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We establish some new Gronwall-Bellman-type inequalities on time scales. These inequalities are of new forms compared with
other Gronwall-Bellman-type inequalities established so far in the literature. Based on them, new bounds for unknown functions are
derived. For illustrating the validity of the inequalities established, we present some applications for them, in which the boundedness
for solutions for some certain dynamic equations on time scales is researched.

1. Introduction

Asisknown, various integral and differential inequalities play
an important role in the research of boundedness, global
existence, and stability of solutions of differential and integral
equations as well as difference equations. Among the inves-
tigations for inequalities, generalization of the Gronwall-
Bellman-inequality [1, 2] is a hot topic, as such inequalities
provide explicit bounds for unknown functions concerned.
During the past decades, many Gronwall-Bellman-type
inequalities have been discovered (e.g., see [3-18]). Recently,
with the development of the theory of time scales [19], many
integral inequalities on time scales have been established,
for example, [20-32], which have proved to be very effective
in the analysis of qualitative as well as quantitative analysis
of solutions of dynamic equations. But for some certain
dynamic equations, for example,

W ()" = F(ﬁu(t),u(t),jt W(«E,u(f))A§>, @)

or

uf ()= C+ Jtmﬁ<s,u(s),u(s),JOOW(E,L{(E))A§> As

N

+ JTOO F (s, u(s),u(s), LOO W (&, u(8) AE) As,
2

itis inadequate to research the boundedness of their solutions
by use of the existing results in the literature. So it is necessary
to seek new approach to fulfill such analysis for them.

Based on the analysis above, in this paper, we estab-
lish some new Gronwall-Bellman-type inequalities on time
scales, which are designed so as to be used as a handy tool
to research the boundedness of the solutions of the equations
mentioned above. By use of the established inequalities, some
new bounds for the solutions for the two equations are
derived.

In the rest of the paper, R denotes the set of real numbers,
and R, = [0,00). T denotes an arbitrary time scale, and T, =
[ty 00) (T, where t, € T. On T we define the forward and
backward jump operators ¢ € (T, T) and p € (T,T) such
that o(t) = inf{s € T,s > t} and p(t) = sup{s € T, s < t}. The
graininess y € (T,R,) is defined by u(t) = o(t)—t. Obviously,
p) = 0if T = R, while u(t) = 1if T = Z. Apointt € T
with ¢ > inf T is said to be left dense if p(t) = ¢, right dense
it o(t) = t, left scattered if p(t) < t, and right scattered if
o(t) > t. The set T" is defined to be T if T does not have
a left scattered maximum; otherwise it is T without the left
scattered maximum.



The following definitions and theorems in the theory of
time scales are known to us.

Definition 1. A function f € (T,R) is called rd-continuous
if it is continuous in right-dense points and if the left-sided
limits exist in left-dense points, while f is called regressive
if 1 + u(t)f(t)#0. C,4 denotes the set of rd-continuous
functions, while R denotes the set of all regressive and rd-
continuous functions, and R* = {f1feR1+ul)f) >
0, Vt € T}.

Definition 2. For some t € T* and a function f € (T, R), the

delta derivative of f at t is denoted by f(t) (provided that
it exists) with the property such that, for every ¢ > 0, there
exists a neighborhood U of ¢ satisfying

F@@®) - f©- D@ -9)|<elo® -
Vsel

(3)

Definition 3. If FA(t) = f(t) and t € T, then F is called an
antiderivative of f, and the Cauchy integral of f is defined

by

b

jf(t)At=F(b>—F<a), (4)
where a,b € T".

Definition 4. For p € R, the exponential function is defined
by
t
e, (t,s) = exp <J & (P (D) AT) fors,t e T. (5)

Definition 5. If sup,.; t = co and p € R, we define

e, (o, s) = exp <J §un (P (1) AT) forteT. (6)

Theorem 6 (see [20, Theorem 2.1]). If f,g € (T,R) and t €

T, then
@)
G (t)zt;f(t) if u(t) #0,
P01 o-s0 7
}Lmt% if u(t) = 0.

(ii) If f,g are delta differential at t, then fg is also
delta differential at t, and

(f9)* &) = A g @)+ f (0 (1) g° (&) (8)

Theorem 7 (see [20, Theorem 2.2]). Ifa,b,c € T,a € R, and
f> g € C,y, then one has the following:

M) [JLF® +g®at = [0 FOA+ [ gt)At;
(i) [ @) OA = a [ FOAL
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Gii) f; F0Ae == [} fe)as

(W) [ FOA= [ foac+ [ FoAL

W [} fae=0;

(Vi) if f(t) > 0 foralla <t <b, then [ ()AL > 0.

Theorem 8 (see [29, Theorem 5.2]). If p € R, then the
following conclusions hold:

(i) ep(t, t) =1landey(t,s) = 1;
(i) e,(0(t).5) = (1 + p(®)p(t))e, (¢, )
(iii) if p € RY, then ey(t,s) >0 foralls,t € T;
(iv) ifp € R, thenop € R™;
(V) ey(t.5) = 1/(e,(5:8)) = eap(s.t)
whereep = —p/(1 + up).
Remark 9. If s = 0o, then Theorem 8 ((iii), (v)) still holds.

Theorem 10 (see [29, Theorem 5.1]). If p € R and fixt, € T,
then the exponential function e, (t, ) is the unique solution of
the following initial value problem:

YW =pt)y@®,

)
y(t) = 1.
2. Main Results
Lemma 11. Suppose that u,a,m € Cy4(T,,R,), m(t) =
-m(t)b(t), and m € R .. Then
u)<a()+b() J m(s)u(s)As, teT, (10)
t

implies

u)<a()+b(t) JOO ey (t,a(s))m(s)a(s)As, teT,.

(11)
Proof. Denote that v(t) = [ m(s)u(s)As. Then
u(t)y<a(t) +b(t)v(t),
W)= —m@®u®)>-m@)b)v(t) (12)

—-m@)a@)=m@t)v(t)-m@)a(t).

Since 771 € R™, then from Theorem 8 (iv), we have &7 € R™,
and furthermore from Theorem 8 (iii), we obtain e (t, &) >
Oforall @ € T,.

According to Theorem 6 (ii),

[v(8) eams (1)) = [eam ()] v () + eop (0 (), ) v™ (1) .
(13)
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On the other hand, from Theorem 10, we have
[eam(t:00]" = (67) (1) eo (). (14)
So combining (13), (14) and Theorem 8, it follows that
[v (1) eos (1)
= (o) (t) egz (£, x) v (t) + gz (0 (F) , &) VA (1)

(em) ()
1+ u(t) (em) (t)

= e (0 (1), o) [v* (1) -7 () v (B)] .

= e (a(t),oc)[ v(t) +v° (t)]
(15)

Substituting ¢ with s, an integration for (15) with respect to s
from o to co yields

v (00) eg (00, ) — v (&) e (&, )

0 (16)
= J egin (0 (5),x) [VA (s)—m(s)v (s)] As.
By v(00) = 0 and egz(a, &) = 1, it follows that
-v(x) > - JOO egim (0 (s), ) m(s)a(s)As
L (17)
-~ [ en@o@meac) s
which is followed by
v(x) < JOO e (o, 0 (s))m(s)a(s)As. (18)

Since & € T, is arbitrary, after substituting « with ¢, we obtain
the desired inequality. O

Lemma12. Under the conditions of Lemma 11, furthermore, if
b(t) = 1 and a(t) is nonincreasing on T, then
u(t)<a(t)e_, (t,00), teT,. (19)

Proof. Since b(t) = 1 and a(t) is nondecreasing on T, then
m = m and

u(t)y<a(t)+ JOO e_, (t,a(s))a(s)ym(s)As
. 20)
<al(t) [1 + J e, (t,a(s))m(s)As|.
t
From [33, Theorems 2.39 and 2.36 (i)], we have
JOO e_,, (t,o(s))m(s)As
= lim Jt e_, (t,0(s)) (=m(s)) As (1)

lemooe,m (t,x)—e_, (t.t)=e_, (t,00) - 1.

Combining the above information, we can obtain the desired
inequality. O

Lemma 13 (see [4]). Assumethata >0,p >q >0, and p+0;
then for any K > 0, the following inequality holds:

a? < dganivg, PI—) 4 xcalv. (22)

First one will study the following Gronwall-Bellman-type
inequality on time scales:

W) <al)+b(t)

y L‘” [m () + f(s)u? (s) (23)

1 (&)Ul () + j h(E)u’ (&) Af] As.

N

Theorem 14. Suppose that u, f, g,h,m,a,b € C,4(T,,R,),
a,b are nonincreasing, p,q, and r are constants, p > q >
0, p=r=>0,and p+0. If fort € T, u(t) satisfies (23), then

u® <{[a®+bO H, (0 ey, (00)| H®}, teT,
(24)

Provided that f, —H, € R,, where

H (t)=1+b(t) L ej;(t,a(s))f(s) As, 03)
5

fty=-f®b(),

0= |

t

+ —-K + —K
{m (s)+g(s) [ a(s)

x (H, (s))"" As

+J°° r"h(g) [LKu—p)/pa (E)JrlﬂKr/p]
t s P P

% (H, <£>)’“’Af} As, VK >0,
(26)

H, (t) = g (t) %KW‘W% ) (H, (0)"*

[ h® CROPI € (H, @) a5 7
VK > 0.
Proof. Let the right side of (23) be v(t). Then
u(t) <vVVP@), teT, (28)

v(t) < a(t)+b ()

x LOO [m(s) HFOVE+gWI) g

+ JOO h (&) VP (£) AE | As.

N



Let

c(t)y=a@®)+b(t)

XJGJL”(9+9(QVWPGl*Jmh(SV”P@)AE As.

N

(30)

Then we have
v(t)<c(t)+b(t) JOO f)v(s)As, teT,. (31

From Lemma 11, considering c(t) is nonincreasing on T, we
can obtain

[ee)

v(t) < c(t)+ b(t)J- ef(t,a(s))c(s)f(s) As

“ (32)

<c(t) [1 +b(t) L ef(t,a(s))f(s)As]

=c(t)H, (t), teT,

where H, (t), f(t) are defined in (25).
Let

y(0) = jtoo [m(s) +9© @+ [ hOV© AE] As.

N

(33)
Then
cH)=a®+bt)y(). (34)
From Lemma 13, we have
(a()+b() y )"
< %KW*P)/P (a(®)+b(t) y(®) + I%K‘I/P,
(a@)+b®) y®)"”
< %K('_P)/P (a(®)+b(t) y(®) + %K’“’, VK > 0.
(35)

A combination of (32), (33), (34), and (35) yields

(o]

o< | [m(s) + () (c () H, ()"

[ e @ H @708 as
< LOO {m (s)+g(s)[(a(s)+b(s) y(s) H (s)]q/p

NG CGRIGEGNE <s>]’“’A£} As

N
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< JOO {m () +g(s) [ﬂK(q_P)/P (a(s) +b(s) y(s)
t p

+I%Kq/‘”] (H, (s))q/P} As

N

e[ T -p)/p
+L j h(E)[pK (@® +b®) y(©)
+1%K”P] (H, ©) 7 agAs
) joo {m(s)+g(5) [QK(q_P)/pa(s)+ MKq/p]
¢ p p

x (H, ())"*

+ jw h®) [%K(T‘P”Pa ©

N

P=r o rip rlp
Ll ](HI@) Af}As
. j [ 909 %K”‘W“’b (s) (H, )"y (s)

+ Ooh(E)ﬁK(“P)/P
| ros

S

x b (&) (H, (©)""y (€) AE | As

(00

< H,(t) + J- H; (s) y (s) As,

t

(36)

where H,(t), H,(t) are defined in (26) and (27), respectively.
By H,(t) being nonincreasing on T, and -H; € R,
according to Lemma 12, we have

y(t) <H,(t)e_p, (t,00), teT, (37)

Combining (32), (34), and (37), we obtain
v(t) < [at)+b(t) Hy () ey, (t,00)| Hy (1). (38)

From (28), (38), we can obtain the desired inequality (13). [

Based on Theorem 14, we will establish two Volterra-
Fredholm type delay integral inequalities on time scales in
the following two theorems.

Theorem 15. Suppose that u, f, g, h, m, p, q,and r are
defined as in Theorem 14 with —f € R, C > 0 is a constant,
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and T € T, is a fixed number. If for t € [T,00)(T, u(t)
satisfies the following inequality:

uf (1)< C+ JOO [m(s) + f(s) u? (s) +4g(s) ul (s)

NG A«s] As

N

- (39)
+ J [m(s) + f(s)uf (s) + g (s)ul(s)
T

NG As] As,

N

and furthermore, (1 + ﬁZI(T)eﬁ3 (T, 00))e_s(T, 00) < 2, then
fort € [T,o0)T,

© ‘H[ C+ H,, (T)e_g (T, 00) e (T, c0) }
u(t) < p
2 (1+ Hy (T e_g, (T, 00)) ef (T, 00)

x [1+ Hy (t)e_g (t,00)]

1/p
+H,, (1) e_g, (£,00) } e_s(t oo)]» ,

(40)

provided that —H; € R, where
H (t)=1+ L ez (t,0(5)) f (s) As, ft)y=-f@®)b(),
(41)

H,, (1) = j {g (s) %K”‘P’“’(Hl ()"
R1G LKA, (f))’“’Af} As,
VK > 0,
(42)

Hy, () = LOO {m (s)+g(s) I%Kq/p(ﬁl (s))q/p

NG k(A ®)" ¢ a5

N

VK >0,
(43)

T - ~ /
Hy(0) = g(1) %K“ Ple(H, )"
o], @ TKOPH(E @) a8 vk >0
t
(44)
Proof. Let the right side of (39) be v(¢). Then

u(t) <v/? (1), tel[l,00)[T. (45)

5

Considering v(co) = C + J;O[m(s) + f(s)uP(s) + g(s)ul(s) +
[ nEw (§)AE]As, it follows that

v(t) = v(c0)

+ LOO [m (s) + f(s)uf (s) + g (s)ul(s)

[ Thew @ AE] As

N

< v(00)

+ LOO [m(s) + f(s)v(s)

g ()V77 (5) + jm hE YV ©) As] As

N

te[T,00)[T.
(46)

We notice that the structure of (46) is just similar to that
of (29). So following the same manner as the process of
(29)-(38) in Theorem 14 (i.e., v(co) takes the place of a(t)
in Theorem 14, and let b(t) = 1 in Theorem 14), considering

Hy(t) =1+ [ e_;(t,0(s)) f(s)As = e_{(t, 00), we can obtain
v(t) < [v(00) (1+ Hy, (B e_g, (t00))
+Hy, (t) e g, (t,oo)|e_y (too),  (47)
telT,00)[ T,

where H,,(t), Hy,(t),and H,(t) are defined in (42), (43), and
(44), respectively. Setting t = T in (47), we obtain

v(T) < [v(co) (1+ Hy, (T)e_g, (T,00))
_ (48)
+Hy, (T)e_g, (T, 00)] e_ (T, 00).
As 2v(00) — C = v(T), it follows that
2v(00) —C = v(T)
< [v(00) (1+ Hyy (T)e_g, (T, 00)) (49)
+Hy, (T e_g, (T, 00)| e_ (T, 00);
that is,

C+H,, (T) e_g, (T,c0)e_s (T, o)
2-(1+Hy (e g (T.o0))e_; (T,00)

(50)

v(00) <

Combining (45), (47), and (50), we can obtain the desired
inequality (39). O

Theorem 16. Suppose that u, f, h, p,and r are defined as
in Theorem 14 with —f € R, C > 0 is a constant, T € T is a
fixed number, L € C(Ty xR, R,), and 0 < L(s, x) — L(s, y) <



M(s, y)(x = y) for x = y > 0, where M € C(T, x R, R,). If
fort € [T,00) (T, u(t) satisfies the following inequality:

uf ()< C

+ J;OO [f(s) uf (s) + L (s,u(s))

[Trowaas g

N

+ JOO [f(s) ul (s) + L (s,u(s))
T

[ Thow® Af] As,

N

(1),

with  the initial  condition and  furthermore,

e_g, (T, 00)e_¢(T, 00) < 2, then

u(t) < <|

C+H,(T)e_g, (T,00)e_; (T, c0)
2 - eq, (T, c0) e_s (T, o)

+ ﬁl (t):|

1/p
X e_g (t,00)e g (t,oo)} , te [T,oo)n‘[r,

(52)

provided that —H, € R, where

(o)

H,(t) = J

t

L (s, ijlKl/P(e_f (s, oo))l/p) As

N

00 (00 _ . v
+L j h(f)%K/P(e,f(E,oo)) ? AEAs,

VK >0,
(53)
H ()=M <t, pT?IKl/P(e,f (t, oo))l/p>
L a-pip p
x —K e_.(t,00)
Lo .00) "

(o) - v/
o[ ne TROPI e (6 .00)) g

VK > 0.
Proof. Let the right side of (51) be v(t). Then

u(t)<v'’?(t), te[T,00)(T. (55)
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Furthermore, considering v(co) = C + J;o [f(s)uP(s) +
L(s, u(s)) + _LOO h(&)u' (&) AE]As, we have

v(t) = v(oo) + L [f(S) uP (s) + L(s,u(s))

+ LOO hE)u (©) A&] As

. (56)
< v(oo)+J; [f(s)v(s)+L(5,vl/P(s))
+ ro h(E)v'P (&) AE] As.

N

Let

c(t) = LOO [L(s, VP () + roh(s) V17 (&) AE] As. (57)

N

Then
v(t) <v(co)+c(t)+ Jmf(s)v(s)As,
! (58)
te[T,00)(T.

Considering c(t) is nonincreasing on T;, by Lemma 12 we
obtain

v(t) < (v(00) +c(h) ey (t,00),
(59)
te[T,00)[T.

Combining (57) and (59), it follows that
c(t) < L fL(s () +e@e s (s.00)")

e @e @ oo)]’“’Af} As

N

te[T,00)[|T.
(60)

On the other hand, from Lemma 13 one can see that the
following inequalities hold:

(v(c0) +c ()"

< —KTPIP (3 (00) + ¢ (1)) + %KW’

1

p

(v(00) +c (t))"?

VK > 0.
(61)

< ZKEPIP (4 (00 + ¢ (1) + 2L K"P,
p p
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So combining (60) and (61), we have

v (00) + ¢ (t) < v(00)

" J L <5, (lK(LP”P (v(c0) +¢(s))
¢ p
+pT?1K1/p> (e—f (s, oo))l/P> As

. fo fo hE) [%K"‘P’“’ (v(00) + ¢ (§))

+—p_rK'/P]
p

X (e,f (&, oo))r/pAEAs

=v(00) + JOO {L (S, <%K(1P)/P (v(00) + ¢ (s))

t

I 1K1/P>
p

x(e g (s 00))1/P>

(s 2t 00))

+L (s, p; IKI/P(e_f (s, oo))l/P>]» As

; LOO jm h(&) [%KW/P (v(c0) +¢ (§)

S

+p_ rKr/P]
p

x (e_s (£ 00)) " AtAS

< v(c0) + JOO {M <s, ijlKl/p(e_f (s, 00))1/P)

t

x [%K“PW (v (00) +¢(s))

x(eg (s 00))1/?]

-1
+L<s, Pz e
p

X (e_f (s, oo))l/P>} As

. L‘” H""h(g) %Kv—p)/p(e_f (&, oo))r/pAf]

N

7
X (v(00) + c(s)) As
— v (c0) + H, (t) + roﬁz (5) (v (00) + ¢ (5)) As,
(62)

where ﬁl(t), ﬁz(t) are defined in (53) and (54), respectively.
Considering I:L(t) is nonincreasing on T,, then by
Lemma 12, we have

v(00) +c(t) < [v(co) + H, (t)] e_g, (£, 00),
(63)
te[T,00)[|T.

Combining (59) and (63), we obtain

v(t) < [v(co) + H, (t)] e_g, (t,00)e_ (£, 00),
(64)
te[T,00)[T.

Setting t = T in (64), considering 2v(co) — C = w(T), we
obtain

2v(00) = C = v(T)
< [v(co) + Hy (1)) e_g, (T,00)e_s (T, 00),
(65)
which is followed by

C+H,(T)e_g (T,00)e_; (T, 0)

(66)
2-ep (T, c0) e_s (T, c0)

v(00) <

Then combining (55), (64), and (66), we can obtain the
desired inequality (52). O

3. Applications

In this section, we apply the results established above to
analysis of boundedness of solutions for certain dynamic
equations.

Example 17. Consider the following dynamic equation:

(u? (t))A =F <t,u(t),u(t) , LOOW(E,u(E)) AE), teT,,
(67)

where u € C4(T,,R), C is a constant with C = u?(00), and
p > 0is a constant.

Theorem 18. Suppose that u(t) is a solution of (66)-(67) and
assume that |F(t,x, y,z)| < f(t)|lx|? + g(t)ly|? + |z| and
(W (t,x)| < h(t)|x|", where f, g, h, q,and r are defined the
same as in Theorem 14; then the following inequality holds:
1/p
lu@®)] < {[ICI+H, (1) e_y, (t,o0)| H, (1)} 7, teT,
(68)



where

(o)

H#)=1+ J e_s (t,0(5) f (s)As,

t

H,(t) = Jtoo {g ) [%K(Q_P)/P IC| + I%Kq/l’]
x (H, (S))q/p

+ ro hE) [fK“*P)/P Cl + EK’/"]
p p

S

x (H; (f))r/pAf} As, VK >0,

H, (t) = g (t) %KW‘P)/P(HI 0)

" j h(E) %K“‘P”P(Hl )77 a¢,
VK > 0.
(69)

Proof. The equivalent integral equation of (56) can be
denoted by

@) =C+ LOO F (s,u (s),u(s), J;OO W (& u () AE) As.
(70)

Then we have

[u” ®

<|Cl+ LOO IF (s,u(s) ,u(s), JOOW(E,u(E)) AE) As

S

<|Cl+ L [f(S) ()P + g () lu(s)]?

+

| weuea ] As

N

<|Cl + j [f(s) )P + g (5) lu (s)]?

+ Im h(€)|u (£)|rAE] As.

N

(71)

A suitable application of Theorem 14 (i.e., |C| takes the place
of a(t) in Theorem 14, and b(¢t) = 1 in Theorem 14) yields
(68). O

Remark 19. Under the conditions of Theorem 18, considering
H(t) =1+ LOO e_f(t, a(s)) f(s)As = e_f(t, 00), furthermore
we have the following estimate:

ju @) < {[IC1+ Hy 9 e_gy, (t.00)] e_s (o)}, teT,
(72)
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Example 20. Consider the following dynamic equation:

uf ()= C+ Looﬁ(s,u(s),u(s),JwW(g,u(f))Az) As

N

+ J:O F (s,u (s),u(s), LOO W (&, u (&) AE) As,
te(T,00)[ T,
(73)

where u € C4(Ty,R), T € T, C is a constant with C =
uP(00), and p > 0 is a constant.

Theorem 21. Suppose that u(t) is a solution of (73) and
assume that |E(t, x, y2)| < fOIxIP + L, |yl) + |z| and
[W(t, x)| < h(t)|x|", where f, h, r,and L are defined the same
as in Theorem 16. Then the following inequality holds:

ICl + H, (T)e_g, (T, 00)e_; (T, c0)

2-e_g (T,00)e_g (T, 00) +H @)

u(t) < [

Xe_p (t, 00) ey (t,00), te][T,00] ﬂ T,
(74)
provided that e_HZ(T, oo)e_f(T, 00) < 2 and —f, —ﬁz e R,
where ﬁl(t), ﬁz(t) are defined as in Theorem 16.

Proof. From (73), we have
[uf (1)] < |C|+L lﬁ(s,u(s),u(s),J W(f,u(s))Af) As

+ LOO ’ﬁ(s,u (s),u(s), LSO W (&, u (£)) A«f) As

< 'C'+L [f(s) u (5)1P + L (s Ju (5)])

+

j W (& u(®) AE ] As
s jm [f(s) O + L (s Ju ()
T

+

| Weu@nas ] As

(o]

< |C|+J

t

[f(s)lu(s)|p+L(s,Iu(s)|)

g h(£>|u(£>|’]As

g [f(s)|u(s)|P+L<s,|u(s)|)
T

+ J:O h(€)|u (E)|r] As.
(75)

Then under the condition e_q, (T, 00)e_ ¥ (T,o0) < 2,a
suitable application of Theorem 16 yields (74). O
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