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We study the control systems governed by impulsive Riemann-Liouville fractional differential inclusions and their approximate
controllability in Banach space. Firstly, we introduce the PC,_,-mild solutions for the impulsive Riemann-Liouville fractional
differential inclusions in Banach spaces. Secondly, by using the fractional power of operators and a fixed point theorem for
multivalued maps, we establish sufficient conditions for the approximate controllability for a class of Riemann-Liouville fractional
impulsive differential inclusions, which is a generalization and continuation of the recent results on this issue. At the end, we give

an example to illustrate the application of the abstract results.

1. Introduction

The concept of controllability plays an important part in
the analysis and design of control systems. Since Kalman
[1] first introduced its definition in 1963, controllability of
the deterministic and stochastic dynamical control systems
in finite-dimensional and infinite-dimensional spaces is well
developed in different classes of approaches, and more details
can be found in papers [2-4]. Some authors [5-7] have stud-
ied the exact controllability for nonlinear evolution systems
by using the fixed point theorems. In [5-7], to prove the con-
trollability results for fractional-order semilinear systems, the
authors made an assumption that the semigroup associated
with the linear part is compact. But if C,-semigroup T'(¢) is
compact or the operator B is compact, then the controllability
operator is also compact and hence the inverse of it does not
exist if the state space V' is infinite dimensional [8]. Thus, it
is shown that the concept of exact controllability is difficult
to be satisfied in infinite-dimensional space. Therefore, it
is important to study the weaker concept of controllability,
namely, approximate controllability for differential equations.
In these years, several researchers [9-17] have studied it for
control systems.

In [13], Sakthivel et al. studied on the approximate
controllability of semilinear fractional differential systems:

D (t) = Ax (t) + Bu(t) + f (t,x (1)), te]=[0,T],

x (0) = xo,

@

where “Df is Caputo’s fractional derivative of 0 < a < 1
and A is the infinitesimal generator of a C,-semigroup T'(¢)
of bounded operators on the Hilbert space X; the control
function u(-) is given in L*(J,U); U is a Hilbert space; B is
a bounded linear operator fromU to X; f : [ x X — X
is a given function satisfying some assumptions and x, is an
element of the Hilbert space X.

In [16], Sukavanam and Kumar researched approximate
controllability of fractional-order semilinear delay systems:

o

% = Ax(t)+Bu(t) + f (t.x,u(®), tel0,1], o
x, (@) =¢(0), 0¢€[-h0],

where 1/2 < a < 1; A DA) ¢V - Visa
closed linear operator with dense domain D(A) generating



a C,-semigroup S(t); the state x(-) takes values in the Banach
space V; the control function u(-) takes values in V;Bisa
bounded linear operator from L*([0,7]; V) to L*([0,7];V);
the operator f: [0, 7] x C([-h,0]; V) x V — Visnonlinear.
If x : [-h,r] — V is a continuous function, then x, :
[-h,0] — V is defined as x,(0) = x(t + 0) for 0 € [-h,0]
and ¢ € C([-h,0]; V).
In [18], Rykaczewski studied the approximate controlla-
bility of an inclusion of the form
x(t) € Ax(t) + F(t,x(t)) + Bu(t), te]=][0,b], )
3

x (0) = x,,

where A is a linear operator which generates a compact
semigroup, F is u.h.c. multivalued perturbation with weakly
compact values, and the state x(-) takes values in the Hilbert
space H. U is a Hilbert space of all admissible controls. B :
U — H is a continuous linear operator.

Fractional differential equations have recently proved to
be valuable tools in the modeling of many phenomena in
various fields of engineering, physics, and economics. Indeed,
we can find numerous applications in viscoelasticity, elec-
trochemistry, control, porous media, electromagnetic, and so
forth; see [19-27] for example. As a consequence there was an
intensive development of the theory of differential equations
of fractional order. One can see the monographs of Kilbas
et al. [28] and Podlubny [29] and the references therein.
The definitions of Riemann-Liouville fractional derivatives
or integrals with initial conditions are strong tools to resolve
some fractional differential problems in the real world.
Heymans and Podlubny [30] have verified that it was possible
to attribute physical meaning to initial conditions expressed
in terms of Riemann-Liouville fractional derivatives or inte-
grals, and such initial conditions are more appropriate than
physically interpretable initial conditions. Furthermore, they
have investigated that the impulse response with Riemann-
Liouville fractional derivatives was seldom used in the fields
of physics, such as viscoelasticity. In recent years, many
authors [18, 27, 31] were devoted to mild solutions to frac-
tional evolution equations with Caputo fractional derivative,
and there have been a lot of interesting works. As for the study
of the fractional differential systems with Caputo fractional
derivative, we can refer to [27, 31, 32] for the existence
results. Its approximate controllability was considered in [9,
13-16]. The approximate controllability of Caputo fractional
inclusion systems has been investigated by [10]. We know that
differential inclusions are strong tools to solve some problems
in various fields of engineering, physics, and optimal control;
see [10, 32-35]. However, the approximate controllability for
the impulsive fractional differential evolution inclusion with
Riemann-Liouville fractional derivatives is still an untreated
topic in the literature.

Motivated by the above work, in this paper, we consider
the following system:

D;ix (t) € Ax (t) + F (t,x (t)) + Bu (¢),

te] =(0,b)\{t;,ts...ot,},
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AL %x (t)'t:tk =L (x(t)), k=12,...,m,

Itlf‘xx (t)|t:0 =xy€X,

(4)

where 1/2 < a < 1 and D denotes the Riemann-Liouville
fractional derivative of order « with the lower limit zero. F :
JxX - P(X):=2%\{0}isa nonempty, bounded, closed,
and convex multivalued map. A : D(A) € X — X is the
infinitesimal generator of a C,-semigroup T'(¢) (t > 0) on a
Banach space X. 0 = t, < t; < --- < t,, < t,.q =b I :
X > X, A %x(ty) = Io“x(tf) = Iy-*x(t;), Iy-*x(t;) and
I)-*x(t;) denote the right and the left limits of I,-x(t) at
t =t;, k =1,2,...,m. The control function u(t) takes value
inV = LP([0,b];U), p > 1/a, and U is a Banach space; Bis a
linear operator from V to L¥([0, b]; X).

The purpose of this paper is to provide some suitable
sufficient conditions for the existence of mild solutions
and approximate controllability results for the impulsive
fractional abstract Cauchy problems with Riemann-Liouville
fractional derivatives. The main tools used in our study are
fixed point theorem, semigroup theory for multivalued maps,
and the theory from fractional differential equations. The rest
of this paper is organized as follows. In Section 2, we present
some preliminaries to prove our main results. In Section 3,
by applying some standard fixed point principles, we prove
the existence of the mild solutions for semilinear fractional
differential equations, and the approximate controllability of
the system (4) is proved. In Section 4, we give an example to
illustrate our main results.

2. Preliminaries

In this section, we introduce some basic definitions and
preliminaries which are used throughout this paper. The
norm of a Banach space X will be denoted by || - [ x. L, (X,Y)
denotes the space of bounded linear operators from X to Y.
For the uniformly bounded C,-semigroup T'(¢) (t > 0), we
set M := supte[o)m)IIT(t)IILb(X) < o00. Let C(J, X) denote
the Banach space of all X value continuous functions from
J = [0,b] to X with the norm [x|c = sup,;lx(t)lx. Let

Cr_o(J, X) = {x : t"™“x(t) € C(J, X)} with the norm

Ixllc, = sup {t' lx®lx:t € J}. (5)

Obviously, the space C,_,(J, X) is a Banach space.

To define the mild solutions of (4), we also consider
the Banach space PC, ,(J,X) = {x : (t - t;)" “x(t) €
C((tp trs 1, XD, limt_,t;(t - tk)l_“x(t) exist, and x(t;) with
x(ty) = x(t), k = 0,1,2,...,m} with the norm

Ixllpe, . = max {sup (t = )" lx Ollx : £ € (b tierr]

k=0,1,2,...,m}.

It is easily known that the space PC,_,(J,X) is a Banach
space.
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Let (X, d) be a metric space. We use the notations

P,(X)={Y € P(X):Yisclosed},
P, (X) ={Y € »(X) : Yisbounded},
P, (X)={Y € »(X) : Yisconvex}, @)

P, (X)=1{Y € #(X):Y iscompact}.

Firstly, let us recall the following basic definitions from
fractional calculus. For more details, one can see [28, 29].

Definition 1. The integral

I*F () = ﬁ L t—9 f()ds, a>0, (8)

is called Riemann-Liouville fractional integral of order «,
where T' is the gamma function.

Definition 2. For a function f(t) given in the interval [0, c0),
the expression

Dif(t)=

) Lo oa o

where n = [a] + 1 and [«r] denotes the integer part of number
«, is called the Riemann-Liouville fractional derivative of
order a.

Lemma 3 (see [28]). Let« > 0, m = [«] +1, and let x,,,_,(t) =
I “x(t) be the fractional integral of order m — a. If x(t) €
L'(J, X) and X (t) € AC™(], X), then one has the following
equality:

N _ < xiﬂ;k) (0) a—k
It Dtx(t) —X(t) —;mt . (10)

In order to study the PC-mild solutions of (4) in Banach
space PC,_,(J, X), we give the following results which will be
used throughout this paper.

Lemma4. Let 0 < a < 1, and let x,_,(t) = I *x(t) be the
fractional integral of order 1 — a. If x(t) € PC,_,(],X) and
X,_o(t) € PC(J, X), then one has the following equality:

I'Dix (t)
( trx—l
x(t) - Xi—a (t)ltzom, te [0, tl] ,
(11)
=1 _ < A‘xlfoc (ti) el
x(t) k;—r o Ej ;)
~ X1« (t)|t=oﬁ’ t € (toten]

where Ax,_o,(t) = x1_o(t}) = x1_o(t;), k= 1,2,...,m.

Proof. If t € [0,t,], then, by Lemma 3, we easily get
a—1

I8 D% x () = x (1) — x,_, (t)|t=0%.

Ift € (¢,,t,], since

{04 (04 1 ! ox— (04
I*Dix (t) = T L (t —s) " 'Dx (s) ds
d
dt ([T(ax+1)
then, by (13), we have

0

1 ! a Lo
et Jo(t—s) Dx (s) ds

1 ! « d 1-a
m JO (t - S) a {IO+ x(s)}ds

1
IFa+1)I'(l - )
x J(: (t - s)“% J: (s—1)"* 'x (1) drds

1
Fa+1)I'(1-a)

x Jtl (t - s)“% J (s— 1) x (1) dr ds

0 0

1
T+ Drd-o
x Jt (t - s)“% Jtl (s—1)"* 'x(r)drds
t 0
P S
Fa+1)I'(1 -a)

t s
X J (t - s)“i J (s—-1)"*x(r)drds
t ds t

1
T()T(l-a)

X Ltl (t—s)*" Ls (s—1)"'x(r)drds

1
T+ Dr(-o

s=ty

x | (t = )" : (s—1)"'x (1) dr
o], |

s=0
1
+—
I'o)T'(1-ow)

X J;t (t —s)** Jotl (s—1)"* 'x(r)drds

P
lNa+1)I'(1 -a)

_4 {; r (t - )* D% (s) ds} ,

(12)

(13)



s=t

x | (t=s)* " (s—1)"* 'x(r)dr
o], |

s=ty

1
T T (-a

x J;t (t—s)** J: (s—1)"* 'x(r)drds

+;
Fa+1)I'(1 -a)

s=t

x | (t = )" S(s—T)l_“_lx(T)dT
), |

s=t

1
I'(a)T(1-ow)

X J:l x(1)dr le (t - (s-1)"ds

N 1
T()T(1-a)

f
J x(T)dTJ (t—9s)* Y s-1)"*ds
f

1
T()T(1-a)

+

X r x(1)dt Jt (t—s)* (s — 7)™ 'ds

Xi-a (0) o Axl a(t )
_F((x+1)t N (_t)
— ' xl—a(o) o Axl—oc(tl) o
_Jox(T)dT_F(a+l)t T Twrn 0
(14)
Thus, by (13) and (14), we get
o (24 - 0 0— A o t
ItDtx(t)zx(t)—xlTa()) - x;(g g
(15)

Similarly, if t € (t;,t;1], kK = 2,...,m, we can get

I'Dfx (t)
Axy_y (t) a-1 ! (16)
=x({t)- ) ———(t -t - X )|, -
kzl r ( ) ( k) 1 |t—0 1—* ((X)
The proof is completed. O

The Laplace transform formula for the Riemann-Liouville
fractional integral is defined by

L{I'x (t); A} = A—la’?()\)’ (17)

Abstract and Applied Analysis
where X(A) is the Laplace of x defined by

) = LOO e Mx (t) dt, "
18

Rel > w, |x (t)| < ce”, cisaconstant.
Lemma5. Leta € (0,1] and h € L(], X), p > 1/a; if x(t) €
PC,_,(J,X), x,_,(t) € PC(J,X), and x is a solution of the
following problem:

Dix(t) = Ax(t) +h(t),

te(0,b], t#t, k=12,....m

AL %x (t)|t=tk =T (x (),

Itliax (t)'t:()

k=1,2,....,m

=x, € X,

then, x satisfies the following equation:

x (t)

( t

7T () x + J (t — )T, (t - s)h(s)ds,
0

€ [0,t,],

= 47T, () x + iTa (t-t) (t = 1) AL x (1)

k=1
+ r (t — )T, (t - s)h(s)ds,
0

t € (totenl

(20)
wherek =1,2,...,m
T ()= ro 0%, (0) T (1°6) d,
0
5 (9) 1/0()(D (9—1/0() ,
(21)

@, (0) = lOZO:(—I)"AG*""H—r (na+ 1) sin (nn«) ,
T n!

0 € (0,00),

where &, is a probability density function defined on (0, 00);
that is,

E.(6)>0, 6¢(0,00), Joosa(e)deﬂ. (22)
0

Proof. We observe that x(-) can be decomposed to p(:) +q(-),
where p is the continuous mild solution for

Dip(t)=Ap@t)+h(t), te(0,b],

L (23)
Ip ),

=x € X,
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and g is the PC,_,-mild solution for Hence, it follows from (28) and (30) that

Diq(t) = Aq(t),
te(0,b], t#t, k=12,...,m, J'Ooe_/\atT(t)xodt

- (24) 0
AL, =y k=12...,m,

& —(As)* o« o o
=| eV T(s")xpds™ (t=5%)
17°q(1)]_, =0 € X. L )% (

Il
R

Indeed, by adding together (23) and (24), it follows by (19). L R sY)s% 1xods

Since p is continuous, then p(t,t) = plt) k= 1,2,...,m
On the other hand, any solution of (19) can be decomposed oo
to (23) and (24). So we show the results by the following. cx”
At first, we calculate the mild solution of (23). 0
Apply Riemann-Liouville fractional integral operator on
both sides of (23); then, by Lemma 3, we get

@, (0) e ™T (s*) s* ' xodO ds

00 a—1
oc” @, (0) _A”T< “)S xodudf  (u=0s)

0

Il pr( )|t 0 -1 « « ® Y u® 5“71
pt) = Wt + 17 Ap () + IR () = J e M |:ocj @, (B)T( > m xode]du,
(25) 0 0
a—1
F( )x0+1 FAp () +ITh (). J'O e VT ()R (A) dt
That is, ®© e S
- I T (1) U e (s)ds] dt
toc—l 1 t . [ ] 0 0
p(t)=—x0+—J (t—9)"" [Ap(s) + h(s)]ds .
r r 1 “As
(OC) ((x) 0 (26) — JJO e A tT (t)e A h(S) det
(31
Let A > 0; taking the Laplace transformations _ ”OO e M (%) qu* e Mh(s) ds du  (t=p")
0

~ _ e 7 _ Y 00
p()L)-L M p () dt, h(A)_L Mh(tydt (27) _ m i (6) 0T (4) "¢ 5) do s di

= ”J:Oawa ©) e VT <g—z>

to (26), we obtain

~ 1
PO = 5%+ 3o AP() + 1R V)
a—1
v -As _
= (AT - A) 'xp + (AT - )R (28) X e Ths)dvddds (v =ub)
_ o A%t o A%t —~ 00 Y o voc—l
= | e TOxde+ | e TORM _ m @, O)e (m)T(e“) () dvdo ds
0
Consider the one-sided stable probability densit co (oo @
p y Y :” J ) mT(( =) )
0 Js 0~
(Doc (6) Z( 1)7’1 le—nzx II‘(L'-’-D sin (1’17'[“) (T_s)“ 1
Tn=) " (29) X =g —h(drdods (1=v+s)
0 € (0,00),
o [Terlo [Tacor (52
whose Laplace transformation is given by 0 0 Jo 0«
Y e (t-9)""
I Mo, 0)do =, ac0,1).  (30) x Sr—h(9)d6ds | dr
0



According to the above work, we get

e8] o a—1
ﬁ(A)=L e [aL @, O) T <;a>t9a xyd0

ra Lt LOO @, 6)T ( (t (;f)a )

t_sa—l
L (=9
[e4

h(s)do ds] dt
(32)

Now, we can invert the Laplace transform to (20) and
obtain

0 t(x t(x—l
p(t) = ocL o, (6)T<6—“> w6

t oo (t_s)oc (t_s)oc—l
+(xLL a)‘x(G)T< ea ) () dods

- (xj Lg1-0/0g (67%) 0T (140) £ xydl0
0 «&

t [e'e]
+ocjj (t - s)‘“ 6, (67 oT
0

0

x ((t—s)"0) h(s)dO dt.

(33)
Let
E (0) l/oz)(D (e—l/oc),
. (34)
T,(t)=a| 6, (0)T(t6)d6.
0
Then, we get

p(t) =t“"T, (t) xo + Lt (t—s)*'T, (t—s)h(s)ds. (35)

Now we calculate the PC,_,-mild solution of (24).
Applying Riemann-Liouville fractional integral operator
on both sides of (24), then by Lemma 4, we get

q(t)

1 oa—
T@ J (t - )" Aq(s)ds, telo,t],
_ )T (x (5)) a1 (36)
;W(t - t;)
r(l ) J (t—9)"Aq(s)ds, te(tptr,].
The above equation (36) can be rewritten as
qU—Z kr( )k)) (= 1) ) ()
(37)

1 ! a—1
+ m L (t—-s)""Aq(s)ds,
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where

X () = {0’ =t (38)

1, t>t.

Let A > 0; taking the Laplace transformation to (37), we
obtain

a0y < Sl

P Ao‘ Aa Aq (A) (39)
That is,
) = Y (AT - A) I (x (1)) e M. (40)
k=1

Notice that the Laplace transform of t*'T, (t) Vi is (AT -
A 9. Thus one can calculate the mild solution of (24) as

q9(0) = Y e O (= 1) T (=) L (x (1)) (41
k=1
By the above work, the PC,_,-mild solution of (19) is
given by

x(t) = t*7'T, (t) x,

S ROE- )T R,

k=1
+ r (t—s)*'T, (t —s) h(s)ds.
0

That is,

x (t)

't‘HTa (t) x + Jt (t—s) T, (t - s) h(s)ds,
0
elo],

= 1T (O xg + Y Ty (= 1) (¢ = 1) I (x ()
k=1

+ r (t—s)'T,, (t - s) h(s)ds,
0

te (totinl,

(43)
wherek=1,2,...,m
T (1) = JOO 0F, (0) T (°6) d6,
0
£, (6) = 67" 1g, (971,
* (44)

@, (0) = Z( )"l 1Lnat+ 1) sin (nmat)
n!

n 1

0 € (0,00),
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where &, is a probability density function defined on (0, c0);
that is,

E(6)>0, 6¢c(0,00), JOOEa(G)dG:I. (45)
0

This completes the proof of the lemma. O

According to Lemma 5, we give the following definition.

Definition 6. A function x € PC,_,(J,X) is called a mild
solution of (4) if Itl_“x(t)ltzo = x, and there exits f € L'(J <
X) such that f(t) € F(t,x(t)) a.e.ont € ] and

x (t)
(17T (t) x,
+I (t =%, (t = ) [Bu(s) + f (5, x (5))] ds,
0
te[0,t,],

t‘x_lToc (t) Xo + ZTa (t - tk) (t - tk)a_llk (X (t;))
k=1

+ Jt (t =) T, (t = s) [Bu(s) + f (s, x(5))] ds,
0

t€ (tiotinl

(46)
wherek =1,2,...,m,
T () = j 0E, (0) T (°6) d6,
0
£.(0)= Lo W (g71m),
(04
(47)

@, (0) = %Z(—n”*le*’”‘*1 w sin (nma),
n=1

0 € (0,00),

where &, is a probability density function defined on (0, c0);
that is,

E.(6)>0, 6¢(0,00), jmga(e)dezl. (48)
0

Due to the work of the paper [31], we have the following
result.

Lemma 7. The operator T, (t) has the following properties.

(i) For any fixed t > 0, T,(t) is linear and bounded
operator; that is, for any x € X,

IT, &) x| < % x|l (49)

(ii) T, (t) (t = 0) is strongly continuous.

Now, we also introduce some basic definitions on multi-
valued maps. For more details, see [36-38].

A multivalued map G : X — P(X) is convex (closed)
valued if G(x) is convex (closed) for all x € X. G is bounded
on bounded sets if G(B) = [J,cp. G(x) is bounded on X
for any bounded set B of X; that is, sup, gisup{llyl : y €
G(x)}} < oo.

G is called upper semicontinuous (u.s.c.) on X if, for each
x, € X, the set G(x,) is a nonempty closed subset of X, and
if, for each open set U of X containing G(x,), there exists an
open neighborhood V of x,, such that G(V) c U.

G is said to be completely continuous if G(B) is relatively
compact for every B € P,(X).

If the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has
a closed graph (ie, x, — x,, ¥, — V. ¥, € G(x,) imply
V. € G(x,)).

We say that G has a fixed point if there is a x € X such
that x € G(x).

A multivalued map G : J — Py(X) is said to be
measurable if for each x € X the functionY : ] — R*
defined by Y(t) = d(x,G(t)) = inf{llx — z|| : z € G(t)} is
measurable.

Definition 8. The system (4) is said to be exactly controllable
on J, if, for all x,, x, € X, there exists a control u € LP(J,U)
(p > 1/«) such that the mild solution of (4) satisfies x(0; u) =
x, and x(b; u) = x,.

Definition 9. The system (4) is said to be approximately
controllable on the interval ], if, for all x, € X, one has
R(b,x,) = X, where Z(b, xy) = {x(b;u) : u € LP(J,U) (p >
1/a), x(0;u) = x,} is the reachable set of system (4) with the
initial values x,, x, at the terminal time b.

It is convenient at this point to introduce two relevant
operators:

b
B[ -9 1 -9 BT 0 - s
0

R(a1f)=(al+12)", a>o0,

where B* denotes the adjoint of B and T, (t) is the adjoint
of T, (t). It is straightforward that the operator Fg is a linear
bounded operator.

We consider the following linear fractional differential
system:

‘D (t) = Ax (t) + Bu(t), %<oc§ 1, te]J=(0,b],

1% (t)|t:0 =x, € X.

(51)

Lemma 10. The linear fractional differential system (51) is
approximately controllable on ] if and only if aR(a, l“é’ ) = 0
asa — 07 in the strong operator topology.

The proof of this lemma is a straightforward adaptation
of the proof of [3].



Lemma 11. Let E be a Banach space and let W C L'(J,E) be
integrably bounded. If, for all t € ], there is a relatively weakly
compact set C(t) C E such that w(t) € C(t) for everyw € W/,
then W' is relatively weakly compact in L'(J, E).

Lemma 12 (Lasota and Opial [39]). Let ] be a compact real
interval and let X be a Banach space. The multivalued map
F:JxX — Pyq.(X)is measurable to t for each fixed
x € X, us.c tox foreacht € J, and for each x € C(J,X)
the set Sp. = {f € L'(J,X) : f(t) € Ft,x(t)), t € J}is
nonempty. Let T be a linear continuous mapping from L' (J, X)
to C(J, X); then, the operator

[oSp:C(J,X) — Ppae (CU, X)),
x+ (ToSp) (x) =T (Spy)
is a closed graph operator in C(J, X) x C(J, X).

Lemma 13 (see [37]). Let D be a bounded, convex, and closed
subset in the Banach space E and let G : D — 2%\ {0} be a
u.s.c. condensing multivalued map. If, for every x € D, G(x) is
a closed and convex set in D, then G has a fixed point.

3. Main Results

In this section, we present our main result on approximate
controllability of system (4). To do this, we first prove the
existence of solutions for fractional control system. Secondly,
we show that, under certain assumptions, the approximate
controllability of (4) is implied by the approximate control-
lability of the corresponding linear system.

For convenience, let us introduce some notations:

~ (l-y (oc—y)/(l—}’)>1y
M, = ||BI, ﬁ-(a_yb ’
(53)
Mﬁ M3M§b20¢—lﬁ
A=ty :
[(@) aCa-1)(T(a)’

Before stating and proving our main results, we introduce
the following assumptions.

H(1): T,(t) is compact, [laR(a, l"é’)ll <1

H(2): F is a multivalued map satisfying F : ] x
X = P(X) which is measurable to ¢ for each
fixed x € D, u.s.c. to x for each t € J, and for each
x € PC,_,(J, X) the set

See={feLl'U.X): f®) eFt,x(t)}  (54)
is nonempty.
H(3): There exist a function P(t) € LY(J,R"), y €
(0, «), and a nondecreasing continuous function y :
— R", such that

IE (& x O)lx = sup {[|f D) : f (®) € E(t,x (1))}
<Py (Ixlp),

(55)
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fora.e. t € J, for all x € D, and for each r > 0, there
exists 0 < p < 1, such that

lim inf anny =p<l (56)
r— 00 r

H(4): There exist constants d;, > 0,k = 1,2,...,m,
with (M/I'(«)) Y1, dj < 1 such that

|1 () = L ()| < die(t - fk)l_a“x ~Vx VxyeX
(57)

Theorem 14. If the conditions H(1)-H(4) are held, then the
system (4) has a mild solution.

Proof. We consider a set
B,={xePC_,(J,X):|lx| <r,r >0} (58)

on the space PC,_,(J,X). We easily know that B, is a
bounded, closed, and convex setin PC,_,(J, X). Fora > 0, for
all x(-) € PC,_,(J, X), x; € X, we take the control function
as

u(t)=b-t""BT; b-t)R(a,Ty) P(x (), (59)
where

P(x() =x, —t“'T, (b) x,

m

= DT (- 1) (- 8)" T (x ()

k=1
b
- J (b- T, (b—s) f(s)ds, [ €S
0
(60)
By this control, we define the operator @, : PC,_,(J,X) —
P(PC,_, (], X)) as follows:

D, (x) = {T € PC,_,(J,X)
s (t) = 7T () x,

+ Jt (t =) 'T, (t—s) f(s)ds

0

+ Jt (t —s)*'T, (t — s) Bu(s)ds,
0

f €Sk t€(0,1],

T (1) x,

m

+ ZTa (=) (¢ = 5)" I (2 ()

k=1
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N Jt (t = T, (t = 5) f () ds

0

t
+J (t—s)*"
0
x T, (t —s)Bu(s)ds,
f€Spe t €(tpptpy], k= 1,2,...,m.}.

(61)

We will show that, for all a > 0, the operator @,
PC,_,(J,X) — PPC,_,(J,X)) has a fixed point. For the
sake of convenience, we subdivide the proofinto several steps.

Step 1. For each a > 0, the operator ®,(x) is convex for each
x € PC,_,(J, X).

In fact, if 1), 7, € ®,(x), then, for each t € (t;,t; ], k =
1,2,...,m, there exist f, f, € S, such that

7, (t) = t“'T, (£) x,
+ ZT(x (t—t) (=) I (x ()
k=1
t
+J (t—s) ' T, (t—s) f; (s)ds
0
+ L (t—s)"'T,(t-s)BB'T; (b-t)R(a,Iy)
X [xl M, (1) x,

- kiTa (t—t) (t—1)" 'L (x ()

b
a1
—L (b-w)" T (b-p) f; (u)du | ds,
i=1,2.
(62)
Let 0 < A < 1;then, foreacht € (t;, 1,1, k= 1,2,...,m, we

have

A () + (1 -A)7, (1)

= t“_lTa (t) xy + ZTa (t - tk) (t - tk)a_llk (x (t,;))
k=1

N L (=T, (L= ) [Afy (8) + (1= A) £, ()] ds

9
+ L (t—s)"T,(t—s)BB*T; (b-t)R(a,Ty)
x [xl 7T () x,
- ZToc (t—t) (¢t~ tk)aillk (x ()
k=1
b a—-1
[ -0 -
X [Afy (u) + (1= Q) f, ()] du | ds.
(63)

Since S, is convex (because F has convex values), Af, + (1 -
A fy € Sg s thus, At (8) + (1 - V)1, € D (x).

Step 2. For each a > 0, there is a positive constant r, = r(a),
such that ®,(B, ) € B, .

If this is not true, then there exists a > 0 such that, for
every r > 0, there exists a X € B, such that ®,(x) ¢ B,; that
is,

|©, )| = sup {lltllpe, g : T € P, @} >,

T(t) = t*7'T, (t) x,

m

+ ZToc (t—t) (t - t)" L (x (t))

k=1
t
+J (t =) 'T, (t—s) f(s)ds
0
- Lt (t—s)"'T,(t-s)BB'T; (b-t)R(a,Ty)

X [xl —b*7'T, (b) x,

_ iTa (0-t) (0—t)" L (x ()

k=1

b
[ om0 T ) £ ()| s,
(64)

for some Spx.
By using Holder’s inequality and H(3), we have

L (t— 9% Ju(s)l ds

B MMBbZ(xfl
T al' (@) Qa—1)
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M [l
<l + i
v Z% (de Il + m(b - 1) |1, ©)])
My (1)
) ||P||Lw] .
(65)
Then, we obtain
(t—t) Iz @
< (=) T e T ) x| + (£ 1)
x YT (¢ = )] (¢ = 1) 1 (x ()]
k=1
+(t-t) "
SRR AR CIEE
0
+(t-t) "
x j (t = 9" T, (¢ = )] I1BI 1t ()] s
0
MY '(b-1)"" w
e A
) rﬁ (de Il +m(b - )" 1, ©)])
. (66)
M(b - tk)l ! R
e L (t- 9" P(5)y (1) ds

MMg(b-t,)"™
I'(x)

M (b-t)
I'(a)

Jt (t =) u(s)ds
0
- tk)l_a

<ol + (0

D g 1m0 O]

. bz“_leMé(b _ tk)l—oc
a2a—1) (T (@)

“ " M“xou
1 T («)

* 3 g (bt om0 B0l

+y (r) APl
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Thus,
M b—t ) w
e MO ]+ -1
&M
Zr—(dk Il

k=1
+m(b-1)"" | ]

VeI MEME(b - 1,)

67
a2a-1) (T (a)’ ©7)

")

+y (1) AlIP| v
Dividing both sides by r and taking the low limit as r — oo,
we get

1 < tim inf Y Py, (68)
r— 00 r

which is a contradiction to H(3). Thus, for each a > 0, there
exists r, such that @, (x) maps B, into itself.

Step 3. O (x) is closed for each x € PC,_, (], X).

Indeed, for each given x € PC,_,(J,X), let {1,},5, C
®,(x) such that 1, — 7 in PC,_,(J, X). Then, there exists
fu € Sk, such that, for each t € J,

7, (t) = 17T, (t) x,

D ACEAIEIRRASIN)

. (69)
+ L (t—s)'T, (t-s) f, (s)ds
+ Lt (t —s)* ' T, (t - s) Bu,, (s) ds,
where
u, () =B'T: (b-t)R(a,Ty)
x [xl -7, (b) x,
» ) (70)
- ZT (b-1) (b-1t)" L (x(t))

b
—J (b=)'T, (b=s) £, (s)ds | .
0
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Because of [40, Proposition 3.1], Sp, is weakly compact in
L'(J, X) which implies that f, converges weakly to some f €
Sg in L'(J, X). Thus, u,, — u, and

u(t) =BT, (b-t)R(aIy)

X [xl —-b“7'T, (b) x,

m (71)

= YT (b t) (b 1) L (x (£))

k=1
b

- J (b-3)"T,(b-s)f(s)ds]|.
0

Then, for each t € J,
7, (t) — (1)

= 7', (t) x,

' kiTvc (t=t) (t— 1) I (x ()

+ r (t—s) T, (t—s) f (s)ds
0
+ Lt (t—$)*'T, (t—s)BB'T, (b—t)R(a, rg;) (72)

X [xl -b*7'T, (b) x,

— )" L (x (£))

ST (b t) (b

[ o) ] s

Thus, we show that 7 € ®,(x).

Step 4. @, is u.s.c and condensing.
We decompose @, as @, = @} + @2, where the operators
®! and ®? are defined by

(@hx) () = YT, (t— 1) (t - 1) I (x (£)),
k=1
tel, k=1,2,...,m
O (x) = {T €PC,_,(J,X):7(t)

=71, (1) x,

+ Jt (t =) T, (t—s) f(s)ds
0

1

t
a—1 _
+L(t—s) T,(t—-s)
xBB'T; (b-t)R(a,I})

X [xl —b*7'T, (b) x,
_ kiT“ (b-t) (b-t)" "L (x ()
- Lb (b= "I, (b~ ) f (W) dpu | ds,

feSF,x,te]]».

(73)

According to [41, Corollary 2.2.1], we will prove that ®; is

a contraction operator, while ®2 is a completely continuous
operator.

Let us begin proving that GD}Z is a contraction operator. For
any x, y € X, we obtain

[(@4x) &) - (05) 0]

< ST - 1) (- 8 e (e (1))

k=1

ZT (t-

(74)
b (- 1), (@ﬂ

M m
F—Z lx=1-

1. . . m
Then, @, is a contraction operator, since (M /I'(x)) >;_; dj <
1.

Next, we prove that ® is u.s.c and completely continuous.
We subdivide the proof into several claims.

Claim 1. There exists a positive constant r such that GDi(B,) C
B,.

By employing the technique used in Step 2, one can easily
show that there exists r > 0 such that ®2(B,) C B,.

Claim 2. ®>(B,) is a family of equicontinuous functions.

Let0<s<t, <t,<b. Foreachx € B,, ¢ € ®2(x), there
exists f € Sg, such that

T(t) = t“'T, () x,
t a—-1
+ L (t—=9s)""T,(t—s) f(s)ds (75)

+ Jt (t—s)*"T, (t —s)Bu(s)ds, te].
0
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Then, we have

Iz (t,) =7 (t,)]
[ 1= = -9 Tt 9) f

0

<

X r — )T, (b, —5) =T, (t, = )] f (s)ds

0

X
J e

-s) f(s)ds

11

x L= =t -9 ]Ta(tz—s)u(s)ds
0

X rl [T, (t, —s) =T, (t; —s)]u(s)ds
0

+ J (t, —s)u(s)ds

<L+ L+L+1+ 15+ 1.
(76)

By using Holder’s inequality and assumption H(3), we get

_ My (") IPllyy
! T (ct)

y [( = fapra- y)) y
(A V

1- /-
+< Ve, )0 y))

a-y

_< =Y e y)) -
@ — y ’

-y
L=y ||P||Lw<a 1 (/- y>)

1=y

< s 16909 o
s€|0,t;
My () |IPllpy [1-y ~ (tx—y)/(l—y)]l_y
b= I'(x) [a—y(tz tl) >
MMj (@ " N
 Tw L (82 =) = (6 =) ]I @l s,
Iy =My sup [T, (t,—s)—T,(t; —s)|
se[0,t,]
- J (=9 I Olds,
0
MMy (© o
" T L (t2=5)"" ()l ds.

It is easy to see that I, tends to zero independently of x € B,
ast, — t,. Note that, from Lemma 10, T, (¢) is continuous
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in the uniform operator topology for t > 0; we can directly
obtain I; and I; tending to zero independently of x € B, as
t, — t,. Applying the absolute continuity of the Lebesgue
integral, we have I, I5, and I tending to zero independently
of x € B,ast, — t;.
Therefore, d)tzl(Br) c PC,_,(J, X) is equicontinuous.

Claim 3. The set TI(t) = {r(t) : T € CDZ(BT)} C X is relatively
compact for each t € J.

Let 0 < t < b be fixed. For x € B, and 7 € ®>(x), there
exists f € Sg, such that, for each t € J,

T(t) = t“'T, () xy + jt (t—s)'T (t—s) f(s)ds
0

o[ =99 BT 0 DR (1)

x [xl -7, (b) x,

- YT (b-t)(b- t)* I (x (1))

k=1

- J: (b- 1) ' T, (b—p) f (u) du | ds,

te].
(78)

For all € € (0,¢) and for all § > 0, define
0 (1)

= 7', (t) x,

e JH JOO Ot — 5)°°1E, (0) T ((¢ = 5)°0) f (s) dO ds
0 9

ta JH ro 6t - )1, (0) T ((¢ - 5)°0)
0 5
x BB"T (b - s)R(a,T})

X [xl -7, (b) x,
- ZTa (b-t) (b-t)" 'L (x (t))
k=1

- Lb (b-w)" T, (b— ) f () du | dOds

="', () x, + T (€*9)

< {(x JH LOO 0(t - )€, (0)T

0

x ((t—3s)"0 —€%8) f (s)dOds
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t—-¢ 0O
+a J J ot
0 S

x BB*T} (b-s)R(a,T})

$)¥ELO) T ((t - 5)*0 - £%9)

x [xl -7, (b) x,

- ZTa (b-t) (b-t)" 'L (x (t)

k=1

- [} om0 .

(79)

By the compactness of T'(e"8) (¢*8 > 0), we obtain the set
1 (t) = o™ (t) : 7 € @2 (B,)} (80)

which is relatively compact in X for all ¢ € (0,t) and & > 0.
Moreover, we have

|z &) -2 @)
- ocMI//(r)/3”P" - ocMZMlz;bZoc—l
= T () " aa-1DT ()
M ||x
[+ Al

31 CAE RV IO

My (r) 0
¥ Wnpnm] } j 0%, (0) do

M
it S V/(T) ||P||L1/y< 4 (oc y)/(1- y))
I'(a) a-y

MM
(1(206 - 1) (@)

el + 510

. ii (di el + m(b = 1) 1 )]

-y (81)

M leo I

My (r) B

Pl
I @ — - IPlpw

The right-hand side of the above inequality tends to zero as
e — 0. Therefore, there are relatively compact sets arbitrarily
close to the set TI(¢), t > 0. Hence the set II(¢), t > 0 is
also relatively compact in X. As a consequence of Claims 1-
3 together with the Arzola-Ascoli theorem, we can conclude
that @ is completely continuous.

13

Claim 4. ®? has a closed graph.

Letx, — x* (n — ), 1, € P(x,), 1, —» T° (n —>
00). We will prove that * € CDZ(x*). Since T, € CDﬁ(x,,), there
exists f, € Sp, , such that, for each t € J,

T, (t) = 7T, (t) x,
+ Jt (t =) 'T, (t—-s) f,(s)ds
0

+ Jt (t-s)"'T,(t-s)BB'T: (b-t)R(a,Ty)
0

X [xl —b*7'T, (b) x,

te) (b - 1) I (x (t))

—ZT (b-

b
-] =) T 0= ), () ds| s
(82)

We must prove that there exists f* € Sg .+, such that, for each
te],

7T (1) x,

+ Lt (t—s)"

+ L (t—s)*'T, (t - ) BB"T (b~ t)R(a,Ty)

() =

L (E-5) fF (s)ds

X [xl —b*7'T, (b) x,

m

- ZTa (b-t) (b-t)" I

k=1

( (5))

b
-] -0 T o) £ () dus| s
(83)

Sincet, — 7" (n — 00), we can obtain

<Tn ) - t“7'T, (t) x,

e

X [xl -7, (b) x,

- )" "I, (t-s)BB'T, (b-t)R(a,I})

- 31600 s | )
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- (r* ) —t“'T, (t) x,
_ Lt (t—$)*"'T, (t-s)BB'T, (b—t) R(a, Fg)
X [xl - b7, (b) x,
S ACEAICE

xaumnkﬁ

‘—»0, asn — 00.

(84)
Consider the linear continuous operator

L', x) —c, ,(J,X),
(Tf) (6) = L (t- 9T, (£ - 5)

x [f (s) - B(b— )" 'B'T; (b-s)R(a Iy

b
< | Too-n) £ ()| ds.
(85)

Clearly it follows from Lemma 13 that T o Sy is a closed graph
operator. Moreover, we have

T, (t) —t*'T, (t) x,

_ Jt (t-)*"'T,(t-s)BB*T; (b-s)R (a, r(’,’)
0

X [xl —b*7'T, (b) x,

T, (b—1) (b= 1)" T (x (t;)) | ds € T (S, ) -
(86)

NgE

k=1

Since x,, — x,, it follows from Lemma 13 that

7, (t) — 7', (t) x,

_ Jt (t—$)*"'T, (t—s)BB'T; (b-s)R(a, rf,’)
0

X [xl —b*7'T, (b) x,

ST (bt (0 1) L (e (1)) | ds € T (55 )

(87)
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Therefore, @ has a closed graph. Since @2 is a completely
continuous multivalued map with compact value, we have
that @ is u.s.c.

Thus @, = @} + ®? is u.s.c and condensing. Therefore,
applying Lemma 13, we conclude that @, has a fixed point
x(-) on B, . Thus, the fractional control system (4) has a mild
solution on J.

The proof is complete. O

The following result concerns the approximate control-
lability of that problem (4). We assume that the following
assumption be held.

H'(3): There exists a positive constant L such that
|F(t, x(t))|| < Lforall (t,x) € ] x X.

Theorem 15. Assume that assumptions H(1), H(2), H'(3),
and H(4) are satisfied and the linear system (24) is approx-
imately controllable on J. Then system (4) is approximately
controllable on J.

Proof. By employing the technique used in Theorem 14, we
can easily show that, for all 0 < a < 1, the operator @, has a
fixed pointin B, , where r = r(a). Let x*(-) be a fixed point of
®, in B, . Any fixed point of @, is a mild solution of (4); this
means that there exists f* € Sy . such that, for each t € J',

x*(t)

= t*7'T () x,

ST 1) (- ) R ()

k=1

+ Jt (t—s) ' T, (t—s) f*(s)ds

t
+j (t-s)'T,(t-s)BB'T, (b-s)R(aTy)  (88)

(=]

X [xl -, (b) x,
YT (b-t;) (b~ B I (x (1))
k=1

b
- L (b- )T, (b —p) £ () dus | ds.
Define

P(f%)
=x, - b*'T, (b) x,

m

= YT (b t) (b= 1) L (x (£))

k=1
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b
_ J b= 'T, (b—s) f*(s)ds,
0

for some f* € Sy a.

(89)
Noting that I — Fé’R(a, l"g) = aR(a, l"é’), we get
x* (b) = x, —aR(a,l"g)P(f”). (90)
By assumption H '(3),
b
j"ﬂ@W%sﬁb (o)
0

Consequently the sequence {f“} is uniformly bounded in
LYY(J, X). Thus, there is a subsequence, still denoted by { f*},
that converges weakly to, say, f in L'/?(J, X). Denoting

h=x -b*"T, (b)x,

- ];Ta (b - tk) (b - tk)[xillk (x (tI:)) (92)

b
- I b= "'T, (b—s) f(s)ds,
0

we see that
IP(f*) - H|

b
_ L (b=5)"1T, (b=3) [f*(s) = £ (s)] ds

(93)

< sup
0<t<b

b
L (b= "'T, (b=5) [f*(s) - £ (s)] ds

By the Ascoli-Arzela theorem, we can show that the linear
operator g — fo( — )T (- - 5)g(s)ds : LV'(J,X) —
PC,_,(J, X) is compact; consequently the right-hand side of
(93) tends to zeroasa — 0%.

This implies that

ENOREEN
- Jar (o) (7]
#)| +||aR (e 1) (P (f*) - 1)

< ”aR (a, Fg)

asa — 0.
(94)

< [aR (a,13) ()| + |P(f*) - B — 0,

This proves the approximate controllability of system (4). [

Remark 16. In [9], Ganesh et al. have studied the approxi-
mate controllability of fractional integrodifferential evolution
equations. If our problem (4) can be changed as

Dix(t) € Ax (t) + Bu(t) + F (t,x (t), (Hx) (1)),
te(0,b], %<(x§1, (95)

1+"‘x(t)| =X tg(x)eX,

15

where D denotes the Riemann-Liouville fractional deriva-

tive, the operator H is defined by (Hx)(t) = j'(f) h(t, s, x(s))ds.
By a similar way, we can get the approximate controllability
of the system (95).

Remark 17. In [15], Rathinasamy and Yong have researched
the approximate controllability of fractional differential equa-
tions with state-dependent delay. Our problem (4) can be
adopted to the impulsive fractional differential inclusion
system with state-dependent delay:

Dix (t) € Ax (t) + Bu (t) + F (t: X, )

t €(0,b], %<cx§1,
(96)
AL x (t)'t:tk =L (x(t)), k=12,...,m,
LX) =¢eX

where D} is the Riemann-Liouville fractional derivative, A is
the infinitesimal generator of a C,-semigroup {T'(¢), t > 0}
on a Banach space X, the state x(-) takes values in X, the
control function u(-) is given in LP(J,U) (p > 1/a), U is a
Banach space of admissible control, and B : U — X isa
bounded linear operator. F: JxD — P(X) := 2%\ {0} with
D := C((-00,0], X) is a multivalued map. For a continuous
function x : J* = (-00,b] — X, x, is the element of D
defined by x,(s) = x(t +5), —00 < s < 0, and ¢ € D. Further,
p : [0,b] x P(X) — (-—00,b] are appropriate nonlinear
functions.

4. An Example

In this final section, we give an example to illustrate our
abstract results.

Example 1. Consider the following fractional partial differen-
tial inclusion with control

Dix(t,y) € 72x(t y)+F(t,x(t,y)) +Bu(t,y),

te]':[O,l]\{%}, yelon,

e (1Y IO ©7)
AIO+ X(E, )—m, )/E[O,T[],

x(t,0)=x(t,m)=0, te]=][0,1],

SPx ()| =% (), telo], yelon],

where D is the Riemann-Liouville fractional partial deriva-
tive of order 3/5, J = [0, 1].
Let X = U = L*[0, ], define; the operator A by Ax = x

) ; yy
with the domain

D(A) = {x € X:x,x are absolutely continuous,
(98)
Xy, € X, x(t,0) =x(t,m) = 0}.
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Then,

Ax = —020:112 (x,e,) e, x€D(A)), (99)

n=1

where e,(y) = \2/msinny, 0 < y < mon = 1,2,..., is
the orthogonal set of eigenvectors of A. It is easily shown
that operator A generates a strongly continuous semigroup
{T'(t) : t = 0} on X, which are compact, analytic, and self-
adjoint in X.

It can be easily seen that the linear system corresponding
to (97) is approximately controllable on [0, 1] [42].

Define x(t)(y) = x(t, y);let B: U — X be defined by
Bu(t)(y) = Bul(t, y). Then system (97) can be written in the
abstract form given by (4). Weassume that F : JxD — P(X)
satisty the following conditions.

(F):F:]xD — P,.(X) is measurable to ¢ for
each fixed x € D, u.s.c. to x for a.e. t € J, and for each
x € PC,_,(J, X) the set

Sen={fel'U.X): f®) eF(t,)}  (100)

is nonempty.

(F,): There exists a positive constant L such that
|E(t, x)Il < L forall (t,x) € ] x D, since, for any
x, y € AC(J, X), we have

|AL ™ x (8 2) - ALy (8 2)| < u (101)

Obviously, the hypotheses of Theorem 15 are fulfilled.
Thus, the system (97) is approximately controllable on [0, 1].

5. Conclusions

In this paper, we study the approximate controllability for
impulsive fractional differential inclusions with Riemann-
Liouville fractional derivatives in Banach spaces. We mainly
use fixed point theorem and semigroup theory; we obtain
some new mild solutions for this kind of problems (4). An
illustrative example is also discussed to show the effectiveness
of the results in this paper. In the near future, we will consider
Riemann-Liouville fractional partial differential problems,
which will be more complicated.
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