of time. For
that consider the following transformations that depend on
arbitrary functions 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑟
and their delta-derivatives

up to order𝑚:

𝑡 = 𝑡

𝑦
𝑘
(𝑡) = 𝑦

𝑘
(𝑡) +

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
) (𝑡) , 𝑘 = 1, 2, . . . , 𝑛,

(16)

where, for each 𝑗 = 1, 2, . . . , 𝑟, 𝑝
𝑗
∈ 𝐶
2𝑚

rd ([𝑎, 𝜎
𝑚

(𝑏)],R),

𝑇
𝑘𝑗

(𝑝
𝑗
) :=

𝑚

∑

𝑖=0

𝑔
𝑘

𝑖𝑗
𝑝
𝜎
𝑚−(𝑖+1)
Δ
𝑖

𝑗
, (17)

and 𝑔
𝑘

𝑖𝑗
∈ 𝐶
1

rd([𝑎, 𝑏],R).

Definition 13. Functional L is invariant under transforma-
tions (16) if, and only if, for all 𝑦 ∈ 𝐶

1

rd([𝑎, 𝑏],R), we have

∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡 = ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡. (18)

Remark 14. Note that the most common definition of invari-
ance (with equality of the integrals for any subinterval
[𝑡
𝑎
, 𝑡
𝑏
] ⊆ [𝑎, 𝑏] with 𝑎, 𝑏 ∈ T) implies Definition 13.

Theorem 15 (necessary condition of invariance). If func-
tionalL is invariant under transformations (16), then

𝑛

∑

𝑘=1

∫

𝑏

𝑎

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
))

𝜎

(𝑡)

+
𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
))

Δ

(𝑡))Δ𝑡 = 0.

(19)

Proof. Using the definition of invariance and noting that the
family of transformations (16) depends upon arbitrary func-
tions 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑟
, we conclude that, for any real number 𝜀,

∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡

= ∫

𝑏

𝑎

𝐿(𝑡, 𝑦
𝜎

1
(𝑡) + 𝜀(

𝑟

∑

𝑗=1

𝑇
1𝑗

(𝑝
𝑗
))

𝜎

(𝑡) , . . . , 𝑦
𝜎

𝑛
(𝑡)

+ 𝜀(

𝑟

∑

𝑗=1

𝑇
𝑛𝑗

(𝑝
𝑗
))

𝜎

(𝑡) ,

𝑦
Δ

1
(𝑡) + 𝜀(

𝑟

∑

𝑗=1

𝑇
1𝑗

(𝑝
𝑗
))

Δ

(𝑡) , . . . , 𝑦
Δ

𝑛
(𝑡)

+𝜀(

𝑟

∑

𝑗=1

𝑇
𝑛𝑗

(𝑝
𝑗
))

Δ

(𝑡))Δ𝑡.

(20)

Differentiating with respect to 𝜀 (use Lemma 4) and taking
𝜀 = 0, we get equality (19).

Define

𝐸
𝑘
(𝐿) :=

𝜕𝐿

𝜕𝑦𝜎
𝑘

−
Δ

Δ𝑡

𝜕𝐿

𝜕𝑦Δ
𝑘

, 𝑘 = 1, 2, . . . , 𝑛. (21)

We will call 𝐸
𝑘
(𝐿), 𝑘 = 1, 2, . . . , 𝑛, the Euler-Lagrange expre-

ssions associated to the Lagrangian 𝐿.

Theorem 16 (Noether’s second theorem without transform-
ing time). If functionalL is invariant under transformations
(16), then there exist the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

((𝑔
𝑘

𝑖𝑗
)
𝜎

𝐸
𝑘
(𝐿))
Δ
𝑖

≡ 0,

𝑗 = 1, 2, . . . , 𝑟.

(22)
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Proof. Using the necessary condition of invariance
(Theorem 15), we conclude that

𝑛

∑

𝑘=1

∫

𝑏

𝑎

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
))

𝜎

(𝑡)

+
𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
))

Δ

(𝑡))Δ𝑡 = 0.

(23)

Fix 𝑗 = 1, 2, . . . , 𝑟. By the arbitrariness of 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑟
, we

can suppose that 𝑝
ℎ
≡ 0 for ℎ ̸= 𝑗. Therefore,

𝑛

∑

𝑘=1

∫

𝑏

𝑎

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (𝑇
𝑘𝑗

(𝑝
𝑗
))
𝜎

(𝑡)

+
𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (𝑇
𝑘𝑗

(𝑝
𝑗
))
Δ

(𝑡))Δ𝑡 = 0.

(24)

Integrating by parts, we obtain
𝑛

∑

𝑘=1

(∫

𝑏

𝑎

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) −
Δ

Δ𝑡

𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)))

⋅ (𝑇
𝑘𝑗

(𝑝
𝑗
))
𝜎

(𝑡) Δ𝑡

+[
𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ 𝑇
𝑘𝑗

(𝑝
𝑗
) (𝑡)]

𝑏

𝑎

) = 0.

(25)

By the arbitrariness of 𝑝
𝑗
, we can restrict to those functions

such that
𝑝
𝑗
(𝑎) = 0, 𝑝

𝑗
(𝑏) = 0,

...

𝑝
Δ
𝑚−1

𝑗
(𝑎) = 0, 𝑝

Δ
𝑚−1

𝑗
(𝑏) = 0,

𝑝
𝜎
−1
Δ
𝑚

𝑗
(𝑎) = 0, 𝑝

𝜎
−1
Δ
𝑚

𝑗
(𝑏) = 0.

(26)

Using Lemmas 8, 11, and 12, we conclude that 𝑇𝑘𝑗(𝑝
𝑗
)(𝑎) = 0

and 𝑇
𝑘𝑗

(𝑝
𝑗
)(𝑏) = 0, 𝑘 = 1, 2, . . . , 𝑛. Then,

𝑛

∑

𝑘=1

∫

𝑏

𝑎

(
𝜕𝐿

𝜕𝑦𝜎
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) −
Δ

Δ𝑡

𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)))

⋅ (𝑇
𝑘𝑗

(𝑝
𝑗
))
𝜎

(𝑡) Δ𝑡 = 0;

(27)

that is,
𝑛

∑

𝑘=1

∫

𝑏

𝑎

𝐸
𝑘
(𝐿) (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (𝑇
𝑘𝑗

(𝑝
𝑗
))
𝜎

(𝑡) Δ𝑡 = 0.

(28)

Hence,

𝑛

∑

𝑘=1

∫

𝑏

𝑎

𝐸
𝑘
(𝐿) (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡)) ⋅ (

𝑚

∑

𝑖=0

𝑔
𝑘

𝑖𝑗
𝑝
𝜎
𝑚−(𝑖+1)
Δ
𝑖

𝑗
)

𝜎

(𝑡) Δ𝑡

= 0.

(29)

Therefore, by Lemma 7, we get

∫

𝑏

𝑎

𝑚

∑

𝑖=0

𝑛

∑

𝑘=1

𝐸
𝑘
(𝐿) (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡))

⋅ (𝑔
𝑘

𝑖𝑗
)
𝜎

(𝑡) (
1

𝑏
1

)

𝑖

𝑝
𝜎
𝑚−𝑖
Δ
𝑖

𝑗
(𝑡) Δ𝑡 = 0.

(30)

Applying the higher-order fundamental lemma of the calcu-
lus of variations (Lemma 9), we obtain

𝑚

∑

𝑖=0

𝑛

∑

𝑘=1

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖−1)/2

(𝐸
𝑘
(𝐿)(𝑔

𝑘

𝑖𝑗
)
𝜎

(
1

𝑏
1

)

𝑖

)

Δ
𝑖

≡ 0, (31)

which is equivalent to

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

((𝑔
𝑘

𝑖𝑗
)
𝜎

𝐸
𝑘
(𝐿))
Δ
𝑖

≡ 0 (32)

proving the desired result.

We present some particular results that follow from
Theorem 16 in the case where T = R, T = ℎZ (for some
ℎ > 0), and T = 𝑞

N0 (for some 𝑞 > 1). If T = R, then
𝜎(𝑡) = 𝑡, 𝑓Δ(𝑡) = ̇𝑓(𝑡), and we obtain the classical second
Noether theorem without transformation of time.

Corollary 17 (cf. [1]). Let 𝐿 : R × R𝑛 × R𝑛 → R be a 𝐶
2

function. If functionalL defined by

L [𝑦] = ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦 (𝑡) , ̇𝑦 (𝑡)) 𝑑𝑡 (33)

is invariant under transformations (16) (where 𝜎 denotes in
this context the identity function and Δ denotes the usual
derivative), then there exist the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

[𝑔
𝑘

𝑖𝑗
𝐸
𝑘
(𝐿)]
(𝑖)

≡ 0, 𝑗 = 1, 2, . . . , 𝑟. (34)

Choosing ℎZ, we obtain Noether’s second theorem with-
out transformation of time for the ℎ-calculus.

Corollary 18. Let ℎ > 0, 𝐿 : ℎZ × R𝑛 × R𝑛 → R and 𝑎, 𝑏 ∈

ℎZ, 𝑎 < 𝑏. If functionalL defined by

L [𝑦] =

𝑏−ℎ

∑

𝑡=𝑎

𝐿 (𝑡, 𝑦 (𝑡 + ℎ) , Δ
ℎ
[𝑦] (𝑡)) (35)

is invariant under transformations (16) (where𝜎 denotes in this
context the function 𝜎(𝑡) = 𝑡+ℎ andΔ denotes the ℎ-difference,
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that is, 𝑦Δ(𝑡) = Δ
ℎ
[𝑦](𝑡) = (𝑦(𝑡+ℎ)−𝑦(𝑡))/ℎ), then there exist

the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

[𝑔
𝑘

𝑖𝑗
(𝑡 + ℎ)

⋅𝐸
𝑘
(𝐿) (𝑡, 𝑦 (𝑡 + ℎ) , Δ

ℎ
[𝑦] (𝑡)) ]

Δ
𝑖

ℎ

= 0,

𝑡 ∈ [𝑎, 𝑏 − 𝑚ℎ] , 𝑗 = 1, 2, . . . , 𝑟.

(36)

For ℎ = 1, we obtain the analogue of Noether’s second
theorem for the difference calculus of variations recently
proved in [39]. In the case T = 𝑞

N0 , we obtain the new result.

Corollary 19. Let 𝑞 > 1, 𝐿 : 𝑞
N0 × R𝑛 × R𝑛 → R and 𝑎, 𝑏 ∈

𝑞
N0 , 𝑎 < 𝑏. If functionalL defined by

L [𝑦] =

𝑏/𝑞

∑

𝑡=𝑎

𝐿 (𝑡, 𝑦 (𝑞𝑡) , Δ
𝑞
[𝑦] (𝑡)) (37)

is invariant under transformations (16) (where𝜎 denotes in this
context the function 𝜎(𝑡) = 𝑞𝑡 and Δ denotes the 𝑞-derivative,
that is, 𝑦Δ(𝑡) = Δ

𝑞
[𝑦](𝑡) = (𝑦(𝑞𝑡) − 𝑦(𝑡))/(𝑞 − 1)𝑡), then there

exist the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑞
)

𝑖(𝑖+1)/2

[𝑔
𝑘

𝑖𝑗
(𝑞𝑡)

⋅𝐸
𝑘
(𝐿) (𝑡, 𝑦 (𝑞𝑡) , Δ

𝑞
[𝑦] (𝑡))]

Δ
𝑖

𝑞

= 0,

𝑡 ∈ [𝑎,
𝑏

𝑞𝑚
] , 𝑗 = 1, 2, . . . , 𝑟.

(38)

In order to prove the second Noether theorem with
transformation of time, we will consider that the Lagrangian
𝐿 is defined for all 𝑡 ∈ R (not only for 𝑡 from the initial
time scale T), 𝐿 : R × R𝑛 × R𝑛 → R. Consider the
following transformations that depend on arbitrary functions
𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑟
and their delta-derivatives up to order𝑚:

𝑡 = 𝑡 +

𝑟

∑

𝑗=1

𝐻
𝑗

(𝑝
𝑗
) (𝑡) ,

𝑦
𝑘
(𝑡) = 𝑦

𝑘
(𝑡) +

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
) (𝑡) , 𝑘 = 1, 2, . . . , 𝑛,

(39)

where, for each 𝑗 = 1, 2, . . . , 𝑟, 𝑝
𝑗
∈ 𝐶
2𝑚

rd ([𝑎, 𝜎
𝑚

(𝑏)],R),

𝐻
𝑗

(𝑝
𝑗
) :=

𝑚

∑

𝑖=0

𝑓
𝑖𝑗
𝑝
𝜎
𝑚−(𝑖+1)
Δ
𝑖

𝑗
,

𝑇
𝑘𝑗

(𝑝
𝑗
) :=

𝑚

∑

𝑖=0

𝑔
𝑘

𝑖𝑗
𝑝
𝜎
𝑚−(𝑖+1)
Δ
𝑖

𝑗
,

(40)

𝑓
𝑖𝑗
∈ 𝐶
1

rd([𝑎, 𝑏],R) and 𝑔
𝑘

𝑖𝑗
∈ 𝐶
1

rd([𝑎, 𝑏],R).

Moreover, we assume that the map

𝑡 󳨃󳨀→ 𝛼 (𝑡) := 𝑡 +

𝑟

∑

𝑗=1

𝐻
𝑗

(𝑝
𝑗
) (𝑡) (41)

is a strictly increasing 𝐶
1

rd function and its image is again a
time scale, T . We denote the forward shift operator relative
to T by 𝜎 and the delta derivative by Δ. We remark that the
following holds [40]:

𝜎 ∘ 𝛼 = 𝛼 ∘ 𝜎. (42)

Definition 20. Functional L is invariant under transforma-
tions (39) if, and only if, for all 𝑦 ∈ 𝐶

1

rd([𝑎, 𝑏],R), we have

∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡 = ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡.

(43)

We recall the following results that will be very useful in
the proof of Theorem 22.

Theorem 21 (see [37]). Assume that ] : T → R is strictly
increasing and T̃ := ](T) is a time scale.

(1) Chain rule: let 𝜔 : T̃ → R. If ]Δ(𝑡) and 𝜔
̃
Δ

(](𝑡)) exist
for all 𝑡 ∈ T𝜅, then

(𝜔 ∘ ])
Δ

= (𝜔
̃
Δ

∘ ]) ]
Δ

. (44)

(2) Substitution in the integral: if 𝑓 : T̃ → R is a 𝐶rd fun-
ction and ] is a 𝐶1rd function, then for 𝑎, 𝑏 ∈ T ,

∫

𝑏

𝑎

𝑓 (] (𝑡)) ]
Δ

(𝑡) Δ𝑡 = ∫

](𝑏)

](𝑎)

𝑓 (𝑠) Δ̃𝑠. (45)

Now, we are ready to state and prove Noether’s second
theorem with transformation of time.

Theorem 22 (Noether’s second theorem with transformation
of time). If functional L is invariant under transformations
(39), then there exist the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

[

[

((𝑔
𝑘

𝑖𝑗
)
𝜎

𝐸
𝑘
(𝐿))
Δ
𝑖

+((𝑓
𝑖𝑗
)
𝜎

(
𝜕𝐿

𝜕𝑡
−

Δ

Δ𝑡
(𝐿 − 𝑦

Δ

𝑘

𝜕𝐿

𝜕𝑦Δ
𝑘

− 𝜇
𝜕𝐿

𝜕𝑡
)))

Δ
𝑖

]

]

≡ 0

(46)

for 𝑗 = 1, 2, . . . , 𝑟.

Proof. The idea of the proof is to reduce the statement of
this result to the one of Theorem 16 using a technique of
reparametrization of time: artificially, we will consider 𝑡 as a
dependent variable of the same footing with 𝑦.
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Let 𝑟 ̸= 0 and define

𝐿̃ (𝑡, 𝑠, 𝑦, 𝑟, V) := 𝐿 (𝑠 − 𝜇 (𝑡) 𝑟, 𝑦,
V

𝑟
) 𝑟. (47)

Note that, for 𝑠(𝑡) = 𝑡 and any 𝑦 ∈ 𝐶
1

rd([𝑎, 𝑏],R
𝑛

), we have

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) = 𝐿̃ (𝑡, 𝑠
𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡)) .

(48)

Therefore, for 𝑠(𝑡) = 𝑡,

L [𝑦] := ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡

= ∫

𝑏

𝑎

𝐿̃ (𝑡, 𝑠
𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡 := L̃ [𝑠, 𝑦] .

(49)

Note that, for 𝑠(𝑡) = 𝑡,

L̃ [𝑠 (⋅) , 𝑦 (⋅)]

= L [𝑦 (⋅)]

= ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡

= ∫

𝛼(𝑏)

𝛼(𝑎)

𝐿 (𝑡, (𝑦 ∘ 𝜎) (𝑡) , 𝑦
Δ

(𝑡)) Δ𝑡

= ∫

𝑏

𝑎

𝐿 (𝛼 (𝑡) , (𝑦 ∘ 𝜎 ∘ 𝛼) (𝑡) , 𝑦
Δ

(𝛼 (𝑡))) 𝛼
Δ

(𝑡) Δ𝑡

= ∫

𝑏

𝑎

𝐿(𝛼 (𝑡) , (𝑦 ∘ 𝛼 ∘ 𝜎) (𝑡) ,
(𝑦 ∘ 𝛼)

Δ

(𝑡)

𝛼Δ (𝑡)
) 𝛼
Δ

(𝑡) Δ𝑡

=∫

𝑏

𝑎

𝐿(𝛼
𝜎

(𝑡)−𝜇 (𝑡) 𝛼
Δ

(𝑡) , (𝑦 ∘ 𝛼)
𝜎

(𝑡) ,
(𝑦 ∘ 𝛼)

Δ

(𝑡)

𝛼Δ (𝑡)
)

⋅ 𝛼
Δ

(𝑡) Δ𝑡

= ∫

𝑏

𝑎

𝐿̃ (𝑡, 𝛼
𝜎

(𝑡) , (𝑦 ∘ 𝛼)
𝜎

(𝑡) , 𝛼
Δ

(𝑡) , (𝑦 ∘ 𝛼)
Δ

(𝑡)) Δ𝑡

= L̃ [𝛼 (⋅) , (𝑦 ∘ 𝛼) (⋅)] .

(50)

Let𝐻(𝑡, 𝑦(𝑡)) := 𝛼(𝑡) and 𝑇 = (𝑇
1

, 𝑇
2

, . . . , 𝑇
𝑛

) where

𝑇
𝑘

(𝑡, 𝑦 (𝑡)) := 𝑦
𝑘
(𝑡) +

𝑟

∑

𝑗=1

𝑇
𝑘𝑗

(𝑝
𝑗
) (𝑡) , 𝑘 = 1, 2, . . . , 𝑛.

(51)

Then, for 𝑠(𝑡) = 𝑡,

(𝛼 (𝑡) , (𝑦 ∘ 𝛼) (𝑡)) = (𝑡, 𝑦 (𝑡))

= (𝐻 (𝑡, 𝑦 (𝑡)) , 𝑇 (𝑡, 𝑦 (𝑡)))

= (𝐻 (𝑠 (𝑡) , 𝑦 (𝑡)) , 𝑇 (𝑠 (𝑡) , 𝑦 (𝑡))) .

(52)

Hence, using (50) and (52), we get

L̃ [𝑠 (⋅) , 𝑦 (⋅)] = L̃ [𝐻 (𝑠 (⋅) , 𝑦 (⋅)) , 𝑇 (𝑠 (⋅) , 𝑦 (⋅))] . (53)

This means that L̃ is invariant on

𝑈̃ = {(𝑠, 𝑦) | 𝑠 (𝑡) = 𝑡 ∧ 𝑦 ∈ 𝐶
1

rd ([𝑎, 𝑏] ,R
𝑛

)} (54)

under the group of state transformations

(𝑠, 𝑦) = (𝐻 (𝑠, 𝑦) , 𝑇 (𝑠, 𝑦)) (55)

in the sense of Definition 13.
Using Theorem 16, we can conclude that there exist the

following 𝑟 identities (𝑗 = 1, 2, . . . , 𝑟)

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

((𝑔
𝑘

𝑖𝑗
)
𝜎

𝐸
𝑘
(𝐿̃))
Δ
𝑖

+

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

((𝑓
𝑖𝑗
)
𝜎

𝐸
𝑠
(𝐿̃))
Δ
𝑖

≡ 0,

(56)

where we denote 𝐸
𝑠
(𝐿̃) := (𝜕𝐿̃/𝜕𝑠

𝜎

) − (Δ/Δ𝑡)(𝜕𝐿̃/𝜕𝑠
Δ

).
Note that, for 𝑠(𝑡) = 𝑡,

𝜕𝐿̃

𝜕𝑠𝜎
(𝑡, 𝑠
𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡))

=
𝜕𝐿

𝜕𝑡
(𝑠
𝜎

(𝑡) − 𝜇 (𝑡) 𝑠
Δ

(𝑡) , 𝑦
𝜎

(𝑡) ,
𝑦
Δ

(𝑡)

𝑠Δ (𝑡)
) 𝑠
Δ

(𝑡) ,

𝜕𝐿̃

𝜕𝑠Δ
(𝑡, 𝑠
𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡))

= 𝐿(𝑠
𝜎

(𝑡) − 𝜇 (𝑡) 𝑠
Δ

(𝑡) , 𝑦
𝜎

(𝑡) ,
𝑦
Δ

(𝑡)

𝑠Δ (𝑡)
)

−

𝑛

∑

𝑘=1

𝑦
Δ

𝑘
(𝑡)

𝑠Δ (𝑡)

𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑠
𝜎

(𝑡) − 𝜇 (𝑡) 𝑠
Δ

(𝑡) , 𝑦
𝜎

(𝑡) ,
𝑦
Δ

(𝑡)

𝑠Δ (𝑡)
)

−
𝜕𝐿

𝜕𝑡
(𝑠
𝜎

(𝑡) − 𝜇 (𝑡) 𝑠
Δ

(𝑡) , 𝑦
𝜎

(𝑡) ,
𝑦
Δ

(𝑡)

𝑠Δ (𝑡)
)

⋅ 𝜇 (𝑡) 𝑠
Δ

(𝑡) .

(57)

Hence, for 𝑠(𝑡) = 𝑡,

𝐸
𝑠
(𝐿̃) (𝑡, 𝑠

𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡))

=
𝜕𝐿

𝜕𝑡
(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡))

−
Δ

Δ𝑡
(𝐿 (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡))

−

𝑛

∑

𝑘=1

𝑦
Δ

𝑘
(𝑡)

𝜕𝐿

𝜕𝑦Δ
𝑘

(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡))

−𝜇 (𝑡)
𝜕𝐿

𝜕𝑡
(𝑡, 𝑦
𝜎

(𝑡) , 𝑦
Δ

(𝑡))) .

(58)
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Also note that, for 𝑠(𝑡) = 𝑡 and 𝑘 = 1, 2, . . . , 𝑛,

𝐸
𝑘
(𝐿̃) (𝑡, 𝑠

𝜎

(𝑡) , 𝑦
𝜎

(𝑡) , 𝑠
Δ

(𝑡) , 𝑦
Δ

(𝑡))

= 𝐸
𝑘
(𝐿) (𝑡, 𝑦

𝜎

(𝑡) , 𝑦
Δ

(𝑡)) .

(59)

Substituting the above equalities into (56), we conclude the
desired result:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

(
1

𝑏
1

)

𝑖(𝑖+1)/2

[

[

((𝑔
𝑘

𝑖𝑗
)
𝜎

𝐸
𝑘
(𝐿))
Δ
𝑖

+((𝑓
𝑖𝑗
)
𝜎

(
𝜕𝐿

𝜕𝑡
−

Δ

Δ𝑡
(𝐿 − 𝑦

Δ

𝑘

𝜕𝐿

𝜕𝑦Δ
𝑘

− 𝜇
𝜕𝐿

𝜕𝑡
)))

Δ
𝑖

]

]

≡ 0

(60)

for 𝑗 = 1, 2, . . . , 𝑟.

Remark 23. Define

𝐸
𝑠

𝑘
(𝐿) :=

𝜕𝐿

𝜕𝑡
−

Δ

Δ𝑡
(𝐿 −

𝑛

∑

𝑘=1

𝑦
Δ

𝑘

𝜕𝐿

𝜕𝑦Δ
𝑘

− 𝜇
𝜕𝐿

𝜕𝑡
) , (61)

for 𝑘 = 1, 2, . . . , 𝑛. Then, 𝐸𝑠
𝑘
(𝐿) = 0 are the second Euler-

Lagrange equations for problem (1) [36]. Therefore, expres-
sion (46) provides “dependencies” between two types of the
Euler-Lagrange expressions.

Note that if T = R, Noether’s identity (46) simplifies
because

𝜕𝐿

𝜕𝑡
−

Δ

Δ𝑡
(𝐿 −

𝑛

∑

𝑘=1

𝑦
Δ

𝑘

𝜕𝐿

𝜕𝑦Δ
𝑘

− 𝜇
𝜕𝐿

𝜕𝑡
)

=
𝜕𝐿

𝜕𝑡
−

𝑑

𝑑𝑡
(𝐿 −

𝑛

∑

𝑘=1

̇𝑦
𝑘

𝜕𝐿

𝜕 ̇𝑦
𝑘

) = −

𝑛

∑

𝑘=1

̇𝑦
𝑘
𝐸
𝑘
(𝐿) ,

(62)

and we obtain the following corollary.

Corollary 24 (classical Noether’s second theorem, cf. [1]). If
functionalL defined by

L [𝑦] = ∫

𝑏

𝑎

𝐿 (𝑡, 𝑦 (𝑡) , ̇𝑦 (𝑡)) 𝑑𝑡 (63)

is invariant under transformations (39) (where 𝜎 denotes in
this context the identity function and Δ denotes the usual
derivative), then there exist the following identities:

𝑛

∑

𝑘=1

𝑚

∑

𝑖=0

(−1)
𝑖

[(𝑔
𝑘

𝑖𝑗
𝐸
𝑘
(𝐿))
(𝑖)

− (𝑓
𝑖𝑗
⋅ ̇𝑦
𝑘
𝐸
𝑘
(𝐿))
(𝑖)

] ≡ 0,

𝑗 = 1, 2, . . . , 𝑟.

(64)

In the case T = ℎZ (for some ℎ > 0), we obtain from
Theorem 22 the second Noether theorem for the ℎ-calculus;
whereas if T = 𝑞

N0 (for some 𝑞 > 1), we get the second
Noether theorem for the 𝑞-calculus.

3.2. Noether’s Second Theorem: Multiple Delta Integral Case.
In this subsection, we extend the second Noether theorem
(without transformation of time) to multiple integral vari-
ational problems in the time scale setting. For simplicity
of presentation, we prove the result for the case of two
independent variables and transformations that dependon an
arbitrary function and its first-order partial delta derivatives.
Clearly, our result can be generalized for 𝑛 independent
variables and 𝑟 arbitrary functions and their higher-order
partial delta derivatives.

For the convenience of the reader, we recall notions and
results that are needed in the sequel. A general introduction to
differential calculus and integration theory for multivariable
functions on time scales is presented, respectively, in [41]
(see also [42]) and [43]. For the double integral calculus of
variations on time scales, we refer the reader to [44].

Let T
1
and T

2
be two given time scales. For 𝑖 = 1, 2,

denote by 𝜎
𝑖
and Δ

𝑖
the forward jump operator and the delta

derivative on T
𝑖
, respectively. Let 𝐶(1)rd denote the set of all

continuous functions defined on T
1
× T
2
for which both the

Δ
1
-partial derivative and the Δ

2
-partial derivative exist and

are of class 𝐶rd (for a definition see [44]).
LetΩ ⊆ T

1
× T
2
be an 𝜔-type set and let Γ be its positively

fence (see [44]). Denote

Ω
∘

:= {(𝑥, 𝑦) ∈ Ω : (𝜎
1
(𝑥) , 𝜎

2
(𝑦)) ∈ Ω} . (65)

Let a function 𝐿(𝑥, 𝑦, 𝑢, 𝑝, 𝑞), where (𝑥, 𝑦) ∈ Ω ∪ Γ and
(𝑢, 𝑝, 𝑞) ∈ R3𝑛, be given.Wewill suppose that𝐿 is continuous,
together with its partial delta derivatives of first and second
order with respect to 𝑥, 𝑦 and partial usual derivatives of the
first and second order with respect to 𝑢, 𝑝, 𝑞. In what follows,
𝑢
Δ 1 and 𝑢

Δ 2 denote, respectively, 𝜕𝑢/Δ
1
𝑥 and 𝜕𝑢/Δ

2
𝑦.

Consider the following optimization problem:

L [𝑢] = ∫∫
Ω

𝐿 (𝑥, 𝑦, 𝑢 (𝜎
1
(𝑥) , 𝜎

2
(𝑦)) , 𝑢

Δ 1 (𝑥, 𝜎
2
(𝑦)) ,

𝑢
Δ 2 (𝜎
1
(𝑥) , 𝑦)) Δ

1

𝑥Δ
2
𝑦 󳨀→ extremize,

(66)

where the set of admissible functions are

D = {𝑢 | 𝑢 : Ω ∪ Γ 󳨀→ R
𝑛

, 𝑢 ∈ 𝐶
(1)

rd , 𝑢 = 𝑔 on Γ} , (67)

where 𝑔 is a fixed function defined and continuous on the
fence Γ ofΩ.

As noticed in [44], for the variational problem (66) being
well posed, we have to assume that there exists at least one
admissible function 𝑢

0
∈ D because it is possible to choose a

continuous function 𝑔 such that no function 𝑢 is admissible.
Note that if there exists an admissible function 𝑢

0
, then the set

D contains a set of functions of the form 𝑢 = 𝑢
0
+ 𝜂, where

𝜂 : Ω ∪ Γ → R𝑛 is 𝐶(1)rd and 𝜂 = 0 on Γ. Any such 𝜂 is called
an admissible variation for problem (66).

Definition 25. We say that 𝑢
∗
∈ D is a local minimizer (resp.,

local maximizer) for problem (66) if there exists 𝛿 > 0 such
that

L [𝑢
∗
] ≤ L [𝑢] (resp., L [𝑢

∗
] ≥ L [𝑢]) , (68)
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for all 𝑢 ∈ D with
󵄩󵄩󵄩󵄩𝑢 − 𝑢

∗

󵄩󵄩󵄩󵄩 := sup
(𝑥,𝑦)∈Ω∪Γ

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑦) − 𝑢
∗
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨

+ sup
(𝑥,𝑦)∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑢
Δ 1 (𝑥, 𝜎

2
(𝑦)) − 𝑢

Δ 1

∗
(𝑥, 𝜎
2
(𝑦))

󵄨󵄨󵄨󵄨󵄨

+ sup
(𝑥,𝑦)∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑢
Δ 2 (𝜎
1
(𝑥) , 𝑦) − 𝑢

Δ 2

∗
(𝜎
1
(𝑥) , 𝑦)

󵄨󵄨󵄨󵄨󵄨
< 𝛿,

(69)

where | ⋅ | denotes a norm in R𝑛.

We recall the following results which will play an impor-
tant role in the proofs of our results.

Theorem 26 (Green’s theorem [45]). If the functions 𝑀 and
𝑁 are continuous and have continuous partial delta derivatives
𝜕𝑀/Δ

2
𝑦 and 𝜕𝑁/Δ

1
𝑥 on Ω ∪ Γ, then

∫∫
Ω

(
𝜕𝑁

Δ
1
𝑥
−

𝜕𝑀

Δ
2
𝑦
)Δ
1
𝑥Δ
2
𝑦 = ∫
Γ

𝑀𝑑
∗

𝑥 + 𝑁𝑑
∗

𝑦,

(70)

where the “star line integrals” on the right side in (70) denote
the sum of line delta integrals taken over the line segment
constituents of Γ directed to the right or upwards and line nabla
integrals taken over the line segment constituents of Γ directed
to the left or downwards.

Lemma 27 (fundamental lemma of the double variational
calculus [44]). If𝑀 is continuous on Ω ∪ Γ with

∫∫
Ω

𝑀(𝑥, 𝑦) 𝜂 (𝜎
1
(𝑥) , 𝜎

2
(𝑦)) Δ

1
𝑥Δ
2
𝑦 = 0 (71)

for any admissible variation 𝜂, then

𝑀(𝑥, 𝑦) = 0 ∀ (𝑥, 𝑦) ∈ Ω
∘

. (72)

Theorem 28 (Euler-Lagrange equation of the double varia-
tional calculus [44]). Suppose that an admissible function 𝑢

∗

provides a local minimum for L and that 𝑢
∗
has continuous

partial delta derivatives of the second order. Then 𝑢
∗
satisfies

the Euler-Lagrange equation

𝜕𝐿

𝜕𝑢
(⋅) −

𝜕

Δ
1
𝑥

𝜕𝐿

𝜕𝑝
(⋅) −

𝜕

Δ
2
𝑦

𝜕𝐿

𝜕𝑞
(⋅) = 0, (73)

where (⋅) = (𝑥, 𝑦, 𝑢(𝜎
1
(𝑥), 𝜎
2
(𝑦)), 𝑢Δ 1(𝑥, 𝜎

2
(𝑦)), 𝑢Δ 2(𝜎

1
(𝑥),

𝑦)) for (𝑥, 𝑦) ∈ Ω
∘.

Let us denote by 𝜌
1
and 𝜌
2
the backward jump operator of

T
1
and T

2
, respectively. In what follows, we will suppose that

T
1
and T

2
are such that

𝜎
1
(𝜌
1
(𝑥)) = 𝑥, ∀𝑥 ∈ (T

1
)
𝜅
,

𝜎
2
(𝜌
2
(𝑦)) = 𝑦, ∀𝑦 ∈ (T

2
)
𝜅
,

(74)

where T
𝜅
:= T \ {𝑚} if T has a right-scattered minimum 𝑚;

otherwise, T
𝜅
= T . We recall the fact that R, ℎZ (for some

ℎ > 0), 𝑞N0 (for some 𝑞 > 1), and many other interesting time
scales satisfy property (74).

Let 𝑢(𝑥, 𝑦) = (𝑢
1
(𝑥, 𝑦), 𝑢

2
(𝑥, 𝑦), . . . , 𝑢

𝑛
(𝑥, 𝑦)) and con-

sider the following transformations that depend on an arbi-
trary continuous function 𝑝 and the partial delta derivatives
of 𝑝:

𝑥 = 𝑥

𝑦 = 𝑦

𝑢
𝑘
(𝑥, 𝑦) = 𝑢

𝑘
(𝑥, 𝑦) + 𝑇

𝑘

(𝑝) (𝑥, 𝑦) ,

(75)

where, for each 𝑘 = 1, 2, . . . , 𝑛,

𝑇
𝑘

(𝑝) (𝑥, 𝑦) := 𝑎
𝑘

0
(𝑥, 𝑦) 𝑝 (𝑥, 𝑦)

+ 𝑎
𝑘

1
(𝑥, 𝑦)

𝜕

Δ
1
𝑥
𝑝 (𝜌
1
(𝑥) , 𝑦)

+ 𝑎
𝑘

2
(𝑥, 𝑦)

𝜕

Δ
2
𝑦
𝑝 (𝑥, 𝜌

2
(𝑦)) ,

(76)

𝑎
0
, 𝑎
1
, and 𝑎

2
are 𝐶

1 functions and we assume that 𝑝 has
continuous partial delta derivatives of the first and second
order.

Definition 29. Functional L is invariant under transforma-
tions (75) if, and only if, for all 𝑢 ∈ D, we have

∫∫
Ω

𝐿 (𝑥, 𝑦, 𝑢 (𝜎
1
(𝑥) , 𝜎

2
(𝑦)) , 𝑢

Δ 1 (𝑥, 𝜎
2
(𝑦)) ,

𝑢
Δ 2 (𝜎
1
(𝑥) , 𝑦)) Δ

1
𝑥Δ
2
𝑦

= ∫∫
Ω

𝐿 (𝑥, 𝑦, 𝑢 (𝜎
1
(𝑥) , 𝜎

2
(𝑦)) , 𝑢

Δ 1 (𝑥, 𝜎
2
(𝑦)) ,

𝑢
Δ 2 (𝜎
1
(𝑥) , 𝑦)) Δ

1
𝑥Δ
2
𝑦.

(77)

In what follows, we use the notations

𝑇
𝑘

(𝑝
𝜎

) (𝑥, 𝑦) := 𝑇
𝑘

(𝜎
1
(𝑥) , 𝜎

2
(𝑦)) ,

𝑇
𝑘

(𝑝
𝜎1) (𝑥, 𝑦) := 𝑇

𝑘

(𝜎
1
(𝑥) , 𝑦) ,

𝑇
𝑘

(𝑝
𝜎2) (𝑥, 𝑦) := 𝑇

𝑘

(𝑥, 𝜎
2
(𝑦)) .

(78)

Using similar arguments as the ones used in the proof of
Theorem 15, we can prove the following result.

Theorem 30 (necessary condition of invariance). If func-
tionalL is invariant under transformations (75), then

𝑛

∑

𝑘=1

∫∫
Ω

(
𝜕𝐿

𝜕𝑢𝜎
𝑘

⋅ 𝑇
𝑘

(𝑝
𝜎

) +
𝜕𝐿

𝜕𝑢
Δ 1

𝑘

𝜕

Δ
1
𝑥
𝑇
𝑘

(𝑝
𝜎2)

+
𝜕𝐿

𝜕𝑢
Δ 2

𝑘

𝜕

Δ
2
𝑦
𝑇
𝑘

(𝑝
𝜎1))Δ

1
𝑥Δ
2
𝑦 = 0.

(79)
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Define

𝐸
𝑘
(𝐿) :=

𝜕𝐿

𝜕𝑢𝜎
𝑘

−
𝜕

Δ
1
𝑥

𝜕𝐿

𝜕𝑢
Δ 1

𝑘

−
𝜕

Δ
2
𝑦

𝜕𝐿

𝜕𝑢
Δ 2

𝑘

, 𝑘 = 1, 2, . . . , 𝑛.

(80)

We call 𝐸
𝑘
(𝐿), 𝑘 = 1, 2, . . . , 𝑛, the Euler-Lagrange expressions

associated to the Lagrangian 𝐿 relative to problem (66).
The following lemmas will be used in the proof of

Theorem 34.

Lemma 31. IfL is invariant under transformations (75), then
𝑛

∑

𝑘=1

∫∫
Ω

𝐸
𝑘
(𝐿) ⋅ 𝑇

𝑘

(𝑝
𝜎

) Δ
1
𝑥Δ
2
𝑦 = 0. (81)

Proof. Fix 𝑖 ∈ {1, 2, . . . , 𝑛}. Observe that

∫∫
Ω

(
𝜕𝐿

𝜕𝑢
Δ 1

𝑖

𝜕

Δ
1
𝑥
𝑇
𝑖

(𝑝
𝜎2) +

𝜕𝐿

𝜕𝑢
Δ 2

𝑖

𝜕

Δ
2
𝑦
𝑇
𝑖

(𝑝
𝜎1))Δ

1
𝑥Δ
2
𝑦

= ∫∫
Ω

[
𝜕

Δ
1
𝑥
(

𝜕𝐿

𝜕𝑢
Δ 1

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎2))

+
𝜕

Δ
2
𝑦
(

𝜕𝐿

𝜕𝑢
Δ 2

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎1))]Δ

1
𝑥Δ
2
𝑦

−∫∫
Ω

[
𝜕

Δ
1
𝑥

𝜕𝐿

𝜕𝑢
Δ 1

𝑖

⋅𝑇
𝑖

(𝑝
𝜎

)+
𝜕

Δ
2
𝑦

𝜕𝐿

𝜕𝑢
Δ 2

𝑖

⋅𝑇
𝑖

(𝑝
𝜎

)]Δ
1
𝑥Δ
2
𝑦.

(82)

Using Green’s theorem we get

∫∫
Ω

[
𝜕

Δ
1
𝑥
(

𝜕𝐿

𝜕𝑢
Δ 1

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎2))

+
𝜕

Δ
2
𝑦
(

𝜕𝐿

𝜕𝑢
Δ 2

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎1))]Δ

1
𝑥Δ
2
𝑦

= ∫
Γ

𝜕𝐿

𝜕𝑢
Δ 1

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎2) 𝑑
∗

𝑦 −
𝜕𝐿

𝜕𝑢
Δ 2

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎1) 𝑑
∗

𝑥.

(83)

Since 𝑝 is arbitrary, we can choose 𝑝 such that

𝑝 (𝑥, 𝜎
2
(𝑦))

󵄨󵄨󵄨󵄨Γ = 0,

𝑝 (𝜎
1
(𝑥) , 𝑦)

󵄨󵄨󵄨󵄨Γ = 0,

𝜕

Δ
1
𝑥
𝑝 (𝜌
1
(𝑥) , 𝜎

2
(𝑦))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ

= 0,

𝜕

Δ
1
𝑥
𝑝 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ

= 0,

𝜕

Δ
2
𝑦
𝑝 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ

= 0,

𝜕

Δ
2
𝑦
𝑝 (𝜎
1
(𝑥) , 𝜌

2
(𝑦))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ

= 0,

(84)

and therefore,

∫∫
Ω

[
𝜕

Δ
1
𝑥
(

𝜕𝐿

𝜕𝑢
Δ 1

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎2))

+
𝜕

Δ
2
𝑦
(

𝜕𝐿

𝜕𝑢
Δ 2

𝑖

⋅ 𝑇
𝑖

(𝑝
𝜎1))]Δ

1
𝑥Δ
2
𝑦 = 0.

(85)

ByTheorem 30, we obtain
𝑛

∑

𝑘=1

∫∫
Ω

(
𝜕𝐿

𝜕𝑢𝜎
𝑘

⋅ 𝑇
𝑘

(𝑝
𝜎

) −
𝜕

Δ
1
𝑥

𝜕𝐿

𝜕𝑢
Δ 1

𝑘

⋅ 𝑇
𝑘

(𝑝
𝜎

)

−
𝜕

Δ
2
𝑦

𝜕𝐿

𝜕𝑢
Δ 2

𝑘

⋅ 𝑇
𝑘

(𝑝
𝜎

))Δ
1
𝑥Δ
2
𝑦 = 0,

(86)

which proves that ∑𝑛
𝑘=1

∫∫
Ω

𝐸
𝑘
(𝐿) ⋅ 𝑇

𝑘

(𝑝
𝜎

)Δ
1
𝑥Δ
2
𝑦 = 0.

Lemma 32. For each 𝑘 = 1, 2, . . . , 𝑛,

∫∫
Ω

𝑞 ⋅ 𝑇
𝑘

(𝑝
𝜎

) Δ
1
𝑥Δ
2
𝑦

= ∫∫
Ω

(𝑞𝑎
𝑘

0
−

𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
) −

𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
)) ⋅ 𝑝

𝜎

Δ
1
𝑥Δ
2
𝑦

(87)

holds.

Proof. Note that

∫∫
Ω

𝑞 ⋅ 𝑇
𝑘

(𝑝
𝜎

) Δ
1
𝑥Δ
2
𝑦

= ∫∫
Ω

[𝑞𝑎
𝑘

0
(𝑥, 𝑦) 𝑝

𝜎

(𝑥, 𝑦)

+ 𝑞𝑎
𝑘

1
(𝑥, 𝑦)

𝜕

Δ
1
𝑥
𝑝 (𝑥, 𝜎

2
(𝑦))

+𝑞𝑎
𝑘

2
(𝑥, 𝑦)

𝜕

Δ
2
𝑦
𝑝 (𝜎
1
(𝑥) , 𝑦)] Δ

1
𝑥Δ
2
𝑦,

(88)

∫∫
Ω

[𝑞𝑎
𝑘

1
(𝑥, 𝑦)

𝜕

Δ
1
𝑥
𝑝 (𝑥, 𝜎

2
(𝑦))

+𝑞𝑎
𝑘

2
(𝑥, 𝑦)

𝜕

Δ
2
𝑦
𝑝 (𝜎
1
(𝑥) , 𝑦)]Δ

1
𝑥Δ
2
𝑦

= ∫∫
Ω

[
𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
(𝑥, 𝑦) 𝑝 (𝑥, 𝜎

2
(𝑦)))

+
𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
(𝑥, 𝑦) 𝑝 (𝜎

1
(𝑥) , 𝑦))]Δ

1
𝑥Δ
2
𝑦

− ∫∫
Ω

[
𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
(𝑥, 𝑦)) ⋅ 𝑝 (𝜎

1
(𝑥) , 𝜎

2
(𝑦))

+
𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
(𝑥, 𝑦)) ⋅ 𝑝 (𝜎

1
(𝑥) , 𝜎

2
(𝑦))] Δ

1
𝑥Δ
2
𝑦.

(89)
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Using Green’s theorem, we can conclude that

∫∫
Ω

[
𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
(𝑥, 𝑦) 𝑝 (𝑥, 𝜎

2
(𝑦)))

+
𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
(𝑥, 𝑦) 𝑝 (𝜎

1
(𝑥) , 𝑦))]Δ

1
𝑥Δ
2
𝑦 = 0.

(90)

Hence,

∫∫
Ω

𝑞 ⋅ 𝑇
𝑘

(𝑝
𝜎

) Δ
1
𝑥Δ
2
𝑦

= ∫∫
Ω

[𝑞𝑎
𝑘

0
⋅ 𝑝
𝜎

−
𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
) ⋅ 𝑝
𝜎

−
𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
) ⋅ 𝑝
𝜎

]Δ
1
𝑥Δ
2
𝑦

(91)

proving the desired result.

Remark 33. Lemma 32 shows that we can define an adjoint
operator of 𝑇𝑘, 𝑇̃𝑘, by

𝑇̃
𝑘

(𝑞) = 𝑞𝑎
𝑘

0
−

𝜕

Δ
1
𝑥
(𝑞𝑎
𝑘

1
) −

𝜕

Δ
2
𝑦
(𝑞𝑎
𝑘

2
) . (92)

We are now ready to state and prove the Noether second
theorem without transformation of time for multiple integral
problems on time scales.

Theorem 34 (Noether’s second theorem without transform-
ing time). If functionalL is invariant under transformations
(75), then

𝑛

∑

𝑘=1

𝑇̃
𝑘

(𝐸
𝑘
(𝐿)) ≡ 0 𝑜𝑛 Ω

∘

, (93)

where 𝐸
𝑘
(𝐿) are the 𝑛 Euler-Lagrange expressions and 𝑇̃𝑘 is the

adjoint operator of 𝑇𝑘.

Proof. Using Lemmas 31 and 32, we conclude that if L is
invariant under transformations (75), then

𝑛

∑

𝑘=1

∫∫
Ω

𝐸
𝑘
(𝐿) ⋅ 𝑇

𝑘

(𝑝
𝜎

) Δ
1
𝑥Δ
2
𝑦

=

𝑛

∑

𝑘=1

∫∫
Ω

𝑇̃
𝑘

(𝐸
𝑘
(𝐿)) ⋅ 𝑝

𝜎

Δ
1
𝑥Δ
2
𝑦 = 0,

(94)

where 𝑇̃𝑘 is the adjoint operator of 𝑇𝑘. Applying the funda-
mental lemma of the double variational calculus (Lemma 27),
we get

𝑛

∑

𝑘=1

𝑇̃
𝑘

(𝐸
𝑘
(𝐿)) ≡ 0 on Ω

∘

, (95)

proving the desired result.

Corollary 35 (classical Noether’s second theorem for double
integrals problems, cf. [1]). Let Ω ⊆ R2 be an 𝜔-type set and
let Γ be its positive fence. Let 𝐿(𝑥, 𝑦, 𝑢, 𝑝, 𝑞) be a function of
class 𝐶2, (𝑥, 𝑦) ∈ Ω ∪ Γ, 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
). If functional L

defined by

L [𝑦] = ∫∫
Ω

𝐿(𝑥, 𝑦, 𝑢 (𝑥, 𝑦) ,
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) ,

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

(96)

is invariant under transformations (75) (where 𝜌
1
and 𝜌

2

denote in this context the identity function, and Δ
1
and Δ

2

denote the usual derivative), then
𝑛

∑

𝑘=1

𝑇̃
𝑘

(𝐸
𝑘
(𝐿)) ≡ 0 𝑜𝑛 Ω, (97)

where

𝐸
𝑘
(𝐿) :=

𝜕𝐿

𝜕𝑢
𝑘

−
𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑝
𝑘

−
𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑞
𝑘

, 𝑘 = 1, 2, . . . , 𝑛 (98)

and 𝑇̃𝑘 is the adjoint operator of 𝑇𝑘.

Similarly to the single delta integral case choosing T =

ℎZ (for some ℎ > 0), we obtain from Theorem 34 the sec-
ond Noether theorem for the double variational ℎ-calculus;
whereas choosing T = 𝑞

N0 (for some 𝑞 > 1), we obtain
the second Noether theorem for the double variational 𝑞-
calculus.

4. Example

In order to illustrate the second Noether Theorem for the
multiple integral case, we will present the following example.
Let T
0
, T
1
, T
2
, and T

3
be time scales and letΩ ⊆ T

0
×T
1
×T
2
×T
3

be an 𝜔-type set. For 𝑖 = 0, 1, 2, 3, denote by 𝜎
𝑖
, 𝜌
𝑖
, and Δ

𝑖
the

forward jump operator, the backward jump operator, and the
delta derivative on T

𝑖
, respectively.

Let 𝑡 := (𝑡
0
, 𝑡
1
, 𝑡
2
, 𝑡
3
) ∈ Ω and consider the following

real functions defined on Ω: 𝐴
0
, 𝐴
1
, 𝐴
2
, 𝐴
3
. Let A :=

(𝐴
1
, 𝐴
2
, 𝐴
3
) and denote

∇𝐴
0
(𝑡) := (

𝜕𝐴
0

Δ
1
𝑡
1

(𝜎
0
(𝑡
0
) , 𝑡
1
, 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
)) ,

𝜕𝐴
0

Δ
2
𝑡
2

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝑡
2
, 𝜎
3
(𝑡
3
)) ,

𝜕𝐴
0

Δ
3
𝑡
3

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝑡
3
)) ,

𝜕A
Δ
0
𝑡
0

(𝑡) := (
𝜕𝐴
1

Δ
0
𝑡
0

(𝑡
0
, 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
)) ,

𝜕𝐴
2

Δ
0
𝑡
0

(𝑡
0
, 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
)) ,

𝜕𝐴
3

Δ
0
𝑡
0

(𝑡
0
, 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
))) ,
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curlA (𝑡) := (
𝜕𝐴
3

Δ
2
𝑡
2

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝑡
2
, 𝜎
3
(𝑡
3
))

−
𝜕𝐴
2

Δ
3
𝑡
3

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝑡
3
) ,

𝜕𝐴
1

Δ
3
𝑡
3

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
2
) , 𝑡
3
)

−
𝜕𝐴
3

Δ
1
𝑡
1

(𝜎
0
(𝑡
0
) , 𝑡
1
, 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
)) ,

𝜕𝐴
2

Δ
1
𝑡
1

(𝜎
0
(𝑡
0
) , 𝑡
1
, 𝜎
2
(𝑡
2
) , 𝜎
3
(𝑡
3
))

−
𝜕𝐴
1

Δ
2
𝑡
2

(𝜎
0
(𝑡
0
) , 𝜎
1
(𝑡
1
) , 𝑡
2
, 𝜎
3
(𝑡
3
))) .
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We will consider the following Lagrangian function:

𝐿 =
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐴
0
−

𝜕A
Δ
0
𝑡
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−
1

2
‖curlA‖2 (100)

that is the time scale version of the Lagrangian density for the
electromagnetic field (see, e.g., [46]).

It can be proved that the functional

L = ∫ ⋅ ⋅ ⋅ ∫
Ω

𝐿 Δ
0
Δ
1
Δ
2
Δ
3

(101)

is invariant under the gauge transformations:

𝐴
𝑘
= 𝐴
𝑘
+

𝜕

Δ
𝑘
𝑡
𝑘

𝑝
𝜌𝑘 , 𝑘 = 0, 1, 2, 3, (102)

where 𝑝 : Ω → 𝑅 is an arbitrary continuous function
that has continuous partial delta derivatives of the first and
second order (hence, we have equality of mixed partial delta
derivatives; see [41]).

Since, for each 𝑘 = 0, 1, 2, 3,

𝑇
𝑘

(𝑝) =
𝜕

Δ
𝑘
𝑡
𝑘

𝑝
𝜌𝑘 , (103)

then, by Lemma 32, we conclude that

𝑇̃
𝑘

(𝑞) = −
𝜕

Δ
𝑘
𝑡
𝑘

𝑞. (104)

Hence, from the second Noether theorem (Theorem 34), we
get

3

∑

𝑘=0

𝜕

Δ
𝑘
𝑡
𝑘

𝐸
𝑘
(𝐿) ≡ 0 on Ω

∘

, (105)

where 𝐸
𝑘
(𝐿), 𝑘 = 0, 1, 2, 3 are the Euler-Lagrange expressions

associated to functionalL.
If we suppose that, for each 𝑘 = 0, 1, 2, 3, 𝐴

𝑘
has

continuous partial delta derivatives of the first and second

order and that 𝐴
0
and the vector field A satisfy the so-called

Lorentz conditions on time scales:

divA|
(𝑡0,𝜎1(𝑡1),𝜎2(𝑡2),𝜎3(𝑡3))

=
𝜕𝐴
0

Δ
0
𝑡
0
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divA|
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=
𝜕𝐴
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Δ
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𝑡
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,

(106)

where divA denotes the divergence of a vector fieldA, that is,

divA :=
𝜕𝐴
1

Δ
1
𝑡
1

+
𝜕𝐴
2

Δ
2
𝑡
2

+
𝜕𝐴
3

Δ
3
𝑡
3

, (107)

then the Euler-Lagrange expressions can be written in the
following way:

𝐸
𝑘
(𝐿) =

𝜕
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𝑘
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𝑡2
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2
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3
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3
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0
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1
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2
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3
) , 𝑘 = 0, 1, 2, 3,

(108)

where

∇
2

𝐴
𝑘
(𝑡) :=

𝜕
2
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𝑘
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𝑡2
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(109)

Hence, under these assumptions, we can conclude that
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∑
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𝜕

Δ
𝑘
𝑡
𝑘

(
𝜕
2

𝐴
𝑘

Δ
0
𝑡2
0

(𝑡
0
, 𝜎
1
(𝑡
1
) , 𝜎
2
(𝑡
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3
(𝑡
3
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2

𝐴
𝑘
(𝑡
0
, 𝑡
1
, 𝑡
2
, 𝑡
3
) ) = 0 on Ω

∘

.

(110)

5. Concluding Remarks

We proved that the important Noether’s second theorem is
valid not only for the continuous and discrete calculus but
also for the quantum calculus. Moreover, in our opinion, the
proofs presented in this paper are elegant and clear to follow.

The question of obtaining Noether’s second theorem for
multiple integrals with transformation of time in the time
scale setting remains an interesting open question. To the
best of the authors’ knowledge, to extend the second Noether
theorem to multiple integrals with transformation of time,
substitution in themultiple integral is a fundamental tool and
this result is not yet available in the literature.
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For other generalizations of the secondNoether theorem,
we refer the reader to [47] (in the context of the fractional
calculus of variations) and [48] (in the context of the optimal
control).
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