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The guaranteed cost control problem is investigated for a class of nonlinear discrete-time systems with Markovian jumping
parameters and mixed time delays. The mixed time delays involved consist of both the mode-dependent discrete delay and
the distributed delay with mode-dependent lower bound. The associated cost function is of a quadratic summation form over
the infinite horizon. The nonlinear functions are assumed to satisfy sector-bounded conditions. By introducing new Lyapunov-
Krasovskii functionals and developing some new analysis techniques, sufficient conditions for the existence of guaranteed cost
controllers are derived with respect to the given cost function. Moreover, a convex optimization approach is applied to search
for the optimal guaranteed cost controller by minimizing the guaranteed cost of the closed-loop system. Numerical simulation is
further carried out to demonstrate the effectiveness of the proposed methods.

1. Introduction

In the past decades, the control problems for the linear or
nonlinear systems have attracted considerable research inter-
est and significant advances on this topic have been made;
see, for example, [1-15] and the references therein. It is well
known that the time delay in feedback control can be caused
by physical properties of control equipments, measurements
of system responses, and data processing, calculating and
executing control forces, and so forth. The time delay in
feedback control may not only deteriorate the performance of
controlled systems but also destabilize the controlled systems.
There have been a lot of reports on the dynamics analysis
of time delay feedback controlled systems. Various sufficient
conditions, either delay dependent or delay independent,
have been proposed to guarantee the stability for the delayed
systems; see, for example, [2, 9, 12, 13] for some recent
publications.

On the other hand, a great deal of attention has recently
been devoted to the study of Markovian jump systems. This
class of systems can be modeled with variable structure
subject to random abrupt changes resulting from the occur-
rence of some inner discrete events in the system such as
failures and repairs of machine in manufacturing systems,
random failures and repairs of the components, changes
in the interconnections of subsystems, sudden environment
changes, and so on. Recently, stability and control prob-
lems for Markovian jump systems have been extensively
investigated; see, for example, [16, 17] and the references
therein.

It is also noted that in practical applications, the choice
of control policy depends upon the optimization of some
preassigned performance criterion. When designing a con-
troller for a real system, it is often desirable to make the
controlled system not only stable but also guarantee an
adequate level of performance. To deal with such control



problems, the so-called guaranteed cost control approach
was first introduced by Chang and Peng [2]. The objective
of this approach is to establish an upper bound on a
given performance index so that the system performance
degradation incurred by the uncertainties is guaranteed to
be less than this bound. For guaranteed cost control, a great
number of results on this topic have been reported in the
literature and various approaches have been proposed. For
example, in [18], notion of the quadratic guaranteed cost
control was introduced to allow for a quadratic performance
index and a Riccati equation approach was presented for
designing quadratic guaranteed cost controllers, where the
system was delay-free. The authors in [19] extended the
Riccati equation approach given in [18] to uncertain delayed
systems and proposed a guaranteed cost controller design
method by solving a certain parameter-dependent Riccati
equation. In [15], an LMI approach [20] was proposed
to deal with the guaranteed cost control problem for a
class of linear time delay systems with time-varying norm-
bounded parameter uncertainty, and a sufficient condition
for the existence of memoryless state-feedback guaranteed
cost controllers was derived. In [21], the solutions to the
guaranteed cost control problem via state-feedback are pre-
sented for a class of uncertain Markovian jump systems
with mode-dependent delays in LMI framework, and the
delay-dependent/independent sufficient conditions for the
existence of guaranteed cost state-feedback controllers have
been derived.

Based on LMI approach, [22] considered the robust guar-
anteed cost control problem for uncertain linear discrete-
time systems subject to actuator saturation, where the satu-
ration nonlinearity was transformed into a convex polytope
of linear systems, and then this problem was formulated into
a convex optimization problem with constraints given by a
set of LMIs. Very recently, the filtering problems have been
investigated for discrete-time nonlinear stochastic systems
with network-induced phenomena in [7, 8, 23, 24]. As
far as we know, however, little research has been focused
on the guaranteed cost control problem for discrete-time
systems with distributed time delay and Markovian jumping
parameters.

In this paper, we consider the guaranteed cost control
problem for a class of nonlinear discrete-time systems with
Markovian jumping parameters and mixed time delays. The
mixed time delays involved consist of both the mode-
dependent discrete delay and the infinite distributed delay
with mode-dependent lower bound. The relevant cost func-
tion is chosen as a quadratic summation form over the
infinite horizon. The nonlinear functions are assumed to
satisfy sector-bounded conditions. By constructing novel
Lyapunov-Krasovskii functionals and employing some new
analysis techniques, sufficient conditions for the existence
of guaranteed cost controllers are derived with respect to
the given cost function. In addition, a convex optimiza-
tion approach is applied to search for the optimal guar-
anteed cost controller by minimizing the guaranteed cost
of the closed-loop system. Finally, a numerical example is
presented to demonstrate the effectiveness of the proposed
methods.
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Notations. Throughout this paper, R" and R™ denote,
respectively, the n-dimensional Euclidean space and the set
of all n x m real matrices; N” stands for the set of all
the negative integers and zero. The superscript “T” denotes
matrix transposition. The notation X > Y (resp., X >
Y), where X and Y are symmetric matrices, means that
X - Y is positive semidefinite (resp., positive definite).
diagf{- - - } stands for a block-diagonal matrix, I is the identity
matrix with compatible dimension, and | - | denotes the
Euclidean norm in R”. If A is a square matrix, A, (A) (resp.,
Amin(A)) denotes the largest (resp., smallest) eigenvalue of
A, and Tr(A) denotes the trace of A. In symmetric block
matrices, an asterisk “*” is used to represent a term that
is induced by symmetry. E[x] and E[x | y] will, respec-
tively, mean the expectation of x and the expectation of
x conditional on y. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem Formulation
Let r(k) (k > 0) be a Markov chain taking values in a finite

state space = {1,2,...,n,} with probability transition
matrix IT = (77;),, ., given by

Prir(k+1)=jlr(k)=i}=m; Vi, jes, ()

where 7;; > 0 (i, j € /) is the transition probability from i to
jand 2711 m; =1, foralli € N.

Consider a discrete-time nonlinear system with 7, modes
described by the following dynamical equation:

x(k+1) = A(r (k) x (k) + B(r (k) f (x (k))

+C(r (k) g (x (k- 1,4)) + D (r (k)

(2a)
XY b (x (k= m) +E(r (k) u(k),
M=T (k)
x(m)=¢(@m) formeN", r(0)=r, (2b)

where x(k) € R" is the state vector; for r(k) = i € W,
A(r(k)) € R™", B(r(k)) € R™", C(r(k)) € R™", D(r(k)) €
R™" ¢ R™", and E(r(k)) € R™1 are known constant
matrices; f(-), g(-) and h(-) : R" — R" are nonlinear
vector functions; p,, im = 1,2,...) are scalar constants;
u(k) € R is the control input; 7, ¢, stands for the mode-
dependent discrete time-delay while 7,4, > 0 describes a
mode-dependent lower bound for the distributed time-delay;
¢ : N7 — R”is the initial value; and 7(0) = 7, is the initial
mode of the Markov chain.
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For nonlinear vector functions f, g, h, we assume that

(f (x) = Fyx)" (f (x) - Fyx) < Vx € R",
(9(x)-Gx) (g (x) -G,x) <0, VxeR",
(h(x) - Hyx)" (h(x) - Hyx) <0, VxeR",

(3)
e R™" are known

where F,, F,, G, G,, H;, and H,
constant matrices.

Remark 1. The conditions (2) are quite general, and such a
description, compared with the usual Lipschitz condition,
is very helpful for using LMI-based approach to reduce the
possible conservatism. The similar form of the conditions has
been used, for example, by the authors in [10].

Remark 2. 1t is not difficult to verify that the conditions (2)
imply that f(0) = g(0) = h(0) = 0, and x = 0 is therefore an
equilibrium point.

The cost function associated with system (2a) and (2b) is

o0

J=E|Y (x" (k)R (r (k) x (k)
k=0

(4)
+u’ (t) Ry (r (k) u (k) | ¢ (k)7 |,

where R, (i) > 0 and R,(i) > 0, for alli € /.

Now, consider the following state-feedback control law
u(k) = K(r(k))x(k), where K(i) € RT" (i € W) are
controller gains to be designed. Then, the closed-loop system
can be given as follows:

x(k+1) = Ag (r (k) x (k) + B (r (k) f (x (k))

+C(r (k) g (x(k-11,4))

(52)
+D(r(R) Y ol (x(k=m)),
x(m)=¢(m) formeN", r(0)=r, (5b)

where A g (r(k)) = A(r(t)) + E(r(k)) K(r(k)).
Definition 3. System (2a) and (2b) with u(k) = 0 is said to be

asymptotically stable in mean square if, for any solution x(k)
of system (2a) and (2b), the following holds:

Jim E[lx (R)*] = 0. 6)

Definition 4. Consider the system (2a) and (2b). If there exists
a state-feedback control law u(k) and a positive number y
such that the closed-loop system (5a) and (5b) is asymptot-
ically stable in mean square and the resulting cost function
satisfies

J<y, (7)

then y is said to be a guaranteed cost and u(k) is said
to be a guaranteed cost controller for the system (2a) and
(2b).

The objective of this paper is to develop a procedure
to design a memoryless state-feedback guaranteed cost con-
troller u(k) = K(r(k))x(k), which achieves as small value of
y as possible.

Assumption 5. Constant u,, >
convergent conditions:

0 satisfies the following

+00 +00
Zym < +00, Z My, < +00. (8)

m=1 m=1

Remark 6. Assumpt10n 5 makes sense as they guarantee that
the term D(r(k)) Zm o ymh(x(k—m)) in (2a) is convergent,
which is necessary for the subsequent analysis.

3. Main Results and Proofs

We first introduce some lemmas to be used in deriving our
results.

Lemma 7 (see [25]). Let M € R™" be a positive semi definite
matrix,x; € R"anda; > 0 (i = 1,2,...). If the series concerned
are convergent, the following inequality holds:

<§a,»xi>TM <:Zojaixi> (Za > Y ax; Mx;.

Lemma 8 (see [10]). Assume that nonlinear function h(-) :
R" — R” satisfies

(h(x)-Ux)" (h(x)-Upx) <0, VYxeR" (10)

with U, and U, being constant matrices. Then, the following
matrix inequality holds:

hiﬁli%_? baJSQ a




or
xTUIx - 2xTUZh (x) + n' (x)h(x) <0, (12)

where U, = (ULU, + ULU,)/2 and U, = (UT + UD)/2.
Proof. It can be verified by simple matrix operations. O

Lemma 9 (Schur complement [20]). Given constant matrices
Q,, Q,, Q; where Q, = QIT and Q, > 0, then

Q,+010)'0, <0 (13)
if and only if
-Q, Q
Q Of 205
[03 —Qz] <0 or Q;F 0, < 0. (14)

Hereafter, one denote 7, = max,., {r;} 7, =
max, e, {7, ;b 7, = minygq, {73} 7, = minygic, {75}
and 7z = min, g, {l7;}.

One also denotes

. (FR+FF) (Ff +F))
T 2T
. (Gl6,+G5G)) . (GT+a)
1= 2 > 2= T’
(15)
. (H{H,+HH,) . (H+H])
T 2Ty
+00
am:ZMi’ ﬁ:max{/f‘mﬁzﬁmﬁfz—l}-
=m

The following is a sufficient condition for the existence of
state-feedback guaranteed cost control laws for the system
(2a) and (2b).

Theorem 10. Given a state-feedback controller u(k) =
K(r(k))x(k). If there exist a set of positive definite matrices
P (i € W), and two positive definite matrices Q, and Q,
such that the LMIs (17) hold, then u(k) = K(r(k))x(k) is a
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guaranteed cost controller for the system (2a) and (2b), and the
cost function satisfies the following bound:

-1
J<x (P x(0)+ Y g (x()Qg(x®)

V="Tiro

7,-1 -1

+(1-1) Y Y g (x(1)Qg(x ()

I=T) v=—1

(i) =[Ag (i) B() 0 C(i) 0 D(@)],

E(xpi) = [ %7 () fT(x(®) g" (x(R) g" (x(k=71,49) B (x(R) )Y puh' (x(k=m))| .

(16)
+00 -1
+ 2w Y h () Qh(x (1)
T,—-1s-1 -1
+(1-maY Y Y (x () Qh(x ),
S=T; =1 v=-1
D (i)
-P-E2+R ()+K (())R,K(i) © AL®)P,
= or Y@ =T@)P,
P,Ag (i) Pr(i) -P
<0, ied,
17)
where
E=F+G +H, B=YmP,
=1
o=[f G 0 H, o,
(@)= [B@) 0 C@i) 0 D()], (18)
Y (i) = diag {—I, Q- 1,
I 1
_ QI’OCZQZ -4 _012‘Q2
with
a= (1-m) (7, -7,)+1,
1. B 3 (19)
&y = 0, + z["(l -m) (7 -1,) (T, +7,-3).
Proof. For convenience, we denote
T (20)

M=Ty;
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By Lemma 9, the inequality (17) is equivalent to

@ (i) + A (i) Py (i) <0, (21)

[P -E+R () +K (()R,()K (i) ©

o Y@) (22)

Define x; : N™ — R" by x,.(m) = x(k + m) for m e N".
To proceed the stability analysis, we construct the following
Lyapunov-Krasovskii functional for the system (5a) and (5b):

5
V (x. ko (k) = YV, (x4, k, 7 (K)) 5 (23)
i=1

where

Vi (X k.7 (k) = x7 (k) Pygox (k)

k-1
V,(xpkr(0)= > g (x())Qgx®¥),
v:kfrl,,(k)
T -1 k-1
Vi(xpkr(k)= (1-7) ) Y g" (x()Qg(x(¥),
=Ty y=k—i

Vi (xpkr ()= Y u Z h' (x (v)) Quh (x (v)),

Elrtky  v=k—t

T,-1s-1 k-1

Vi(xpkor (k)= (1-m)ay > > h' (x(1))Qh(x(v)).
S=T, =1 y=k—1

(24)

For i € J/, associated with the closed-loop system (5a)
and (5b) we can carry out the following computation:

E[V, (X k+ Lr(k+ 1)) | x4, 7 (k) =] =V} (%4, k. 7)

= Zon,.ij (k+1)Px(k+1) - x" (k) Px (k)
j=1
= & (xp,1) Ay (i) Poct g (1) & (xp07) — x" (k) Px ()5

E[V, (X k+ Lr(k+1))]| x,7(k) =i] =V, (%3, k. i)

My k
Y Y g x))Qgx()

j=1 v=k—1 ;+1

k-1
- ) g EQgExW)

v=k-1;

E[Vy (X k + L (k+1)) | X7 (k) = ]

E[Vy (X1 k + L (k+1) | X7 (k) = ]

= 2" (2 (k) Qg (x ()
=
-9 (x(k-m D) Qg (x(k-1))

+Zﬂu Z 9" (x(1)Qug (x(v)

= v=k-7y ;+1

k-1
- Y g ™) Qg(x()

v=k—1;;+1
=g  (x(K) Qg (x (k) - g" (x (k- 1,,))
x Qg (x (k - Tl,i))

: zn,,(

j#i

k-1
Y g xm)Qgxv)

v=k-1y ;+1

k-1

- ) gT(x(V))ng(x(V))>
v=k-1;+1

<g" (x(K)Qug(x (k) - g" (x(k-1,,)) Qg (x(k-T))

k-1,
tym Y g Q)
j#i v=k-T,+1
<9 (k) Qg (x (k) - g (x (k= 1,,)) Qug (x (K~ 7,,))

k-1,

+(1-1) Y g xM)Qgx™);

v=k-T,+1

- V3 (X, k. )

g (x (1) Qg (x (v))

=(1—£)<TIZ1 i

=Ty y=k—1+1

T—1 k-1
=Y Y d xMQgx (v)))

=T y=k—1

7,-1
=(1-7) ) (g" (x(k) Qg (x (k)

=T,

—g" (x(k=1) Qg (x (k1))
=(1-m) (7 -1) 9" (x (k) Qg (x (k)

k-1,

—(1-m) ) g xMQgx®m),
v=k-T+1
-V (Xk’k)i)

- ZT[IJ Z H, Z W' (x (1) Quh (x (v))

=Ty v=k—1+1



+00 k-1
SV Y AT ) Qb x ()
=T y=k—1

+00 k-1
< Zm,j< Yo Y R (x () Qh(x(¥)

j#i =T v=k—i+1

+00

k-1
=Dy hT(X(V))th(x(V))>

FEi y=k—1+1

+ azth (x (k) Quh (x (k)

= Y wh" (x (k= 1) Qh (x (k - 1))

=Ty

+00 k-1
SZﬂi,j<Zy, Z K" (x () Qh (x (v))

j#i =T, y=k—i+1

+00 k-1
-Yu ) hT(x(V))th(x(V))>

=T, v=k—1+1

+ 0, h' (x (k) Qh (x (k)

= Y wh" (x (k= 1) Qh (x (k- 1))

=T,

7,-1

k-1
<(1-m) Yy Y K (x@)Qh(xW)

=T, y=k—1+1

+ 0, h' (x (k) QP (x (k)

= Y wh' (x (k= 1) Qh (x (k- 1))

=T,

T,-1 k-1

<(-may Y K (xm)Qh(x()

=T v=k—1+1

+ 0, h' (x (k) Qh (x (k)

= > " (x (k= m)) Qb (x (k — m)) ;

E[Vs (X1, k+ Lr(k+ 1)) | x4, 7 (k) = i] = V5 (x4, k. 7)

?2_18—1 k

=1-mal Y Y Y K Exw)Qh(x)

=T, =1 y=k—1+1

?2_15—1 k—l

=YY Y R (x(v) Qh(x ()

S=T) =1 y=k—1
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T,—1s-1

=(1 —z)ﬁ[ Y (W (x (k) Qb (x (K))

S=T, =1

= h" (x (k= 1)) Qh (x (k - 1)) ]
(-5 1B - I ) O

T,-1 k-1
x(x(®)-Y Yy hT(x(v»th(x(v))].

=T v=k—1+1

(25)
Therefore, we have

E[V(Xpk+Lrk+1)) | x,r (k) =i] -V (x4, k, i)

=Y [E[V; (e k+ L7 (k+ 1)) | %7 (k) = i]

P
-V, (x4, k1)
< & (x0i) g () Pyl i (i) € (x400) = x" (k) Px (k)
+og" (x (k) Qg (x (k)
—g" (x(k-7,)) Qg (x (k-7,))
+ah” (x (k) Qo (x (k)
- mf " (x (k = m)) Qh (x (k = m))

wherea; = (1-m)(7, - 7))+ L, , = o+ (1/2)p(1 -m) (T, -
)T, + 1, - 3).
By Lemma 7, it is clear that

=Y k" (x (k= m)) Quh (x (k — m))

m=T,;

1 > b (x (k= m)) Q, >t (x (k= m)).

Tai M=Ta, M=1;

< -

(27)
Also, from the conditions (2) and Lemma 8, it follows that
x' (k) Fyx (k) - 2x7 (k) By f (x (k)
+ 1 (x (k) f (x (k) <0,
x" (k) Gyx (k) - 2x" (k) G, g (x (k)
(28)
+g (x(k) g(x(k) <0,
x" (k) Hyx (k) — 2x" (k) Hyh (x (k)

+hT (x (k) h (x (k) < 0.
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From (26)—(28), it follows readily that
E[V (X k+Lr(k+1)) | x,7 (k) =i] -V (x4, k, i)
< & (%o d) A (1) Pl i () & (x301) — x (k) Prx (k)
+ay9" (x (k) Qg (x (k)
- g" (x(k=1,)) Qug (x (k- 1y,))
+ah’ (x (k) Qo (x (k)

1

Y b’ (xe-m)Q, Y k" (x (k- m))

Ty M=Ta; M=T;

— (" (k) Fyx (k) — 2x" (k) Fy f (x (K))
+f7 (x (K) f (x (K)))
— (x" (k) Gyx (k) — 2x" (k) G, g (x (K))
+g" (x (k) g (x (K)))
— (" (k) Hyx (k) - 2x" (k) Hyh (x (k)
+h" (x (k) h (x (k)))
= & (%401) [ () + Ay () Pyl ()] € (%07

—x" (k) [R, () + K" () RK (i)] x (K),
(29)

which, together with (21), implies
E[V (X k+ 1L,r(k+1)] —E[V (%, k, 7 (k)]

< —E [x" (k) (R, (r (k) + K" (r (k) RyK (r (K))) x (k)] .
(30)

Therefore,

E[V (X k+ 1Lr(k+1)] —E[V (% k, 7 (k)]
(31)
< -AoElx (),

where A, = min;. ,{A,,;,(R; ())}.
Let s be an arbitrary positive integer; then it can be
inferred from (31) that

E[V (X4 s+ Lr(s+1))] —E[V(x,0,7(0))]

<A ) E[lx(0F],
k=0

7
or
E[V (x4 s+Lr(s+1))] =V (x,0,7(0))
s (33)
<-Ao) E[lx (I,
k=0
which results in
YE[lx®)?] < iv(xo,o,r(O)). (34)
k=0 )‘0

It can now be concluded that the series
convergent, and therefore

w20 Elx(R)IP] is

Jim E[lx (0] =0. (35)

Therefore, the closed-loop system (5a) and (5b) is asymp-
totically stable in mean square.

On the other hand, for any positive integer s, from (30)
we have

E [Z (x" (R) R, (r (k) x (k) + u” (k) R, (r (k) u (k))]

k=0

=E [ZxT (k) (R, (r (k) + K" (r (k)) R, (r (k) K (r (K)))

k=0

x x (k) +V (X k + Lr (k+ 1)) —V(xk,k,r(k))]

—E[V (%, + Lr(s+1)] +V(x,0,7(0))

<V (x0,0,7(0)).
(36)

Letting s — +00, we have
J <V (x4,0,79); (37)

namely, (16) holds. This completes the proof of the theorem.
O

Theorem 10 provides a sufficient condition to determine
if a given controller is a guaranteed cost controller. Next,
we turn to the design problem of guaranteed cost controller
for the system (2a) and (2b). For this, we have the following
results.

Theorem 11. Consider the system (2a) and (2b). If there exist
a set of positive definite matrices X; (i € /), a set of matrices
Y, i € W), and two positive definite matrices Q, and Q,
such that the LMIs (39) hold, then u(k) = K(r(k))x(k) with
K(i) = Y,X;" is a guaranteed cost controller for the system
(2a) and (2b), and the cost function satisfies the following
bound:
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-1 7-1 -1
J<y=x" X x©0)+ ) g x)Qgxm)+(1-m) ) Y g' (x)Qgx (™)
V=_Tig, I=T) y=—1
, “ls-1 -1 r (38)
+ Z M,zh (x (1) Quh (x (v) + (1 —ﬂ)#z Y Y I (x (1) QR (x (v);
ETyy  v==1 S=T) =1 v=—1
[ -X, X0 X, X, YT (AGOX,+EGY)'W,]
o’x, Y@ 0 0 0 sTHw,
— A X; o E' 0 0 0
O (1) = ! 0, 39
© X; 0 0 -R'(G) 0 0 - (39)
Y, 0 0 0 -R'() 0
(W (AG) X, +EG)Y;) WIZ@) 0 0 0 - ]
where W, = (Wl L.\ 1l = subject to LMI constraints
diag{X,, X,,..., X,, }, and ©, Y(i), E and %(i) are defined as
in Theorem 10. (iy LMI (39)
— ~B, x7(0)
Proof. Let P, = X; ', Y;=K(i)P ", and 9(i) = diag{P,, T, ..., I}. (if) [x((;’) X ] <0, (43)
Then, inequality (39) is equivalent to o
_ (iii) Q. <0, (k=1,2,3,4)
9@ D 3H)93) <0 (40)
namel has a set of solutions 3y, X; (i € W), Y; (i € N), Qp, Q,,
¥ M, (k = 1,2,3,4), then u(k) = K(r(k))x(k) with K(i) =
- . Y,X; ! is an optimal guaranteed cost controller for the system
T ,. T ,.
-5 ® I I K@) Ax@OW, (21a)lamd (2b), which minimizes the guaranteed cost (38).
o YG§ 0 0 o T@Hw,
a Here,
1 0 E 0 0 0
— Ls
I 0 0 -R'(i) 0 0 0 - [M NTQ, q | M NQ
K (l) 0 0 0 —R2 (l) 0 1 QlN _Ql 2 QINZ _Ql >
WA () WZ(@) 0 0 0 . . . (44)
-M; N;Q ] [ -M, N/Q ]
o) 2 O, = 4 4 X2 ,
<0, > [Q2N3 _Qz QN -Q,
(41)
here N, (k = 1,2, 3, 4) satisf
where & = diag{P,, P,, ...,PHO}. where Nj ( ) satisfy
From Lemma 9, it follows readily that (41) is equivalent to 0
(21) and is therefore equivalent to (17). N.NT = T
By Theorem 10, u(k) = K(r(k))x(k) with K(i) = Y,X; " is ‘1 __Z gEMg ),
a guaranteed cost controller for the system (2a) and (2b), and "
the cost function satisfies the bound as shown in (38). O . 7-1 -1 .
NNy = (1-7) Y Y gx () g" (x(v)),
Remark 12. In Theorem 11, the bound y of the cost function =Ty =
depends on the parameters X;, Q;, and Q, in addition to the v 1 (45)
initial value of the state and mode of the system. Next, we will T _ T
design an optimal state-feedback guaranteed cost controller N3Ny = z=§, ‘u‘g_:[h MR (x W),
u(k) = K(r(k))x(k), which minimizes the bound of the "
guaranteed cost function. . -1 -1 .
NN, = l—n)uz Z Y h(x W) A" (x(v).

Theorem 13. Consider the system (2a) and (2b) with cost

function (4). If the following optimal problem of a linear
objective
ﬁzrgny (Bo + Tr (M + M, + M; + M,)) 42)

S=T, =1 v=—1

Proof. According to Theorem 11, u(k) = K(r(k))x(k) with
K(i) = Y;X;" is a guaranteed cost controller for the system
(2a) and (2b) if LMI (39) has a set of solutions X, Y;, Q;, and
Q,.
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(a) The state evolution of the unforced system
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(b) The state evolution of the closed-loop system

FIGURE I: The comparison of state trajectories of the unforced and the controlled systems.

On the other hand, by Lemma 9, the inequality in (ii) is
equivalent to xT(O)X;le(O) < Py Notice that Q; < 0 is
equivalent to

N{Q,N, < M, (46)

-1
Y g (x () Qg (x(v)

-1
= Y Tr(g x)) Qg (x ()

-1
= Z Tr (g (x(v)) gT (x(v) Ql)

Y (47)
-1

= Tr( Y gx ) g"(x (V))Q1>
=Tr (N,NJ Q)
=Tr (NlTQ1N1) (Thanks to (46))
<Tr(M,).

Similarly, from Q) < 0 (k = 2,3, 4) it follows that

-1 -1

(1-m) ) Y gx®) g’ (x(v)) < Tr(M,),

I=T) v=—1

+00 -1
Y Y h(x@)h' (x () < Tr (M),

=Ty V=1

T,~1s-1 -1

(1-m)aYy Y Y hxm)h" (x(v) < Tr(M,).

S=T, =1 v=—1

(48)

Accordingly, it follows that y < Ay + Tr(M, + M, + M5 + M,),
where y is defined in (38). Since the optimal problem (42) has
a set of solutions, the minimization of the guaranteed cost for
the system (2a) and (2b) follows from the minimization of
Ay + Tr(M, + M, + M5 + M,). The proof of this theorem is
completed. O

4. A Numerical Example

In this section, an example is presented to demonstrate the
effectiveness of our main results.

Example 1. For simplicity, consider a two-dimensional sys-
tem (2a) and (2b) with probability transition matrix IT =

0.6 0.3 0.3 . X
0.10603 |, and the following matrix parameters:

=[5 8] sw-[33 53]
c= :_00.'22 8?] b= [8; _0(?.22],
sw- )]

s[5 se=[i3 53]
co-[2 0], pe-[5387,
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E(z)='1(')5],
A0 =y 03] B=[03 03],
car-|% 03l pe=[03 o)
E(3):r1(')2].

(49)

In addition, the parameters for time delays are listed as 7, ; =
6,71,=8,T3=9T1,, =91, =8,1,; = 10, and the initial
mode of Markov chain is , = 1, and the initial value of the
system is x(m) = (1.6969, -0.4770)" for m € (00, 0], which
is stochastically produced by Matlab.

Also, the nonlinear functions are taken as

f(x)=g(x)=h(x)

= (0.1x; + 0.2x, + 0.4x, sin x,, 0.3x,; (50)

+0.1x, + 0.4x, cos x,) .

It can also be seen from (50) that

P —-0.0600 0.0500 P 0.1000 0.3000
171 0.0500 -0.1100]’ 2710.2000 0.1000 | "

(51)

With the previous parameters, based on Theorem 13 and by
using Matlab LMI Toolbox, we solve the linear objective
minimization problem (42) and obtain the feasible solutions
for X;, Yy, Qp, Q,, By, and M; (the values are omitted
for space saving). Here, we just give the corresponding
optimal control gain matrices K(1) = -[1.2941,0.3499],
K(2) = —[1.1552,0.3687], K(3) = —[1.7817,0.2616], and the
minimal upper bound y = 5.3853 of the guaranteed cost.
Moreover, the dynamical comparison between the unforced
system and closed-loop system is shown in Figure 1.

5. Conclusions

In this paper, we have dealt with the guaranteed cost control
problem for a class of nonlinear discrete-time systems with
Markovian jumping parameters and mode-dependent mixed
time delays. The sufficient conditions for the existence of
guaranteed cost controllers are established for the system
under consideration and related cost function. Furthermore,
an LMI-based approach to design the optimal guaranteed
cost controller has been formulated to minimize the guar-
anteed cost of the closed-loop system. A numerical example
is also given to illustrate the effectiveness of the proposed
methods. It will be interesting to extend the present results
to more general cases, for example, the case where the
quantized state-feedback is used for stabilization of the
system concerned, and the case when the nonlinear stochastic
systems are considered with missing measurements. And it
would be one of the future research topics.
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