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We investigate an H1-Galerkin expanded mixed finite element approximation of nonlinear second-order hyperbolic equations,
which model a wide variety of phenomena that involve wave motion or convective transport process. This method possesses some
features such as approximating the unknown scalar, its gradient, and the flux function simultaneously, the finite element space
being free of LBB condition, and avoiding the difficulties arising from calculating the inverse of coefficient tensor.The existence and
uniqueness of the numerical solution are discussed. Optimal-order error estimates for this method are proved without introducing
curl operator. A numerical example is also given to illustrate the theoretical findings.

1. Introduction

The objective of this paper is to present and analyze an 𝐻1-
Galerkin expanded mixed finite element method for the fol-
lowing second-order nonlinear hyperbolic equation:

𝑢
𝑡𝑡
− ∇ ⋅ (𝐴 (𝑢) ∇𝑢) = 𝑓, (x, 𝑡) ∈ Ω × 𝐽, (1a)

𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × 𝐽, (1b)

𝑢 (x, 0) = 𝑢
0
(x) , x ∈ Ω, (1c)

𝑢
𝑡
(x, 0) = 𝑢

1
(x) , x ∈ Ω, (1d)

where Ω is a bounded convex polygonal domain in 𝑅2 with
boundary 𝜕Ω and 𝐽 = [0, 𝑇] with 𝑇 < ∞. 𝑢(x, 𝑡) denotes the
sound pressure, 𝑓(x, 𝑡) is the external force, and 𝐴(𝑢) is
the coefficient, which is supposed to satisfy the following
conditions.

(A
1
) There exist positive constants 𝛼

𝑖
, 𝑖 = 0, 1, 2, such that

0 < 𝛼
0
≤ 𝐴 (𝑢) ≤ 𝛼

1
,

󵄨󵄨󵄨󵄨𝐴𝑢 (𝑢)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐴𝑢𝑢 (𝑢)

󵄨󵄨󵄨󵄨 ≤ 𝛼2.

(2)

(A
2
) 𝐴(𝑢), 𝐴

𝑢
(𝑢), and 𝐴

𝑢𝑢
(𝑢) are Lipschitz continuous

with respect to 𝑢.

The primary interests in engineering application for the
mathematical model (1a)–(1d) are the sound pressure 𝑢, the
gradient of sound pressure p, and the acceleration of sound
transmission 𝜎. Extensive research has been carried out on
the numerical methods and corresponding numerical analy-
sis for model (1a)–(1d), including finite difference methods,
finite element methods, and mixed finite element methods.
One can refer to [1–4] and the references cited herein.

The standard finite difference or finite element methods
solve the sound pressure 𝑢 directly, then differentiate it
to determine ∇𝑢, and multiply the gradient of 𝑢 by 𝐴(𝑢)
to determine the acceleration of sound transmission 𝜎.
Therefore, the resulting acceleration of sound transmission 𝜎
and the gradient of sound pressure ∇𝑢 are often inaccurate,
which then reduces the accuracy of the prediction, as well as
the accuracy of the adjoint vector 𝜎.Themixed finite element
method can approximate both 𝑢 and 𝜎 simultaneously and
yields an accurate 𝜎. However, the mixed formulation has to
face numerical difficulties arising in a low permeability zone
because the inversion and the finite element spaces need to
satisfy the LBB conditions.

In order to overcome the above problems, we propose
an 𝐻1-Galerkin expanded mixed finite element method for
model (1a)–(1d) which can solve the sound pressure 𝑢, the
gradient of sound pressure p, and the acceleration of sound
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transmission 𝜎 directly and avoid inverting 𝐴(𝑢) explicitly.
In this formulation the finite element spaces are free of LBB
conditions as required by the standard mixed finite element
methods. Another feature of the new procedure we have
found so far is that it avoids the trouble which resulted from
representation of the time derivatives for nonlinear problems
and leads to optimal error estimates without introducing curl
operator. We prove the equivalence of the problem (1a)–(1d),
the 𝐻1-Galerkin expanded mixed variational formulation
and the existence and uniqueness of the semidiscrete 𝐻1-
Galerkin expandedmixed finite element procedure. By intro-
ducing some projection and interpolation operators as well as
lemmas, optimal-order error estimates for this formulation
are deduced. The theoretical findings are verified by one
numerical example. In recent years, there exist lots of work
in the literature on the development and analysis of 𝐻1-
Galerkinmixed finite elementmethod. One can refer to [5–8]
for linear parabolic type equations, [9] for regularized long
wave equation, and [10] for linear second-order hyperbolic
equation.

The rest of the paper is organized as follows. In Section 2,
we describe the𝐻1-Galerkin expanded mixed finite element
variational form and prove the equivalence between primal
problem and the variational formulation. In Section 3, the
𝐻
1-Galerkin expanded mixed finite element procedure is

presented, and the existence and uniqueness of the solution
are proved. In Section 4, we prove the main error estimates.
A numerical example is given in Section 5 to illustrate the
theoretical findings.

Throughout this paper, 𝐶 denotes a generic constant
which does not depend onmesh parameter ℎ.We use (⋅, ⋅) and
‖ ⋅ ‖ to denote the inner product and the norm, respectively,
in 𝐿2(Ω) or (𝐿2(Ω))2. Also we will denote the norms in
usual Sobolev spaces 𝑊𝑘,𝑝(Ω) by ‖ ⋅ ‖

𝑘,𝑝
and the norms in

𝐿
𝑞
(0, 𝑡;𝑊

𝑘,𝑝
(Ω)) by ‖ ⋅ ‖

𝐿
𝑞
(0,𝑡;𝑊

𝑘,𝑝
(Ω))

with 𝑝 = 2 being
omitted.

2. An 𝐻1-Galerkin Expanded Mixed
Variational Formulation

In order to derive an 𝐻1-Galerkin expanded mixed varia-
tional formulation we split (1a)–(1d) into a first-order system
by introducing p = ∇𝑢 and 𝜎 = 𝐴(𝑢)p:

𝑢
𝑡𝑡
− ∇ ⋅ 𝜎 = 𝑓, (3a)

p = ∇𝑢, (3b)

𝜎 = 𝐴 (𝑢) p, (3c)

𝜎 (x, 0) = 𝐴 (𝑢
0
) ∇𝑢
0
(x) , (3d)

p (x, 0) = ∇𝑢
0
(x) , p

𝑡
(x, 0) = ∇𝑢

1
(x) . (3e)

Define the following spaces:

H = H (div, Ω) = {w ∈ (𝐿2 (Ω))
𝑑

; ∇ ⋅ w ∈ 𝐿2 (Ω)} ,

𝑉 = 𝐻
1

0
(Ω) = {V ∈ 𝐻1 (Ω) ; V = 0 on 𝜕Ω} .

(4)

Multiplying (3a) by∇⋅q for q ∈ H(div, Ω) and integrating
Ω lead to the weak form (5a). Multiplying (3b) by ∇V for V ∈
𝐻
1

0
(Ω) leads to the weak form (5b). Multiplying (3c) by w for

w ∈ H(div, Ω) and integrating on Ω result in the weak form
(5c). Then the𝐻1-Galerkin expanded variational problem is
to find (𝑢, p,𝜎) ∈ 𝐻1

0
(Ω) ×H(div, Ω) ×H(div, Ω) such that

(p
𝑡𝑡
, 𝑞) + (∇ ⋅ 𝜎, ∇ ⋅ q) = − (𝑓, ∇ ⋅ q) , ∀q ∈ H, (5a)

(p, ∇V) = (∇𝑢, ∇V) , ∀V ∈ 𝑉, (5b)

(𝜎,w) = (𝐴 (𝑢) p,w) , ∀w ∈ H, (5c)

𝜎 (x, 0) = 𝐴 (𝑢
0
) ∇𝑢
0
(x) , x ∈ Ω, (5d)

p (x, 0) = ∇𝑢
0
(x) , p

𝑡
(x, 0) = ∇𝑢

1
(x) , x ∈ Ω. (5e)

In order to prove the equivalence of problem (3a)–(3e)
and variational problem (5a)–(5e), we need the following
lemmas (see [11] or Theorem 3.5, Chapter 1 of [12]).

Lemma 1. For p ∈ H(div, Ω), there exist a 𝜙 ∈ 𝐻
2
(Ω)⋂

𝐻
1

0
(Ω) and a 𝜓 ∈ H(div, Ω) satisfying ∇ ⋅ 𝜓 = 0, such that

p = ∇𝜙 + 𝜓.

Lemma 2. For 𝑔 ∈ 𝐿
2
(Ω), there exists a p ∈ (𝐻

1
(Ω))
𝑑
⊂

H(div, Ω), such that ∇ ⋅ p = 𝑔.

With the help of these lemmas we can prove the following
theorem.

Theorem 3. (𝑢, p,𝜎) ∈ 𝐻1
0
(Ω) × H(div; Ω) × H(div; Ω) is a

solution to the system (3a)–(3e) if and only if it is a solution to
the variational formulation (5a)–(5e).

Proof. Theproof of the “only if ” part is pretty straightforward.
It remains to prove the “if ” part. We insert w = 𝜎 − 𝐴(𝑢)p
into (5c) to get (3c). By (3a)–(3e) and taking p = ∇𝜙 + 𝜓 in
(5b), we conclude

(∇𝜙, ∇V) = (∇𝑢, ∇V) , ∀V ∈ 𝑉. (6)

Then we have

p = ∇𝑢 + 𝜓, (7)

which, together with (5a) and (3c), yields the following
equation:

(𝑢
𝑡𝑡
, ∇ ⋅ 𝑞) − (∇ ⋅ (𝐴 (𝑢) ∇𝑢) , ∇ ⋅ q) − (𝜓

𝑡𝑡
, q)

− (∇ ⋅ (𝐴 (𝑢)𝜓) , ∇ ⋅ q) = (𝑓, ∇ ⋅ q) , ∀q ∈ H.
(8)

Note that ∇ ⋅ 𝜓 = 0. We obtain that ∇ ⋅ 𝜓
𝑡
= 0. Setting q = 𝜓

𝑡

in (8) we obtain (𝜓
𝑡𝑡
,𝜓
𝑡
) = 0, which implies

(𝜓
𝑡
(𝑡) ,𝜓

𝑡
(𝑡)) = (𝜓

𝑡
(0) ,𝜓

𝑡
(0)) . (9)

Then by

p
𝑡
(x, 0) = ∇𝑢

𝑡
(x, 0) = ∇𝑢

1
(x, 0) ,

= ∇𝑢
1
(x, 0) + 𝜓

𝑡
(x, 0)

(10)
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we can conclude that

𝜓
𝑡
(x, 𝑡) ≡ 0. (11)

By (5c) we obtain

𝜎 (x, 0) = 𝐴 (𝑢
0
) ∇𝑢 (x, 0) + 𝐴 (𝑢

0
)𝜓 (x, 0) . (12)

Here we select the initial value 𝜎(x, 0) as in (5d) to have
𝜓(x, 0) = 0. Then, we derive 𝜓(x, 𝑡) = 0 and (7) reduces to

p = ∇𝑢. (13)

Further we get

(𝑢
𝑡𝑡
, ∇ ⋅ q) − (∇ ⋅ (𝐴 (𝑢) ∇𝑢) , ∇ ⋅ q) = (𝑓, ∇ ⋅ q) , ∀q ∈ H.

(14)

By lemma 2, there exists a 𝐹 ∈ H(div, Ω) such that ∇ ⋅ 𝐹 =
𝑢
𝑡𝑡
− 𝑓. Therefore, we have

(∇ ⋅ 𝐹, ∇ ⋅ q) − (∇ ⋅ (𝐴 (𝑢) ∇𝑢) , ∇ ⋅ q) = 0, (15)

which implies

𝐹 = 𝐴 (𝑢) ∇𝑢 = 𝜎. (16)

That is,

𝑢
𝑡𝑡
− 𝑓 = ∇ ⋅ 𝜎. (17)

This completes the proof.

3. 𝐻1-Galerkin Expanded Mixed Finite
Element Procedure

In this section we will present the numerical scheme for (5a)–
(5e). Let T

ℎ
be a quasiuniform partition of domain Ω; that

is, Ω = ⋃
𝐾∈Tℎ

𝐾 with ℎ = max{diam(𝐾); 𝐾 ∈ T
ℎ
}. Let H

ℎ

and 𝑉
ℎ
be the finite dimensional subspaces of H(div; Ω) and

𝐻
1

0
(Ω) defined by

H
ℎ
= {q
ℎ
∈ H (div; Ω) ; q

ℎ
|
𝐾
∈ (P
𝑘
(𝐾))
𝑑

, ∀𝐾 ∈ T
ℎ
} ,

𝑉
ℎ
= {V
ℎ
∈ 𝐻
1

0
(Ω) ; V

ℎ
|
𝐾
∈ P
𝑚
(𝐾) , ∀𝐾 ∈ T

ℎ
} ,

(18)

where P
𝑗
(𝐾) denotes the set of polynomials of degree at most

𝑗. Assume thatH
ℎ
, and𝑉

ℎ
satisfy the following approximation

properties. For integers 𝑘 ≥ 0, 𝑚 ≥ 1,

inf
qℎ∈Hℎ

󵄩󵄩󵄩󵄩q − q
ℎ

󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ
𝑘+1
‖q‖
𝑘+1,Ω

,

q ∈ (𝐻𝑘+1 (Ω))
𝑑

∩H,

inf
qℎ∈Hℎ

󵄩󵄩󵄩󵄩∇ ⋅ (q − q
ℎ
)
󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ

𝑘1
‖q‖
𝑘1+1,Ω

,

q ∈ (𝐻𝑘+1 (Ω))
𝑑

∩H,

inf
Vℎ∈𝑉ℎ

{
󵄩󵄩󵄩󵄩V − V

ℎ

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩V − V

ℎ

󵄩󵄩󵄩󵄩1,Ω
} ≤ 𝐶ℎ

𝑚+1
‖V‖𝑚+1,Ω,

V ∈ 𝐻𝑚+1 (Ω) ∩ 𝑉.

(19)

Here 𝑘
1
= 𝑘 + 1 when 𝐻

ℎ
is one of the 𝑅𝑎V𝑖𝑎𝑟𝑡-𝑇ℎ𝑜𝑚𝑎𝑠

elements or the 𝑁𝑒𝑑𝑒𝑙𝑒𝑐 elements, and 𝑘
1
= 𝑘 ≥ 1, when

𝐻
ℎ
is one of the other classical mixed elements, such as

𝐵𝑟𝑒𝑒𝑧𝑖-𝐷𝑜𝑢𝑔𝑙𝑎𝑠-𝐹𝑜𝑟𝑡𝑖𝑛-𝑀𝑎𝑟𝑖𝑛𝑖 elements and 𝐵𝑟𝑒𝑒𝑧𝑖-𝐷𝑜𝑢𝑔-
𝑙𝑎𝑠-𝑀𝑎𝑟𝑖𝑛𝑖 elements.

Then the 𝐻1-Galerkin expanded mixed finite element
procedure for the system (3a)–(3e) is to find (𝑢

ℎ
, p
ℎ
,𝜎
ℎ
) ∈

𝑉
ℎ
×H
ℎ
×H
ℎ
such that

(p
ℎ𝑡𝑡
, q
ℎ
) + (∇ ⋅ 𝜎

ℎ
, ∇ ⋅ q

ℎ
) = − (𝑓, ∇ ⋅ q

ℎ
) ,

∀q
ℎ
∈ H
ℎ
,

(20a)

(p
ℎ
, ∇V
ℎ
) = (∇𝑢

ℎ
, ∇V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, (20b)

(𝜎
ℎ
,w
ℎ
) = (𝐴 (𝑢

ℎ
) p
ℎ
,w
ℎ
) , ∀w

ℎ
∈ H
ℎ
, (20c)

𝜎
ℎ
(x, 0) = Π

ℎ
𝜎 (x, 0) , ∀x ∈ Ω, (20d)

p
ℎ
(x, 0) = Π

ℎ
p (x, 0) , p

ℎ𝑡
(x, 0) = Π

ℎ
p
𝑡
(x, 0) ,

∀x ∈ Ω,
(20e)

where Π
ℎ
denotes the Raviart-Thomas projection. We next

prove the existence and uniqueness of solutions of the scheme
(20a)–(20e).

Theorem 4. There exists a unique solution (𝑢
ℎ
, p
ℎ
,𝜎
ℎ
) ∈ 𝑉
ℎ
×

H
ℎ
× H
ℎ
to the 𝐻1-Galerkin expanded mixed finite element

procedure (20a)–(20e).

Proof. Let H
ℎ
= span{𝜓

𝑖
}
𝑀

𝑖=1
and 𝑉

ℎ
= span{𝜙

𝑖
}
𝑁

𝑖=1
; then 𝜎

ℎ
∈

H
ℎ
, p
ℎ
∈ H
ℎ
, and 𝑢

ℎ
∈ 𝑉
ℎ
have the following expressions:

p
ℎ
=

𝑀

∑

𝑖=1

𝑝
𝑖
𝜓
𝑖
, 𝜎

ℎ
=

𝑀

∑

𝑖=1

𝜆
𝑖
𝜓
𝑖
, 𝑢

ℎ
=

𝑁

∑

𝑖=1

𝑢
𝑖
𝜙
𝑖
. (21)

Then the scheme (20a)–(20e) can be written in the following
matrix form:

𝐴P
𝑡𝑡
+ 𝐵Λ = F, (22a)

𝐷U = 𝐶P, (22b)

𝐴Λ = 𝐺 (U)P, (22c)

P (0) ,P
𝑡
(0) are given, (22d)
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where

𝐴 = ((𝜓
𝑖
,𝜓
𝑗
))
𝑀×𝑀

,

𝐵 = ((∇ ⋅ 𝜓
𝑖
, ∇ ⋅ 𝜓

𝑗
))
𝑀×𝑀

,

𝐶 = ((𝜓
𝑖
, ∇𝜙
𝑗
))
𝑁×𝑀

,

𝐷 = ((∇𝜙
𝑖
, ∇𝜙
𝑗
))
𝑁×𝑁

,

𝐺 (U) = ((𝐴 (U)𝜓
𝑖
,𝜓
𝑗
))
𝑀×𝑀

,

F = ((−𝑓,𝜓
𝑗
))
𝑀×1

,

P = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑀
)
𝑇

,

Λ = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑀
)
𝑇

,

U = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑁
)
𝑇

.

(23)

Noting that 𝐴 and 𝐷 are positive definite. We can rewrite
(22b) and (22c) as

U = 𝐷−1𝐶P,

Λ = 𝐴
−1
𝐺 (U)P.

(24)

Then the system (22a)–(22d) can be characterized as follows:

𝐴P
𝑡𝑡
+ 𝐵𝐴
−1
𝐺(𝐷
−1
𝐶P)P = F, (25a)

P (0) ,P
𝑡
(0) are given. (25b)

Recalling the assumptions on 𝐴(𝑢), we can deduce that the
coefficients of P

𝑡𝑡
and P are all Lipschitz continuous with

respect to P(𝑡). By the standard theory for the initial-value
problems of nonlinear ordinary differential equations, we can
deduce that there exists a unique solution (𝑢

ℎ
, p
ℎ
,𝜎
ℎ
) ∈ 𝑉
ℎ
×

H
ℎ
× H
ℎ
to the 𝐻1-Galerkin expanded mixed finite element

scheme (20a)–(20e).

4. Convergence Analysis

In this section we will prove the error estimates for the
𝐻
1-Galerkin expanded mixed finite element discretization

scheme.We begin by reviewing some preliminary knowledge
that will be used in the following theoretical analysis.

Let Π
ℎ
: H → H

ℎ
be the 𝑅𝑎V𝑖𝑎𝑟𝑡-𝑇ℎ𝑜𝑚𝑎𝑠 projection

defined by

(∇ ⋅ (q − Π
ℎ
q) , ∇ ⋅ q

ℎ
) = 0, ∀q

ℎ
∈ H
ℎ
. (26)

The following error estimates [13–15] hold forΠ
ℎ
and 2 ≤ 𝑝 ≤

∞:
󵄩󵄩󵄩󵄩q − Πℎq

󵄩󵄩󵄩󵄩𝑝,Ω
≤ 𝐶ℎ
𝑘+1
‖q‖
𝑘+1,𝑝,Ω

,

󵄩󵄩󵄩󵄩∇ ⋅ (q − Πℎq)
󵄩󵄩󵄩󵄩𝑝,Ω

≤ 𝐶ℎ
𝑘1
‖q‖
𝑘1+1,𝑝,Ω

.

(27)

Let 𝑅
ℎ
: 𝑉 → 𝑉

ℎ
denote the elliptic projection defined by

(∇ (𝑤 − 𝑅
ℎ
𝑤) , ∇V

ℎ
) = 0, ∀V

ℎ
∈ 𝑉
ℎ (28)

which satisfies the following error estimates (see Theorems
3.2.2 and 3.2.5, Chapter 3 of [16]):

󵄩󵄩󵄩󵄩𝑤 − 𝑅ℎ𝑤
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝑤 − 𝑅ℎ𝑤)𝑡

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝑤 − 𝑅ℎ𝑤)𝑡𝑡

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑤 − 𝑅ℎ𝑤)𝑡𝑡𝑡

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩∇ (𝑤 − 𝑅ℎ𝑤)

󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ
𝑚+1
,

(29)

max {󵄩󵄩󵄩󵄩𝑅ℎ𝑤
󵄩󵄩󵄩󵄩0,∞

,
󵄩󵄩󵄩󵄩(𝑅ℎ𝑤)𝑡

󵄩󵄩󵄩󵄩0,∞
,
󵄩󵄩󵄩󵄩(𝑅ℎ𝑤)𝑡𝑡

󵄩󵄩󵄩󵄩0,∞
} ≤ 𝐶. (30)

To derive the main error estimates we also need the fol-
lowing lemma.

Lemma 5. Suppose that 𝜉, 𝜁 ∈ H
ℎ
, 𝜃 ∈ H, and 𝛽

𝑡𝑡
∈ 𝑉
ℎ
satisfy

(𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, q
ℎ
) + (∇ ⋅ 𝜁, ∇ ⋅ q

ℎ
) = 0, ∀q

ℎ
∈ H
ℎ
, (31)

(𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇V
ℎ
) = (∇𝛽

𝑡𝑡
, ∇V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
. (32)

Then there exists a constant 𝐶 such that
󵄩󵄩󵄩󵄩
𝛽
𝑡𝑡

󵄩󵄩󵄩󵄩
≤ 𝐶 (‖∇ ⋅ 𝜁‖ + ℎ

󵄩󵄩󵄩󵄩
𝜃
𝑡𝑡

󵄩󵄩󵄩󵄩)
. (33)

Proof. Assume that𝜙 ∈ 𝐻2(Ω) is the solution of the following
equation with 𝜓 ∈ 𝐿2(Ω):

−Δ𝜙 = 𝜓, 𝑥 ∈ Ω,

𝜙 = 0, 𝑥 ∈ 𝜕Ω.

(34)

Recalling that Ω is convex, we have
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩2,Ω

≤ 𝐶
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 . (35)

Then by (31) and (32) we deduce

(𝛽
𝑡𝑡
, 𝜓) = − (𝛽

𝑡𝑡
, Δ𝜙)

= (∇𝛽
𝑡𝑡
, ∇𝜙)

= (∇𝛽
𝑡𝑡
, ∇𝜙 − ∇𝑅

ℎ
𝜙) + (∇𝛽

𝑡𝑡
, ∇𝑅
ℎ
𝜙)

= (∇𝛽
𝑡𝑡
, ∇𝜙 − ∇𝑅

ℎ
𝜙) − (𝜉

𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙 − ∇𝑅

ℎ
𝜙)

+ (𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙)

= 𝑇
1
+ 𝑇
2
+ 𝑇
3
.

(36)

Using the estimate of 𝑅
ℎ
we have

𝑇
1
≤ 𝐶ℎ

󵄩󵄩󵄩󵄩∇𝛽𝑡𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩2,Ω

≤ 𝐶ℎ
󵄩󵄩󵄩󵄩∇𝛽𝑡𝑡

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 ,

𝑇
2
≤ 𝐶ℎ

󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩2,Ω

≤ 𝐶ℎ
󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 .

(37)

By (31), we obtain

𝑇
3
= (𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙)

= (𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙 −Π

ℎ
(∇𝜙)) + (𝜉

𝑡𝑡
+ 𝜃
𝑡𝑡
,Π
ℎ
(∇𝜙))

= (𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙 −Π

ℎ
(∇𝜙)) − (∇ ⋅ 𝜁, ∇ ⋅Π

ℎ
(∇𝜙))

= (𝜉
𝑡𝑡
+ 𝜃
𝑡𝑡
, ∇𝜙 −Π

ℎ
(∇𝜙)) − (∇ ⋅ 𝜁, ∇ ⋅ (∇𝜙))

≤ 𝐶 (ℎ
󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡

󵄩󵄩󵄩󵄩 + ‖∇ ⋅ 𝜁‖)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 .

(38)
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Inserting the estimates of 𝑇
1
, 𝑇
2
, and 𝑇

3
into (36) leads to

󵄨󵄨󵄨󵄨(𝛽𝑡𝑡, 𝜓)
󵄨󵄨󵄨󵄨 ≤ 𝐶 {ℎ (

󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩∇𝛽𝑡𝑡
󵄩󵄩󵄩󵄩) + ‖∇ ⋅ 𝜁‖}

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 . (39)

By (32) we derive
󵄩󵄩󵄩󵄩∇𝛽𝑡𝑡

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡

󵄩󵄩󵄩󵄩 . (40)

Further we have
󵄨󵄨󵄨󵄨(𝛽𝑡𝑡, 𝜓)

󵄨󵄨󵄨󵄨 ≤ 𝐶 {ℎ
󵄩󵄩󵄩󵄩𝜉𝑡𝑡 + 𝜃𝑡𝑡

󵄩󵄩󵄩󵄩 + ‖∇ ⋅ 𝜁‖}
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 , (41)

which implies
󵄩󵄩󵄩󵄩𝛽𝑡𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶 (ℎ
󵄩󵄩󵄩󵄩𝜉𝑡𝑡

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩 + ‖∇ ⋅ 𝜁‖) . (42)

Further, taking 𝑞
ℎ
= 𝜉
𝑡𝑡
in (31) and by𝐻 ̈𝑜𝑙𝑑𝑒𝑟 inequalities as

well as inverse property of the finite element spaces 𝑉
ℎ
and

H
ℎ
yield

󵄩󵄩󵄩󵄩𝜉𝑡𝑡
󵄩󵄩󵄩󵄩

2

≤ ‖∇ ⋅ 𝜁‖
󵄩󵄩󵄩󵄩∇ ⋅ 𝜉𝑡𝑡

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡𝑡
󵄩󵄩󵄩󵄩

≤ 𝐶 {ℎ
−1
‖∇ ⋅ 𝜁‖

󵄩󵄩󵄩󵄩𝜉𝑡𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜃𝑡𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡𝑡
󵄩󵄩󵄩󵄩} .

(43)

Therefore we obtain
󵄩󵄩󵄩󵄩𝜉𝑡𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶 {ℎ
−1
‖∇ ⋅ 𝜁‖ +

󵄩󵄩󵄩󵄩𝜃𝑡𝑡
󵄩󵄩󵄩󵄩} , (44)

which, together with (42), yields the desired result.

Theorem 6. Let (𝑢, p,𝜎) and (𝑢
ℎ
, p
ℎ
,𝜎
ℎ
) be the solutions of

(5a)–(5e) and (20a)–(20e), respectively. Assume that (𝑢, p,𝜎)
satisfies the following regularities:

𝑢 ∈ 𝐻
2
(𝐽;𝐻
𝑚+1

(Ω)) ∩ 𝐿
∞
(𝐽;𝐻
𝑚+1

(Ω)) ,

p ∈ 𝐻3 (𝐽;𝐻𝑘+1 (Ω)) ∩ 𝐿∞ (𝐽;𝐻𝑘+1 (Ω)) ,

𝜎 ∈ 𝐻
2
(𝐽;𝐻
𝑘+1
(Ω)) ∩ 𝐿

∞
(𝐽;𝐻
𝑘+1
(Ω))

(45)

and 𝑢
ℎ
(x, 0) = 𝑅

ℎ
𝑢
0
(x), 𝑢

ℎ𝑡
(x, 0) = 𝑅

ℎ
𝑢
1
(x), and p

ℎ
(x, 0) =

Π
ℎ
p(x, 0). Then there exists a positive constant 𝐶 independent

of ℎ such that

󵄩󵄩󵄩󵄩(𝑢 − 𝑢ℎ)(𝑡)
󵄩󵄩󵄩󵄩1
≤ 𝐶ℎ

min(𝑘+1,𝑚)
,

󵄩󵄩󵄩󵄩∇ ⋅ (𝜎 − 𝜎ℎ) (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ

min(𝑘1 ,𝑚+1)
,

󵄩󵄩󵄩󵄩(𝑢 − 𝑢ℎ) (𝑡)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(p − p
ℎ
) (𝑡)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝜎 − 𝜎ℎ) (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝐶ℎ
min(𝑘+1,𝑚+1)

(46)

with 𝑘 ≥ 0,𝑚 ≥ 1, for 𝑑 = 1, and 𝑘 ≥ 1,𝑚 ≥ 1, for 𝑑 = 2, 3.

Proof. In order to derive the error estimates, we decompose
the errors as follows:

Π
ℎ
p − p
ℎ
= 𝜉, p −Π

ℎ
p = 𝜃,

Π
ℎ
𝜎 − 𝜎
ℎ
= 𝜁, 𝜎 −Π

ℎ
𝜎 = 𝜂,

𝑅
ℎ
𝑢 − 𝑢
ℎ
= 𝛽, 𝑢 − 𝑅

ℎ
𝑢 = 𝛾.

(47)

Subtracting the numerical scheme (20a)–(20e) from theweak
formulation (5a)–(5e), we can derive the following error
equations:

(𝜉
𝑡𝑡
, q
ℎ
) + (∇ ⋅ 𝜁, ∇ ⋅ q

ℎ
) = − (𝜃

𝑡𝑡
, q
ℎ
) , ∀q

ℎ
∈ H
ℎ
,

(𝜉, ∇V
ℎ
) − (∇𝛽, ∇V

ℎ
) = − (𝜃, ∇V

ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
,

(𝜁,w
ℎ
) − (𝐴 (𝑢

ℎ
) 𝜉,w
ℎ
) = ((𝐴 (𝑢) − 𝐴 (𝑢

ℎ
)) p − 𝜂,w

ℎ
)

+ (𝐴 (𝑢
ℎ
) 𝜃,w
ℎ
) , ∀w

ℎ
∈ H
ℎ
.

(48)

Choosing V
ℎ
= 𝛽 in the second equation of (48) leads to

󵄩󵄩󵄩󵄩∇𝛽
󵄩󵄩󵄩󵄩 ≤ ‖𝜃‖ + ‖𝜉‖ . (49)

By setting 𝑤
ℎ
= 𝜁 in the third equation of (48) and using the

assumption on 𝐴(𝑢) we deduce

‖𝜁‖ ≤ 𝐶 (‖𝜃‖ + ‖𝜉‖ +
󵄩󵄩󵄩󵄩
𝜂
󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩
𝛾
󵄩󵄩󵄩󵄩)
. (50)

In the following we will estimate ‖𝜉
𝑡
‖. Differentiating the

third equation in (48) gives

(𝜁
𝑡
,w
ℎ
) − (𝐴 (𝑢

ℎ
) 𝜉
𝑡
,w
ℎ
)

= (𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉, 𝑤
ℎ
) − (𝜂

𝑡
,w
ℎ
) + (𝐴 (𝑢

ℎ
) 𝜃
𝑡
,w
ℎ
)

+ (𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜃,w
ℎ
) + ((𝐴 (𝑢) − 𝐴 (𝑢

ℎ
)) p
𝑡
,w
ℎ
)

− ((𝐴
𝑢
(𝑢) 𝑢
𝑡
− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
) p,w
ℎ
) .

(51)

Taking q
ℎ
= 𝜁
𝑡
in the first equation of (48) and w

ℎ
= 𝜉
𝑡𝑡
in

(51) and then subtracting the resulting equations lead to

(∇ ⋅ 𝜁, ∇ ⋅ 𝜁
𝑡
) + (𝐴 (𝑢

ℎ
) 𝜉
𝑡
, 𝜉
𝑡𝑡
)

= − (𝜃
𝑡𝑡
, 𝜁
𝑡
) + (𝜂

𝑡
, 𝜉
𝑡𝑡
) − (𝐴 (𝑢

ℎ
) 𝜃
𝑡
, 𝜉
𝑡𝑡
)

− (𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜃, 𝜉
𝑡𝑡
) − (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉, 𝜉
𝑡𝑡
)

− ((𝐴 (𝑢) − 𝐴 (𝑢
ℎ
)) p
𝑡
, 𝜉
𝑡𝑡
)

− ((𝐴
𝑢
(𝑢) 𝑢
𝑡
− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
) p, 𝜉
𝑡𝑡
)

=

7

∑

𝑖=1

𝐵
𝑖
.

(52)

The left terms can be dealt with as follows:

(∇ ⋅ 𝜁, ∇ ⋅ 𝜁
𝑡
) =

1

2

𝑑

𝑑𝑡
(∇ ⋅ 𝜁, ∇ ⋅ 𝜁) ,

(𝐴 (𝑢
ℎ
) 𝜉
𝑡
, 𝜉
𝑡𝑡
) =

1

2

𝑑

𝑑𝑡
(𝐴 (𝑢
ℎ
) 𝜉
𝑡
, 𝜉
𝑡
) −

1

2
(𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉
𝑡
, 𝜉
𝑡
) .

(53)
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The terms on the right side can be rewritten as follows by
integral formula by parts:

𝐵
1
= −

𝑑

𝑑𝑡
(𝜃
𝑡𝑡
, 𝜁) + (𝜃

𝑡𝑡𝑡
, 𝜁) ,

𝐵
2
=
𝑑

𝑑𝑡
(𝜂
𝑡
, 𝜉
𝑡
) − (𝜂

𝑡𝑡
, 𝜉
𝑡
) ,

𝐵
3
= −

𝑑

𝑑𝑡
(𝐴 (𝑢
ℎ
) 𝜃
𝑡
, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜃
𝑡
, 𝜉
𝑡
)

+ (𝐴 (𝑢
ℎ
) 𝜃
𝑡𝑡
, 𝜉
𝑡
) ,

𝐵
4
= −

𝑑

𝑑𝑡
(𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜃, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜃
𝑡
, 𝜉
𝑡
)

+ (𝐴
𝑢𝑢
(𝑢
ℎ
) 𝑢
2

ℎ𝑡
𝜃, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡𝑡
𝜃, 𝜉
𝑡
) ,

𝐵
5
= −

𝑑

𝑑𝑡
(𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡𝑡
𝜉, 𝜉
𝑡
)

+ (𝐴
𝑢𝑢
(𝑢
ℎ
) 𝑢
2

ℎ𝑡
𝜉, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉
𝑡
, 𝜉
𝑡
) ,

𝐵
6
= −

𝑑

𝑑𝑡
((𝐴 (𝑢) − 𝐴 (𝑢

ℎ
)) p
𝑡
, 𝜉
𝑡
)

+ ((𝐴
𝑢
(𝑢) 𝑢
𝑡
− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
) p
𝑡
, 𝜉
𝑡
)

+ ((𝐴 (𝑢) − 𝐴 (𝑢
ℎ
)) p
𝑡𝑡
, 𝜉
𝑡
) ,

𝐵
7
= −

𝑑

𝑑𝑡
((𝐴
𝑢
(𝑢) 𝑢
𝑡
− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
) p, 𝜉
𝑡
)

+ ((𝐴
𝑢
(𝑢) 𝑢
𝑡
− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
) p
𝑡
, 𝜉
𝑡
)

+ ((𝐴
𝑢𝑢
(𝑢) 𝑢
2

𝑡
+ 𝐴
𝑢
(𝑢) 𝑢
𝑡𝑡
− 𝐴
𝑢𝑢
(𝑢
ℎ
) 𝑢
2

ℎ𝑡

− 𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡𝑡
) p, 𝜉
𝑡
) .

(54)

Combining all the terms mentioned above we arrive at

1

2

𝑑

𝑑𝑡
(∇ ⋅ 𝜁, ∇ ⋅ 𝜁) +

1

2

𝑑

𝑑𝑡
(𝐴 (𝑢
ℎ
) 𝜉
𝑡
, 𝜉
𝑡
)

=
1

2
(𝐴
𝑢
(𝑢
ℎ
) 𝑢
ℎ𝑡
𝜉
𝑡
, 𝜉
𝑡
) +

7

∑

𝑖=1

𝐵
𝑖

= 𝐵
0
+

7

∑

𝑖=1

𝐵
𝑖
.

(55)

Now we are in the position to estimate the terms 𝐵
𝑖
, 𝑖 =

0, 1, 2, . . . , 7. By Lemma 5 we can deduce

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐶∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏,

(56)

where 𝛽
𝑡
(0) = 0 was used. Notice that

𝐵
0
=
1

2
(𝐴
𝑢
(𝑢
ℎ
) (𝑅
ℎ
𝑢)
𝑡
𝜉
𝑡
, 𝜉
𝑡
) −

1

2
(𝐴
𝑢
(𝑢
ℎ
) 𝛽
𝑡
𝜉
𝑡
, 𝜉
𝑡
) . (57)

Then using the assumption 𝐴
1
, (30), and Cauchy-Schwartz

inequality gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
0
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝐶
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

≤ 𝐶
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶 (1 +
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

)∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(58)

Integrating from 0 to 𝑡 and using (50) as well as Cauchy-
Schwartz inequality yield

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
1
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩 ‖𝜁‖ + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡
󵄩󵄩󵄩󵄩 ‖𝜁‖ 𝑑𝜏

≤
1

2
(
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+ ‖𝜁‖
2
) +

1

2
∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+
1

2
∫

𝑡

0

‖𝜁‖
2
𝑑𝜏

≤
1

2
(
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2
+ ‖𝜉‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

)

+
1

2
∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+
1

2
∫

𝑡

0

(‖𝜃‖
2
+ ‖𝜉‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏.

(59)

Note that

‖𝜉‖
2
≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩
𝜉
𝑡

󵄩󵄩󵄩󵄩

2

𝑑𝜏 (60)

for 𝜉(0) = 0. Then we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
1
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2
(
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) +
1

2
∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+
1

2
∫

𝑡

0

(‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(61)

Similarly, we can estimate the other terms. By 𝜖 inequality we
deduce

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
2
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜂𝑡𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩

2

+ 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+
1

2
∫

𝑡

0

󵄩󵄩󵄩󵄩𝜂𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+
1

2
∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(62)
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For 𝐵
3
we can rewrite it as

𝐵
3
= −

𝑑

𝑑𝑡
(𝐴 (𝑢
ℎ
) 𝜃
𝑡
, 𝜉
𝑡
) + (𝐴

𝑢
(𝑢
ℎ
) (𝑢
ℎ𝑡
− (𝑅
ℎ
𝑢)
𝑡
) 𝜃
𝑡
, 𝜉
𝑡
)

+ (𝐴
𝑢
(𝑢
ℎ
) (𝑅
ℎ
𝑢)
𝑡
𝜃
𝑡
, 𝜉
𝑡
) + (𝐴 (𝑢

ℎ
) 𝜃
𝑡𝑡
, 𝜉
𝑡
)

= −
𝑑

𝑑𝑡
(𝐴 (𝑢
ℎ
) 𝜃
𝑡
, 𝜉
𝑡
) − (𝐴

𝑢
(𝑢
ℎ
) 𝛽
𝑡
𝜃
𝑡
, 𝜉
𝑡
)

+ (𝐴
𝑢
(𝑢
ℎ
) (𝑅
ℎ
𝑢)
𝑡
𝜃
𝑡
, 𝜉
𝑡
) + (𝐴 (𝑢

ℎ
) 𝜃
𝑡𝑡
, 𝜉
𝑡
) .

(63)

Then by Cauchy-Schwartz inequality and 𝜖 inequality we
derive
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
3
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩0,∞

∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+ 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+ 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜃𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

+ 𝐶∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(64)

Here the boundedness of ‖𝜃
𝑡
‖
0,∞

and the Ritz projection
‖(𝑅
ℎ
𝑢)
𝑡
‖
0,∞

were used. For 𝐵
4
we have

𝐵
4
= −

𝑑

𝑑𝑡
(𝐴
𝑢
(𝑢
ℎ
) ((𝑅
ℎ
𝑢)
𝑡
− 𝛽
𝑡
) 𝜃, 𝜉
𝑡
)

+ (𝐴
𝑢
(𝑢
ℎ
) ((𝑅
ℎ
𝑢)
𝑡
− 𝛽
𝑡
) 𝜃
𝑡
, 𝜉
𝑡
)

+ (𝐴
𝑢𝑢
(𝑢
ℎ
) ((𝑅
ℎ
𝑢)
𝑡
− 𝛽
𝑡
)
2

𝜃, 𝜉
𝑡
)

+ (𝐴
𝑢
(𝑢
ℎ
) ((𝑅
ℎ
𝑢)
𝑡𝑡
− 𝛽
𝑡𝑡
) 𝜃, 𝜉
𝑡
) .

(65)

Therefore by Cauchy-Schwartz inequality and 𝜖 inequality we
obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
4
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 ‖𝜃‖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶‖𝜃‖0,∞

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩 + ‖𝜃‖)

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏 + 𝐶‖𝜃‖𝐿

∞
(0,𝑡;𝐿
∞
(Ω))

× ∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛽𝑡𝑡
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

+ 𝐶‖𝜃‖
𝐿
∞
(0,𝑡;𝐿
∞
(Ω))

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐶 (‖𝜃‖ +
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

+ 𝐶∫

𝑡

0

(‖𝜃‖ +
󵄩󵄩󵄩󵄩𝛽𝑡𝑡

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏+𝐶

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐶‖𝜃‖
2
+ 𝐶 (1 +

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

)

× ∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

(‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

.

(66)

Herewe used the boundedness of ‖𝜃‖
𝐿
∞
(0,𝑡;𝐿
∞
(Ω))

to obtain the
above estimate. Similarly, we can deduce

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
5
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 ‖𝜉‖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩0,∞

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩 ‖𝜉‖

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + ‖𝜉‖)

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏 + 𝐶‖𝜉‖𝐿

∞
(0,𝑡;𝐿
∞
(Ω))

× ∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛽𝑡𝑡
󵄩󵄩󵄩󵄩) ‖𝜉‖ 𝑑𝜏

+ 𝐶‖𝜉‖𝐿∞(0,𝑡;𝐿∞(Ω))
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

∫

𝑡

0

󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))‖

𝜉‖𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(67)

Further for 𝐵
6
and 𝐵

7
by Cauchy-Schwartz inequality and 𝜖

inequality we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
6
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩 𝑑𝜏
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≤ 𝐶 (
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) + 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐶 (‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) + 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

(‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝐵
7
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) + 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝛽𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + 𝜖
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝛾𝑡𝑡
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(68)

Combining the above estimates leads to

‖∇ ⋅ 𝜁‖
2
+ 𝛼
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

)

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶 (1 +
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

)

× ∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐶
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))‖

𝜉‖𝐿∞(0,𝑡;𝐿∞(Ω))

× ∫

𝑡

0

(‖∇ ⋅ 𝜁‖
2
+ ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

) 𝑑𝜏.

(69)

To prove the main result we need to make the following
induction hypothesis: there exists a constant 0 < ℎ

0
< 1 such

that the following estimate holds for 0 < ℎ ≤ ℎ
0
:

max {‖𝜉‖𝐿∞(0,𝑡;𝐿∞(Ω)),
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

} < 1, 0 ≤ 𝑡 ≤ 𝑇.

(70)

Then by setting 𝜖 small enough and using Gronwall’s inequal-
ity we obtain the following estimate which holds for constant
𝐾 > 0:

‖∇ ⋅ 𝜁‖
2
+ 𝛼
󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩

2

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

)

+ 𝐾∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜃𝑡𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡
󵄩󵄩󵄩󵄩

2

+ ‖𝜃‖
2
+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏

+ 𝐾∫

𝑡

0

(ℎ
2󵄩󵄩󵄩󵄩𝜃𝑡𝑡

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛾𝑡𝑡
󵄩󵄩󵄩󵄩

2

) 𝑑𝜏.

(71)

Further, using (27) and (29) gives

‖∇ ⋅ 𝜁‖
2
+
󵄩󵄩󵄩󵄩
𝜉
𝑡

󵄩󵄩󵄩󵄩

2

≤ 𝐾̃ℎ
2min{𝑘+1,𝑚+1}

, (72)

where constant 𝐾̃ > 0 is independent of ℎ. We are now in
position to prove the inductive hypothesis (70) which holds
on 𝑡 ∈ 𝐽. Suppose that there exists a constant 0 < ℎ

∗
≤ ℎ
0

such that

max {󵄩󵄩󵄩󵄩𝜉
∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

,
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))
} ≥ 1, 0 ≤ 𝑡 ≤ 𝑇.

(73)
Let

𝑡
∗
= inf {𝑡 ∈ 𝐽 | max {󵄩󵄩󵄩󵄩𝜉

∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))
,

󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))
} ≥ 1} .

(74)

Then we know that
max {󵄩󵄩󵄩󵄩𝜉

∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿
∞
(Ω))
,
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿
∞
(Ω))
} = 1, (75)

max {󵄩󵄩󵄩󵄩𝜉
∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))

,
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐿∞(Ω))
} ≤ 1, 0 < 𝑡 ≤ 𝑡

∗
.

(76)

By the same arguments for (72) we can prove
󵄩󵄩󵄩󵄩∇ ⋅ 𝜁
∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩

2

≤ 𝐾̃
1
ℎ
2min{𝑘+1,𝑚+1}

, 0 < 𝑡 ≤ 𝑡
∗
. (77)

Moreover, we can also deduce

󵄩󵄩󵄩󵄩𝜉
∗󵄩󵄩󵄩󵄩

2

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤ 𝐾̃
2
ℎ
2min{𝑘+1,𝑚+1}

, 0 < 𝑡 ≤ 𝑡
∗
.

(78)

By inverse inequality of finite element spaces we can conclude
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿
∞
(Ω))

≤ 𝐶ℎ
−𝑑/2 󵄩󵄩󵄩󵄩𝜉

∗

𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ
−𝑑/2

𝐾̃
1
ℎ
min{𝑘+1,𝑚+1}

≤ 𝐶𝐾̃
1
ℎ
min{𝑘+1,𝑚+1}−𝑑/2

,

󵄩󵄩󵄩󵄩𝜉
∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿

∞
(Ω))

≤ 𝐶ℎ
−𝑑/2 󵄩󵄩󵄩󵄩𝜉

∗󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ
−𝑑/2

𝐾̃
2
ℎ
min{𝑘+1,𝑚+1}

≤ 𝐶𝐾̃
2
ℎ
min{𝑘+1,𝑚+1}−𝑑/2

.

(79)
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Figure 1: The figures of exact solution 𝑢 and numerical solution 𝑢
ℎ
at 𝑡 = 0.5, 1.0 ((a), (b) for 𝑢 and 𝑢

ℎ
at 𝑡 = 1.0 and (c), (d) for 𝑢 and 𝑢

ℎ
at

𝑡 = 0.5).

Table 1: The errors of ‖𝑢 − 𝑢
ℎ
‖ at different times.

Time 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.8 𝑡 = 1.0

ℎ = Δ𝑡 Error Order Error Order Error Order Error Order
1/10 0.001 \ 0.0025 \ 0.0075 \ 0.0104 \

1/20 2.6553𝑒 − 4 1.9131 6.3152𝑒 − 4 1.9850 0.0019 1.9809 0.0026 2.0000
1/30 1.1843𝑒 − 4 1.9913 2.8183𝑒 − 4 1.9899 8.4165𝑒 − 4 2.0082 0.0012 1.9069
1/40 6.6744𝑒 − 5 1.9934 1.5903𝑒 − 4 1.9890 4.7373𝑒 − 4 1.9978 6.6038𝑒 − 4 2.0761
1/50 4.2788𝑒 − 5 1.9925 1.0212𝑒 − 4 1.9850 3.0325𝑒 − 4 1.9991 4.2104𝑒 − 4 2.0170

Choose ℎ
0
satisfying

max {𝐶𝐾̃
1
ℎ
min{𝑘+1,𝑚+1}−𝑑/2
0

, 𝐶𝐾̃
2
ℎ
min{𝑘+1,𝑚+1}−𝑑/2
0

} ≤
1

2
,

(80)

which implies

max {󵄩󵄩󵄩󵄩𝜉
∗󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿

∞
(Ω))
,
󵄩󵄩󵄩󵄩𝜉
∗

𝑡

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡∗ ;𝐿
∞
(Ω))
} ≤

1

2
. (81)

This contradicts with (75). Therefore the induction hypothe-
sis (70) holds.

By Poincaré’s inequality and (49) we have

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

2

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝛽

󵄩󵄩󵄩󵄩

2

≤ 𝐶 (‖𝜉‖
2
+ ‖𝜃‖
2
) . (82)

Combining (50), (60), (72), (82), the estimates of projections
(27), (29), and triangle inequality leads to the desired theorem
result.

5. Numerical Examples

The goal of this section is to carry out two numerical exper-
iments to illustrate our theoretical findings. We consider the
following second-order nonlinear hyperbolic problem:

𝑢
𝑡𝑡
− ∇ ⋅ (𝐴 (𝑢) ∇𝑢) = 𝑓, (x, 𝑡) ∈ Ω × [0, 1] ,

𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × [0, 1] ,

𝑢 (x, 0) = 0, 𝑢
𝑡
(x, 0) = 0, x ∈ Ω,

(83)

whereΩ = [0, 1] × [0, 1].
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Figure 2: The figures of exact solution p = (𝑃
1
, 𝑃
2
) and numerical solution p

ℎ
= (𝑃
ℎ1
, 𝑃
ℎ2
) at 𝑡 = 1.0 ((a), (b) for p and (c), (d) for p

ℎ
).

Table 2: The errors of ‖p − p
ℎ
‖ at different times.

Time 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.8 𝑡 = 1.0

ℎ = Δ𝑡 Error Order Error Order Error Order Error Order
1/10 0.0045 \ 0.0137 \ 0.0745 \ 0.1203 \

1/20 0.0013 1.7914 0.0062 1.1438 0.0372 1.0019 0.0601 1.0012
1/30 7.0149𝑒 − 4 1.5215 0.0040 1.0809 0.0248 1.0000 0.0400 1.0041
1/40 4.7332𝑒 − 4 1.3676 0.0030 1.0000 0.0186 1.0000 0.0300 1.0000
1/50 3.5745𝑒 − 4 1.2583 0.0024 1.0000 0.0149 0.9940 0.0240 1.0000

Table 3: The errors of ‖𝜎 − 𝜎
ℎ
‖ at different times.

Time 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.8 𝑡 = 1.0

ℎ = Δ𝑡 Error Order Error Order Error Order Error Order
1/10 0.0045 \ 0.0138 \ 0.0769 \ 0.1306 \

1/20 0.0013 1.7914 0.0062 1.1543 0.0383 1.0056 0.0653 1.0000
1/30 7.0242𝑒 − 4 1.5182 0.0040 1.0809 0.0255 1.0032 0.0435 1.0019
1/40 4.7410𝑒 − 4 1.3665 0.0030 1.0000 0.0191 1.0045 0.0326 1.0027
1/50 3.5811𝑒 − 4 1.2574 0.0024 1.0000 0.0153 0.9941 0.0261 0.9966
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Figure 3: The figures of 𝑢
ℎ
and p

ℎ
((a) for 𝑢

ℎ
, and (b), (c) for p

ℎ
).

Example 7. In this example the exact solution is chosen as

𝑢 (𝑥, 𝑡) = sin3 (𝑡) sin (𝜋𝑥) sin (𝜋𝑦) . (84)

We set 𝐴(𝑢) = 𝑢2 + 1. Inserting the above functions into
the governing equationwe can derive the corresponding right
term 𝑓.

In the first example, we investigate the order of conver-
gence for the 𝐻1-Galerkin expanded mixed finite element
method proposed in this paper. Piecewise linear polynomial
is used to approximate the unknown function 𝑢, while the
gradient function p and the flux function 𝜎 are approximated
by the vector function space of the lowest Raviart-Thomas
spaces, respectively. For time discretization we adopt back-
ward Euler method. Here we couple the time step with spatial
mesh as ℎ = Δ𝑡.

The errors of 𝑢 − 𝑢
ℎ
, p − p

ℎ
, and 𝜎 − 𝜎

ℎ
in 𝐿2 norm at

different times and the order of convergence for 𝑢, p, and
𝜎 are presented in Tables 1, 2, and 3, respectively. We can
observe that the order of convergence for 𝑢 approaches 2, and

those for p and𝜎 approach 1, which are in agreement with our
theoretical results proposed in the previous section.

The figures of the exact solutions 𝑢, p and the numerical
solutions 𝑢

ℎ
, p
ℎ
at 𝑡 = 1.0 are shown in Figures 1 and

2, respectively. We can see that the numerical solutions are
accurate and without oscillation compared with the exact
solutions.

Example 8. In this example we consider problem (83) with
prescribed data 𝑓 = 3 sin(2𝑥) sin(2𝜋𝑦)𝑒3𝑡 and 𝐴(𝑢) = 𝑢.

The profiles of the numerical solutions for 𝑢 and p are
shown in Figure 3, respectively. From these figures we can see
that our method works well for this kind of problems.
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