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We study the half-linear delay differential equation (𝑟(𝑡)Φ(𝑥
󸀠
(𝑡)))
󸀠
+ 𝑐(𝑡)Φ(𝑥(𝜏(𝑡))) = 0, Φ(𝑥) := |𝑥|

𝑝−2
𝑥, 𝑝 > 1. We establish a

new a priori bound for the nonoscillatory solution of this equation and utilize this bound to derive new oscillation criteria for this
equation in terms of oscillation criteria for an ordinary half-linear differential equation. The presented results extend and improve
previous results of other authors. An extension to neutral equations is also provided.

1. Introduction

In this paper we study oscillatory properties of the delay
second-order half-linear differential equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡)Φ (𝑥 (𝜏 (𝑡))) = 0,

Φ (𝑥) := |𝑥|
𝑝−2

𝑥, 𝑝 > 1.

(1)

We suppose that 𝑟, 𝑐, 𝜏 are continuous functions defined
on [𝑡
0
,∞) such that 𝑟(𝑡) > 0, 𝑐(𝑡) > 0 for large 𝑡, 𝜏(𝑡) ≤ 𝑡

for all 𝑡, and lim
𝑡→∞

𝜏(𝑡) = ∞. By 𝑞 we denote the conjugate
number to the number 𝑝, that is, 𝑞 = 𝑝/(𝑝 − 1).

Under the solution of (1) we understand any differentiable
function 𝑥(𝑡) which does not identically equal zero eventu-
ally, such that 𝑟(𝑡)Φ(𝑥󸀠(𝑡)) is differentiable and (1) holds for
large 𝑡.

The solution of (1) is said to be oscillatory if it has
infinitelymany zeros tending to infinity. Equation (1) is said to
be oscillatory if all its solutions are oscillatory. In the opposite
case, that is, if there exists an eventually positive solution of
(1), (1) is said to be nonoscillatory.

It is well known that the behavior of delay differential
equations is very different from the behavior of ordinary
differential equations. Among others, the Sturm theory fails
and oscillatory solutions may coexist with nonoscillatory
solutions.

In certain special cases, it is possible to compare asymp-
totics of (1) with some other simpler equation. One of the

typical objects for this comparison is the first order delay
differential equation; see, for example, [1–3] for results on
comparing (1) or its extension in the form of neutral differen-
tial equation with the first order delay differential inequality.
Another simpler object than (1) suitable for comparison
with (1) is the half-linear second-order ordinary differential
equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡)Φ (𝑥 (𝑡)) = 0; (2)

see, for example, [4–7]. Note that some of these papers deal
with a slightly more general equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) = 0. (3)

However, if this more general equation is considered, con-
ditions imposed on the nonlinearity 𝑓 usually state that
(3) is a kind of majorant of (1) (in the sense used in the
Sturmian theory of ordinary differential equations) and allow
to extend the results readily from (1) to (3). An example of
such conditions is

𝑓 (𝑡, 𝑢, V)

Φ (V)
≥ 𝑐 (𝑡) or

𝑓 (𝑡, 𝑢, V)

Φ (𝑢)
≥ 𝑐 (𝑡) (4)

for some (positive) function 𝑐(𝑡) and all positive numbers
𝑢, V. Note also that some of the above cited papers deal
more generally with neutral differential equations and (or)
dynamic equations on time scales.
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In this paper we compare (1) with the ordinary half-
linear equation of the form (2). To make our paper more
readable we restrict our attention to differential equations
rather than equations on time scales. An extension of our
results to neutral differential equations is provided at the end
of this paper.

Let us recall the Riccati technique, which is one of the
methods frequently used in oscillation theory of both (1)
and (2) (it is easy to see that if 𝜏(𝑡) = 𝑡, then (1) reduces
to (2)). Suppose that (1) is nonoscillatory and let 𝑥 be
its eventually positive solution. Then the function 𝑤(𝑡) =

𝑟(𝑡)Φ(𝑥
󸀠(𝑡))/Φ(𝑥(𝑡)) satisfies the Riccati type equation

𝑤
󸀠

(𝑡) + 𝑐 (𝑡) Φ(
𝑥 (𝜏 (𝑡))

𝑥 (𝑡)
) + (𝑝 − 1) 𝑟

1−𝑞

(𝑡) |𝑤 (𝑡)|
𝑞
= 0.

(5)

The following lemma plays a crucial role in the qualita-
tive theory of half-linear second order ordinary differential
equations.

Lemma 1 (see [8, Theorem 2.2.1]). Denote L[𝑥] =

(𝑟(𝑡)Φ(𝑥󸀠(𝑡)))
󸀠

+ 𝑐(𝑡)Φ(𝑥(𝑡)) and R[𝑤] = 𝑤󸀠 + 𝑐(𝑡) + (𝑝 −

1)𝑟1−𝑞(𝑡)|𝑤|𝑞. The following statements are equivalent:

(i) (2) is nonoscillatory,

(ii) there is 𝑎 ∈ R and a continuously differentiable func-
tion 𝑤 : [𝑎,∞) → R such that

𝑅 [𝑤] (𝑡) = 0 for 𝑡 ∈ [𝑎,∞) , (6)

(iii) there is 𝑎 ∈ R and a continuously differentiable func-
tion 𝑤 : [𝑎,∞) → R such that

𝑅 [𝑤] (𝑡) ≤ 0 for 𝑡 ∈ [𝑎,∞) , (7)

(iv) there is 𝑎 ∈ R and a positive function 𝑥 : [𝑎,∞) → R

with 𝑟Φ(𝑥󸀠) continuously differentiable such that

L [𝑥] (𝑡) ≤ 0 for 𝑡 ∈ [𝑎,∞) . (8)

As we show below, the assumptions used in the paper
ensure that the positive solutions are eventually increasing
and concave down. The main step when we compare the
ordinary half-linear differential equation and its delay coun-
terpart (1) is to reduce (5) to the Riccati inequality of the
form (7). The usual approach on how to remove the term
Φ(𝑥(𝜏(𝑡))/𝑥(𝑡)) from (5) is the following lemma, originally
proved in [9] and then used in many subsequent papers.

Lemma 2. Suppose that 𝑥 is a function defined for some 𝑇 > 0

such that 𝑥(𝑡) ∈ 𝐶2[𝑇,∞), 𝑥(𝑡) > 0, 𝑥󸀠(𝑡) > 0, and 𝑥󸀠󸀠(𝑡) ≤ 0

for 𝑡 ≥ 𝑇. Then, for each 𝑘 ∈ (0, 1) there exists 𝑇
𝑘
≥ 𝑇 such

that

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)
≥ 𝑘

𝜏 (𝑡)

𝑡
for 𝑡 ≥ 𝑇

𝑘
. (9)

Note that the proof of Lemma 2 does not exploit the fact
that 𝑥 is a solution of (1) and the lemma holds for any positive
increasing concave down function. The proof of (9) can be
based on the fact that if 𝑥󸀠󸀠(𝑡) ≤ 0 on [𝑇,∞) and 𝑥(𝑇) ≥ 0,
then 𝑥(𝑡)/(𝑡−𝑇) is decreasing with respect to 𝑡 on [𝑇,∞) (see
[10, Theorem 128]). Thus

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)
≥
𝜏 (𝑡) − 𝑇

𝑡 − 𝑇
=
𝜏 (𝑡)

𝑡

1 − (𝑇/𝜏 (𝑡))

1 − (𝑇/𝑡)
, (10)

where 𝑇 ≤ 𝜏(𝑡) ≤ 𝑡. Removing the dependence on 𝑇 may be
implemented by using of a constant 𝑘 ∈ (0, 1). The presence
of one of the constants 𝑇 or 𝑘 in the estimates (9) and (10) is
an important attribute of these estimates. As a consequence,
the resulting integral oscillation citeria have to be formulated
either with the constant 𝑘 ∈ (0, 1), or as interval-type
or Kamenev-type criteria, where the dependence on 𝑇 is
usually not disturbing.A typical result looks like the following
Theorem A.

Theorem A (see [11, Theorem 2.6]). Equation (1) with 𝑟 ≡ 1

is oscillatory if the differential equation

(Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝜆𝑐 (𝑡) (
𝜏 (𝑡)

𝑡
)
𝑝−1

Φ (𝑥 (𝑡)) = 0 (11)

is oscillatory for some 𝜆 ∈ (0, 1).

As another particular example of a criterion which suffers
from the presence of the constants 𝑚

𝑖
∈ (0, 1) see [12,

Theorem 2.1].
The above mentioned disadvantage has been removed for

the linear delay equation

𝑥
󸀠󸀠

(𝑡) + 𝑐 (𝑡) 𝑥 (𝜏 (𝑡)) = 0 (12)

under the condition

∫
∞

0

𝑠𝑐 (𝑠) 𝑑𝑠 = ∞. (13)

Opluštil and Šremr utilized in recent papers [13, 14] (12) to
derive a sharper estimate than the estimate from Lemma 2.
Note that imposing (13) on 𝑐 does not yield any restriction in
oscillation criteria for (12) since (12) is already known to be
nonoscillatory if (13) fails. The same approach has been used
for linear dynamic equations on time scales by Erbe, Peterson
and Saker in [15].

The aim of this paper is to derive a result analogical to the
estimate from [13, 14] andmake it available also for delay half-
linear differential equation. The nonlinearity of the equation
causes, that the method from [13, 14] does not extend to
(1) directly and we have to use an indirect approach which
originates in the fact that the half-linear extension does not
yield (13) as its special case, but includes the term 𝜏(𝑠) instead
of 𝑠. This estimate suggests a new tool which can be used to
improve some oscillation criteria for (1).

2. Preliminaries

The proof of the following statement can be found in [16].
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Lemma 3. Let 𝑥 be an eventually positive solution of (1). If
∫
∞

𝑟1−𝑞(𝑡) 𝑑𝑡 = ∞, then 𝑥󸀠(𝑡) > 0 for large 𝑡. Moreover, if
𝑟󸀠(𝑡) ≥ 0, then 𝑥󸀠󸀠(𝑡) ≤ 0 for large 𝑡.

The following lemma shows that under certain additional
conditions we can utilize (1) to derive a sharper version of the
estimate from Lemma 2.

Lemma 4. Suppose that (1) is nonoscillatory, and let 𝑥(𝑡) > 0

be a solution of (1). If the conditions

∫
∞

𝑟
1−𝑞

(𝑡) 𝑑𝑡 = ∞, 𝑟
󸀠

(𝑡) ≥ 0 for large 𝑡, (14)

∫
∞

𝑐 (𝑡) 𝜏
𝑝−1

(𝑡) 𝑑𝑡 = ∞ (15)

hold, then there exists 𝑇 ∈ R such that

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)
≥
𝜏 (𝑡)

𝑡
, 𝑡 ≥ 𝑇. (16)

Proof. Conditions (14) and Lemma 3 imply that there exists
𝑇
0
such that 𝑥(𝑡) > 0, 𝑥󸀠(𝑡) > 0, 𝑥󸀠󸀠(𝑡) ≤ 0 for 𝑡 ≥ 𝑇

0
.

We show that

𝑡𝑥
󸀠

(𝑡) − 𝑥 (𝑡) ≤ 0 (17)

for large 𝑡. Since (𝑡𝑥󸀠(𝑡) − 𝑥(𝑡))󸀠 = 𝑡𝑥󸀠󸀠(𝑡) ≤ 0, it is sufficient
to show that (17) holds for some 𝑇

1
≥ 𝑇
0
. Suppose, by

contradiction, that 𝑡𝑥󸀠(𝑡)−𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑇
0
. Solving this

inequalitywe get𝑥(𝑡) > 𝐾𝑡 for 𝑡 ≥ 𝑇
0
, where𝐾 = 𝑥(𝑇

0
)/𝑇
0
>

0. Hence, there exists 𝑇
2
≥ 𝑇
0
such that

Φ (𝑥 (𝜏 (𝑡))) ≥ 𝐾
𝑝−1

(𝜏 (𝑡))
𝑝−1

, 𝑡 ≥ 𝑇
2
. (18)

Since 𝑥 is a solution of (1), we have

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

= −𝑐 (𝑡)Φ (𝑥 (𝜏 (𝑡)))

≤ −𝐾
𝑝−1

𝑐 (𝑡) (𝜏 (𝑡))
𝑝−1

,

𝑡 ≥ 𝑇
2
.

(19)

Integrating the last inequality from 𝑇
2
to 𝑡 we obtain

𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)) − 𝑟 (𝑇
2
)Φ (𝑥

󸀠
(𝑇
2
))

≤ −𝐾
𝑝−1

∫
𝑡

𝑇
2

𝑐 (𝑠) (𝜏 (𝑠))
𝑝−1

𝑑𝑠,

(20)

and from the fact that 𝑟(𝑡)Φ(𝑥󸀠(𝑡)) is positive we get the
following finite upper bound for the integral of 𝑐(𝑠)(𝜏(𝑠))𝑝−1:

𝐾
𝑝−1

∫
𝑡

𝑇
2

𝑐 (𝑠) (𝜏 (𝑠))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑇
2
)Φ (𝑥

󸀠
(𝑇
2
)) − 𝑟 (𝑡) Φ (𝑥

󸀠

(𝑡)) < 𝑟 (𝑇
2
)Φ (𝑥

󸀠
(𝑇
2
))

(21)

for 𝑡 ≥ 𝑇
2
. However the condition (15) ensures that the left

hand side of this inequality is unbounded.This contradiction
proves (17) for large 𝑡.

Hence there exists 𝑇
1
≥ 𝑇
0
such that (17) holds for 𝑡 ≥ 𝑇

1
.

This inequality together with the computation

(
𝑥 (𝑡)

𝑡
)
󸀠

=
𝑡𝑥󸀠 (𝑡) − 𝑥 (𝑡)

𝑡2
≤ 0, 𝑡 ≥ 𝑇

1
, (22)

shows that the function 𝑥(𝑡)/𝑡 is decreasing on (𝑇
1
,∞). This

fact and the fact that 𝜏(𝑡) ≤ 𝑡 reveal that there exists 𝑇 ≥ 𝑇
1

such that
𝑥 (𝑡)

𝑡
≤
𝑥 (𝜏 (𝑡))

𝜏 (𝑡)
, 𝑡 ≥ 𝑇, (23)

which is equivalent to (16).

3. Oscillation of Delay Differential Equation

Theorem 5. Suppose that conditions (14) and (15) hold. If the
ordinary differential equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡) (
𝜏 (𝑡)

𝑡
)
𝑝−1

Φ (𝑥 (𝑡)) = 0 (24)

is oscillatory, then (1) is also oscillatory.

Proof. Suppose, by contradiction, that (1) is nonoscillatory
and (24) is oscillatory. Let 𝑥 be an eventually positive solution
of (1). Using Lemma 4 we see that 𝑥 satisfies the inequality

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡) (
𝜏 (𝑡)

𝑡
)
𝑝−1

Φ (𝑥 (𝑡)) ≤ 0 (25)

and hence, using equivalence between parts (i) and (iv) of
Lemma 1, we see that (24) is nonoscillatory which contradicts
our assumptions.

Remark 6. The oscillation criterion from Theorem 5 is gen-
eral in the sense that the oscillation is given in terms of oscil-
lation of a certain half-linear differential equation rather than
in terms of explicit conditions on the coefficients of the equa-
tion. Most of the related papers continue the proofs by
utilizing techniques used in the theory of half-linear ordinary
differential equations (often simply copy of the proofs of
known oscillation citeria) to reach effective conditions for
oscillation. However, we feel our approach as an advantage,
since it allows to utilize arbitrary from large family of oscil-
lation criteria for half-linear oscillation equations to detect
oscillation of delay equation. See also [8] for a comprehensive
survey on oscillation criteria known up to 2005.

Remark 7. Note that a similar result like Theorem 5 can be
proved also without Lemma 4 and using Lemma 2 instead.
This results in a comparison of (1) with the equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡) 𝜆(
𝜏 (𝑡)

𝑡
)
𝑝−1

Φ (𝑥 (𝑡)) = 0, (26)

where 𝜆 is a real parameter which satisfies 𝜆 ∈ (0, 1). (Note
that for 𝑟 ≡ 1we getTheoremA.) Equation (24) can be viewed
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in a certain sense as a continuation of (26) with respect to 𝜆
to the border value 𝜆 = 1. Note that the problems related
to oscillation of equation of the type (26) and dependence of
oscillatory properties on the parameter 𝜆 are referred to as
conditional oscillation. In general, oscillation of (26) implies
oscillation of (24), but the opposite implication need not be
true in general, see the paper [17] which (based on the results
from [18]) suggests a method on how to construct a pair of
equations of the type (24) and (26) with (24) oscillatory and
(26) nonoscillatory.

Remark 8. Theorem 5 extends Theorem A, where oscillation
of (1) is deduced from oscillation of (26). The following
example shows that this extension is nonempty.

Example 9. Consider the perturbed Euler type half-linear
delay differential equation

(Φ (𝑥
󸀠
))
󸀠

+ (
𝑝 − 1

𝑝
)

𝑝

(
1

𝑡𝑝
+

𝜇

𝑡𝑝 ln 𝑡
)

× (
𝑡

𝜏 (𝑡)
)

𝑝−1

Φ (𝑥 (𝜏 (𝑡))) = 0,

(27)

where 𝜇 > 0 is real constant. According toTheorem 5, (27) is
oscillatory if

(Φ (𝑥
󸀠
))
󸀠

+ (
𝑝 − 1

𝑝
)

𝑝

(
1

𝑡𝑝
+

𝜇

𝑡𝑝 ln 𝑡
)Φ (𝑥 (𝑡)) = 0 (28)

is oscillatory. Following [8, Theorem 5.2.2] (see also [19]) we
treat (28) as a perturbation of the nonoscillatory equation

(Φ (𝑥
󸀠
))
󸀠

+ (
𝑝 − 1

𝑝
)

𝑝
1

𝑡𝑝
Φ (𝑥) = 0 (29)

with principal solution ℎ(𝑡) = 𝑡
(𝑝−1)/𝑝. A simple computation

shows

∫
∞

(
𝑝 − 1

𝑝
)

𝑝
𝜇

𝑡𝑝 ln 𝑡
𝑡
𝑝−1

𝑑𝑡 = ∞ (30)

hence (28) is oscillatory by [8,Theorem 5.2.2]. Consequently,
(27) is oscillatory for every 𝜇.

We claim that the oscillation of (27) cannot be proved
withTheorem A. Really, in our example (11) becomes

(Φ (𝑥
󸀠
))
󸀠

+ 𝜆(
𝑝 − 1

𝑝
)

𝑝

(
1

𝑡𝑝
+

𝜇

𝑡𝑝 ln 𝑡
)Φ (𝑥 (𝑡)) = 0, (31)

where 𝜆 ∈ (0, 1). This equation is nonoscillatory for every
𝜇 > 0 by Kneser type nonoscillation criterion [8, Theorem
1.4.5], and thus Theorem A fails to apply.

4. Oscillation of Neutral Differential Equation

In this section we use a slight modification of the estimates
from the first part of the paper to derive similar results for
the second order neutral differential equation

(𝑟 (𝑡) Φ (𝑧
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡) Φ (𝑥 (𝜏 (𝑡))) = 0, (32)

where
𝑧 (𝑡) = 𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜃 (𝑡)) , (33)

0 ≤ 𝑎(𝑡) < 1, 𝑟(𝑡) > 0, 𝑐(𝑡) ≥ 0, 𝜏(𝑡) ≤ 𝑡, 𝜃(𝑡) ≤ 𝑡,
lim
𝑡→∞

𝜏(𝑡) = lim
𝑡→∞

𝜃(𝑡) = ∞.
Similarly as for (1), if 𝑥 is a solution of (32) on [𝑡

0
,∞)

such that 𝑧(𝑡) is positive on [𝑡
0
,∞), then the function 𝑤(𝑡) =

𝑟(𝑡)(Φ(𝑧󸀠(𝑡))/Φ(𝑧(𝑡))) satisfies the Riccati type equation

𝑤
󸀠
+ 𝑐 (𝑡)Φ(

𝑥 (𝜏 (𝑡))

𝑧 (𝑡)
) + (𝑝 − 1) 𝑟

1−𝑞

(𝑡) |𝑤|
𝑞
= 0 (34)

on [𝑡
0
,∞).

Similarly like for the delay equation, the positive solution
is increasing and concave down.More precisely, the following
lemma holds. For linear version of this lemma see [2, Lemma
1] and for 𝑝 ≥ 2 see [1, Lemma 2.1].

Lemma 10. Let 𝑥(𝑡) be an eventually nonoscillatory solution
of (32). If ∫∞ 𝑟1−𝑞(𝑡)𝑑𝑡 = ∞, then the corresponding function
𝑧(𝑡) = 𝑥(𝑡) + 𝑎(𝑡)𝑥(𝜃(𝑡)) satisfies

𝑧 (𝑡) > 0, 𝑧
󸀠

(𝑡) > 0 (35)

eventually. Moreover, if 𝑟󸀠(𝑡) ≥ 0, then 𝑧󸀠󸀠(𝑡) < 0 for large 𝑡.

Proof. The proof is essentially the same as the proof of [1,
Lemma 2.1]. We just relax the restriction on 𝑝.

Without loss of generality we can suppose that 𝑥 is
eventually positive solution of (32). There exists 𝑇 ∈ R such
that 𝑥(𝑡), 𝑥(𝜏(𝑡)) and 𝑥(𝜃(𝑡)) are positive on (𝑇,∞) and

(𝑟 (𝑡) Φ (𝑧
󸀠

(𝑡)))
󸀠

= −𝑐 (𝑡) Φ (𝑥 (𝜏 (𝑡))) < 0 (36)

for 𝑡 ∈ (𝑇,∞). Hence, 𝑟(𝑡)Φ(𝑧󸀠(𝑡)) is decreasing and either

Φ(𝑧
󸀠

(𝑡)) > 0 or Φ(𝑧
󸀠

(𝑡)) < 0 (37)

for large 𝑡.
Suppose that there exists 𝑇

1
> 𝑇 such that Φ(𝑧󸀠(𝑡)) < 0

for 𝑡 ≥ 𝑇
1
. There exists a positive constant𝑀 such that

𝑟 (𝑡) Φ (𝑧
󸀠

(𝑡)) < −𝑀 < 0,

𝑧
󸀠

(𝑡) < −Φ
−1

(𝑀) 𝑟
1−𝑞

(𝑡)

(38)

for 𝑡 ≥ 𝑇
1
. Integrating this inequality over the interval (𝑇

1
, 𝑡)

we get

𝑧 (𝑡) ≤ 𝑧 (𝑇
1
) − Φ
−1

(𝑀)∫
𝑡

𝑇
1

𝑟
1−𝑞

(𝑠) 𝑑𝑠. (39)

Letting 𝑡 → ∞ we have a negative upper bound for the
function 𝑧 and large 𝑡. However, the positivity of both 𝑥(𝑡)

and 𝑥(𝜃(𝑡)) implies positivity of 𝑧. This contradiction proves
thatΦ(𝑧󸀠(𝑡)) > 0 and 𝑧󸀠(𝑡) > 0 eventually.

If 𝑟󸀠(𝑡) ≥ 0, then

0 > (𝑟 (𝑡) Φ (𝑧
󸀠

(𝑡)))
󸀠

= 𝑟
󸀠

(𝑡) Φ (𝑧
󸀠

(𝑡)) + 𝑟 (𝑡) (𝑝 − 1)
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑧
󸀠󸀠

(𝑡)

≥ 𝑟 (𝑡) (𝑝 − 1)
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑧
󸀠󸀠

(𝑡) ,

(40)

and hence 𝑧󸀠󸀠(𝑡) < 0.
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Lemma 11. Suppose that 𝑥 is an eventually positive nonoscilla-
tory solution of (32) and 𝑧 is the corresponding function defined
by (33). If ∫∞ 𝑟1−𝑞(𝑡)𝑑𝑡 = ∞, then

𝑥 (𝜏 (𝑡)) ≥ [1 − 𝑎 (𝜏 (𝑡))] 𝑧 (𝜏 (𝑡)) (41)

eventually.

Proof. According to Lemma 10 there exists 𝑇 such that

𝑥 (𝜃 (𝜃 (𝑡))) > 0, 𝑧 (𝑡) > 0, 𝑧
󸀠

(𝑡) > 0 (42)

holds for 𝑡 ≥ 𝜏(𝑇). From here and from the fact that 𝑧 is
increasing and 𝜃 is delay we have

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜃 (𝑡)) ≤ 𝑥 (𝑡) + 𝑎 (𝑡) 𝑧 (𝜃 (𝑡))

≤ 𝑥 (𝑡) + 𝑎 (𝑡) 𝑧 (𝑡) .
(43)

From here we conclude

𝑧 (𝑡) (1 − 𝑎 (𝑡)) ≤ 𝑥 (𝑡) (44)

and hence (41) holds for 𝑡 > 𝑇.

The following lemma is an alternative to Lemma 4 for
neutral differential equations.

Lemma 12. Suppose that (32) is nonoscillatory and 𝑥(𝑡) is an
eventually positive solution of (32). If

∫
∞

𝑐 (𝑠) (1 − 𝑎 (𝜏 (𝑠)))
𝑝−1

(𝜏 (𝑠))
𝑝−1

𝑑𝑠 = ∞ (45)

and (14) holds, then the function 𝑧(𝑡)/𝑡 is decreasing eventu-
ally.

Proof. Similarly like in Lemma 4 we find the derivative

(
𝑧 (𝑡)

𝑡
)
󸀠

=
𝑧󸀠 (𝑡) 𝑡 − 𝑧 (𝑡)

𝑡2
. (46)

It is sufficient to show that 𝑧󸀠(𝑡)𝑡 − 𝑧(𝑡) < 0 eventually.
Lemma 10 implies that there exists 𝑡

0
such that 𝑧󸀠󸀠(𝑡) < 0 on

(𝑡
0
,∞). This shows that 𝑧󸀠(𝑡)𝑡 − 𝑧(𝑡) is decreasing on (𝑡

0
,∞).

As a consequence, if 𝑧󸀠(𝑡
1
)𝑡
1
−𝑧(𝑡
1
) < 0 for some 𝑡

1
> 𝑡
0
, then

𝑧
󸀠
(𝑡)𝑡 − 𝑧(𝑡) < 0 on (𝑡

1
,∞).

Suppose by contradiction that there exists 𝑡
2
such that

𝑧󸀠(𝑡)𝑡 − 𝑧(𝑡) > 0 on (𝑡
2
,∞). Solving this inequality we get

𝑧 (𝑡) ≥
𝑧 (𝑡
2
)

𝑡
2

𝑡. (47)

Now integrating (32) from 𝑡
2
to 𝑡 and using (41) we get

𝑟 (𝑡) Φ (𝑧
󸀠

(𝑡)) = 𝑟 (𝑡
2
)Φ (𝑧

󸀠
(𝑡
2
)) − ∫

𝑡

𝑡
2

𝑐 (𝑠) (𝑥 (𝜏 (𝑠)))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑡
2
)Φ (𝑧

󸀠
(𝑡
2
))

− ∫
𝑡

𝑡
2

𝑐 (𝑠) [1 − 𝑎 (𝜏 (𝑠))]
𝑝−1

(𝑧 (𝜏 (𝑠)))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑡
2
)Φ (𝑧

󸀠
(𝑡
2
)) −

𝑧 (𝜏 (𝑡
2
))

𝜏 (𝑡
2
)

× ∫
𝑡

𝑡
2

𝑐 (𝑠) [1 − 𝑎 (𝜏 (𝑠))]
𝑝−1

(𝜏 (𝑠))
𝑝−1

𝑑𝑠.

(48)

Taking 𝑡 sufficiently large and using (45) we obtain a negative
upper bound for a positive function 𝑟(𝑡)Φ(𝑧󸀠(𝑡)).This contra-
diction proves the lemma.

Now we can formulate the comparison theorem which
relates neutral differential equations to ordinary second-
order half-linear differential equations.

Theorem 13. Suppose that (45) and (14) hold. If the ordinary
half-linear differential equation

(𝑟 (𝑡) Φ (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]
𝑝−1

× (
𝜏 (𝑡)

𝑡
)
𝑝−1

Φ (𝑥 (𝑡)) = 0

(49)

is oscillatory, then (32) is also oscillatory.

Proof. Having proved important estimates in the preceding
two lemmas, the proof of the theorem is a modification
of the proof of Theorem 5. If 𝑥(𝑡) is an eventually positive
solution of (32), then the function 𝑤 defined by 𝑤(𝑡) =

𝑟(𝑡)Φ(𝑧
󸀠(𝑡))/Φ(𝑧(𝑡)) satisfies (34). Using Lemmas 11 and 12

we see that

0 = 𝑤
󸀠
+ 𝑐 (𝑡)Φ(

𝑥 (𝜏 (𝑡))

𝑧 (𝑡)
) + (𝑝 − 1) 𝑟

1−𝑞

(𝑡) |𝑤|
𝑞

≥ 𝑤
󸀠
+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]

𝑝−1
Φ(

𝑧 (𝜏 (𝑡))

𝑧 (𝑡)
)

+ (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞

≥ 𝑤
󸀠
+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]

𝑝−1
(
𝜏 (𝑡)

𝑡
)
𝑝−1

+ (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞
.

(50)

Hence (49) is nonoscillatory by Lemma 1.

Remark 14. A version ofTheorem 13 has been used implicitly
in the proof of [20, Theorem 2.2] for dynamic equations.
A closer estimation of the proof shows that one of the
important steps is an application of inequality which in the
continuous case reads as (10). However, Lemma 12 allows the
estimate

𝑧 (𝜏 (𝑡))

𝑧 (𝑡)
≥
𝜏 (𝑡)

𝑡
, (51)

which appears to be sharper, since
1 − (𝑇/𝜏 (𝑡))

1 − (𝑇/𝑡)
≤ 1 (52)
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and the annoying dependence of the left-hand side on 𝑇

usually necessitates to replace it by a constant 𝑘 < 1 which
may appear in the resulting oscillation criterion.
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