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We introduce a b-metric on the cone b-metric space and then prove some equivalences between them. As applications, we show
that fixed point theorems on cone b-metric spaces can be obtained from fixed point theorems on b-metric spaces.

1. Introduction and Preliminaries

The fixed point theory in b-metric spaces was investigated
by Bakhtin [1], Czerwik [2], Akkouchi [3], Olatinwo and
Imoru [4], and Pacurar [5]. A b-metric space was also called a
metric-type space in [6]. The fixed point theory in metric-type
spaces was investigated in [6, 7]. Recently, Hussain and Shah
introduced the notion of a cone b-metric as a generalization
of a b-metric in [8]. Some fixed point theorems on cone b-
metric spaces were stated in [8-10].

Note that the relation between a cone b-metric and a b-
metric is likely the relation between a cone metric [11] and a
metric. Some authors have proved that fixed point theorems
on cone metric spaces are, essentially, fixed point theorems
on metric space; see [12-16] for example. Very recently, Du
used the method in [12] to introduce a b-metric on a cone b-
metric space and stated some relations between fixed point
theorems on cone b-metric spaces and on b-metric spaces
[17].

In this paper, we use the method in [13] to introduce
another b-metric on the cone b-metric space and then prove
some equivalences between them. As applications, we show
that fixed point theorems on cone b-metric spaces can be
obtained from fixed point theorems on b-metric spaces.

Now, we recall some definitions and lemmas.

Definition I (see [1]). Let X be a nonempty set and d : X x
X — [0,+00). Then, d is called a b-metric on X if

(1) d(x,y) = 0ifand only if x = y;
(2) d(x,y) =d(y,x) forall x, y € X;

(3) there exists s > 1 such that d(x,z) < s[d(x,y) +
d(y,z)] forall x, y,z € X.

The pair (X, d) is called a b-metric space. A sequence {x,}
is called convergent to x in X, written lim, , x, = x, if
lim, , d(x,,x) = 0. A sequence {x,} is called a Cauchy
sequence if lim,,, , d(x,,x,) = 0. The b-metric space
(X,d) is called complete if every Cauchy sequence in X is a

convergent sequence.

Remark 2. Onab-metric space (X, d), we consider a topology
induced by its convergence. For results concerning b-metric
spaces, readers are invited to consult papers [1, 2].

Remark 3. Let (X, d) be a b-metric space. For each r > 0 and
x € X, we set

B(x,r)={yeX:d(x,y)<r}. (1)

In [3], Akkouchi claimed that the topology I (d) on X
associated with d is given by setting U € J(d) if and



only if, for each x € U, there exists some r > 0
such that B(x,#) < U and the convergence of {x,}, in
the b-metric space (X, d) and that in the topological space
(X, 7 (d)) are equivalent. Unfortunately, this claim is not true
in general; see Example 13. Note that; on a b-metric space,
we always consider the topology induced by its convergence.
Most of concepts and results obtained for metric spaces
can be extended to the case of b-metric spaces. For results
concerning b-metric spaces, readers are invited to consult
papers [1, 2].

In what follows, let E be a real Banach space, P a subset
of E, 0 the zero element of E, and int P the interior of P. We
define a partially ordering < with respect to P by x < y ifand
only if y — x € P. We also write x < y to indicate that x < y
and x # y and write x < y to indicate that y — x € int P. Let
[l - || denote the norm on E.

Definition 4 (see [11]). P is called a cone if and only if

(1) P is closed and nonempty and P # {0};

(2) a,b € R; a,b>0; x,y € Pimplythatax + by € P;

(3) Pn(-P) = {6}.

The cone P is called normal if there exists K > 1 such
that, for all x, y € E, we have 0 < x < y implies ||x|| < K| y||.

The least positive number K satisfying the above is called the
normal constant of P.

Definition 5 (see [11, Definition 1]). Let X be a nonempty set
andd: X x X — E satisfy

(1) 0 <d(x,y)forallx, y € Xand d(x, y) = O ifand only
ifx = y;

(2) d(x, y) =d(y,x) forall x, y € X;

(3) d(x,y) <d(x,z) +d(z,y) forall x, y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone
metric space.

Definition 6 (see [8, Definition 2.1]). Let X be a nonempty set
andd : X x X — P satisfy

(1) 0 <d(x, y)forall x, y € Xandd(x, y) = Oifand only
itx = y;

(2) d(x, y) =d(y,x) forall x, y € X;

(3) d(x, y) < sld(x,z) + d(z, y)] for some s > 1 and all
x, ¥,z € X.

Then d is called a cone b-metric with coefficient s on X and
(X, d) is called a cone b-metric space with coefficient s.

Definition 7 (see [8, Definition 2.4]). Let (X, d) be a cone b-
metric space and {x,,} a sequence in X.

(1) {x,} is called convergent to x, written lim, _, . x,, = x,
if for each ¢ € E with 0 < c, there exists n, such that
d(x,,x) < cforalln > n,.

(2) {x,} is called a Cauchy sequence if for each c € E with
0 < c there exists n, such that d(x,, x,,) < ¢ for all
n,m > ny.
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(3) (X, d) is called complete if every Cauchy sequence in
X is a convergent sequence.

Lemma 8 (see [8, Proposition 2.5]). Let (X,d) be a cone b-
metric space, P a normal cone with normal constant K, x € X,
and {x,} a sequence in X. Then one has the following.

(1) lim,,_, x,, = x ifand only if lim, _, , d(x,,x) = 0.

(2) The limit point of a convergent sequence is unique.

(3) Every convergent sequence is a Cauchy sequence.

(4) {x,} is a Cauchy sequence if lim,,,,, _, . d(x,, x,,) = 6.

Lemma 9 (see [8, Remark 2.6]). Let (X, d) be a cone b-metric
space over an ordered real Banach space E with a cone P. Then
one has the following.

(1) Ifa<bandb < ¢, thena < c.

(2) Ifa<xbandb < ¢, thena < c.

(3)If0 <u < cforallc € intP, thenu = 0.

(4) If c € intP, 0 < a, for alln € N and lim,, _, a, = 0,
then there exists ny such that a, < ¢ for alln > n,.

B If0 <« ¢, 0 < dx,,x) < b, foralln € N and
lim, , b, =0, then d(x,, x) < c eventually.

(6)If0 < a, < b, foralln € N and lim
lim, , b, =0b,thena <b.

(7)IfaeP,0<A<l,anda<)-a, thena=0.

(8) For each o > 0, one has o - int P C int P.

(9) For each § > 0 and x € int P, there exists 0 < y < 1
such that |ly - x| < 6.

(10) For each 0 < ¢, and c, € P, there exists 0 < d such
that ¢, < d and ¢, < d.

a, = a

n— 00

(11) For each 8 < ¢; and 0 < c,, there exists 0 < e such
thate < ¢, and e < ¢,.

Remark 10 (see [10, Remark 1.3]). Every cone metric space
is a cone b-metric space. Moreover, cone b-metric spaces
generalize cone metric spaces, b-metric spaces, and metric
spaces.

Example 11 (see [10, Example 2.2]). Let

E=Cgl0,1], P={pecE:p>0}, X=[1,+00),

)

and d(x, y)(t) = |x—y|2e’ forall x, y € Xandt € [0, 1]. Then
(X, d) is a cone b-metric space with coefficient s = 2, but it is
not a cone metric space.

Example 12 (see [10, Example 2.3]). Let X be the set
of Lebesgue measurable functions on [0,1] such that

[} uoPdx < +00, E = Col0,1, P = {p € E : ¢ > 0}.
Defined : X x X — Eas

1
dw(®),v(D) = ¢ L lu (s) — v (s) ds, 3)

forall u,v € X andt € [0, 1]. Then (X, d) is a cone b-metric
space with coeflicient s = 2, but it is not a cone metric space.
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2. Main Results

The following example shows that the family of all balls
B(x,r) does not form a base for any topology on a b-metric
space (X, d).

Example 13. Let X ={0,1,1/2,...,1/n,...} and

0 ifx=y
1 if x#ye{0,1}
d(x,y)= 11 (4)
- f {)_)_}
|x—y| ifx#yeqo 3

4 otherwise.

Then we have the following.

(1) d is a b-metric on X with coefficient s = 8/3.

(2) 0 € B(1,2) but B(0,7) ¢ B(1,2) forall r > 0.
Proof. (1) For all x, y € X, we have d(x, y) > 0, d(x, y) = 0if

and only if x = y and d(x, y) = d(y, x).
Ifd(x, y) = d(0,1) = 1, then

d(x,2)+d(z,y)

d(o, ! >+d(i 1)=i+4 ifze L
2n 2n

;l 2’
=‘d<0, ! )+d< ! ,1)
2n+1 2n+1
. 1
=4+4 if z= .
2n+1
(5)
Ifd(x, y) = d(0,1/2n) = 1/2n, then
d(x,z)+d(z,y)
'd(o,i)ﬂz(i,i)
2m 2m 2n
1 1 1 . 1
- L |_-_ ifz= =
2m 2m  2n 2m
(o)
2m+1
+d< ! ,i)=4+4 if z= +1
2m+1 2n 2m+1
d(o,1)+d<1,i)=1+4 ifz=-1.
L 2n

(6)

3
Ifd(x, y) = d(1/2k,1/2n) = |1/2k — 1/2n], then
d(x,z)+d(z,y)
d(i,i)ﬂz(i,i)
2k 2m 2m 2n
1 1 1 1 . 1
=|_-_ |_-_ ifz=
2k 2m 2m  2n 2m
1 1
(35 3m71)
~ 2Kk’ 2m+ 1 (7)
+d< ! ,i>=4+4 if z= !
2m+1 2n 2m+1
d(i,o)ﬂi(o,i)
2k 2n
11 .
_i-l—% le—O.

Ifd(x,y) =d(1/2k,1/2n+ 1)) = 4 with 1/(2n + 1) # 1, then

d(x,z)+d(z,y)

'd<i,o>+d<0, ! >=i+4 ifz=0
2k 2n+1 2k
d(i,i)ﬂz(i, ! )
2k 2m 2m 2n+1
2k 2m 2m

11
d(ﬁ’zmn)

( 1 1
+d ,
2m+1 2n+1

Tom+1

(8)

>:4+4 if z

Ifd(x,y) =d(1/2k+1),1/2n+ 1)) = 4with 1/2k + 1) #1
and 1/(2n+ 1) # 1, then

d(x,z)+d(z,y)

1
a(z10)
2k +1
1 .
+d<0,—>=4+4 ifz=0
2n+1
1 1
(551 3m)
2k+1 2m
) 1 1
+d<—, ):4+4 ifz=—
2m 2n+1 2m
(ki amri)
2k+1" 2m+1
1
+d< , >:4+4 if z= .
2m+1 2n+1 2m+1

)



Ifd(x, y) = d(1/2k, 1) = 4, then

d(x,z)+d(z,y)

'd<21k >+d(0 1) = k+1 ifz=0
d(i,i)+d(i,1)
2k 2m 2m
- |i-i+4 ifz= —
2k 2m 2m
1 1
(35 3 71)
2k 2m+1
+d( ! ,1)=4+4 if z= +1.
2m+1 2m+1
(10)
Ifd(x, y) = d(1/(2k + 1), 1) = 4, then
d(x,z)+d(z,y)
1
_ D)=4+1 ifz=
d<2k+10>+d(0) +1 ifz=0
d( ! ,i)+d(i,1>
2k +1 2m 2m
=1 =4+4 ifz_2L
1 1 "
(e amr1)
2k+1 2m+1
+d( ! ,1>=4+4 if z= ! 1
2m+1 2m+1
(11)
Ifd(x, y) = d(1/(2k + 1),0) = 4, then
d(x,z)+d(z,y)
1
—1 ,00=4+1 ifz=1
d<2k+l >+d( O =4+1 ifz
() o)
2k +1 2m 2m
S ifz=
2m 2m
1 1
(seriami1)
2k+1 2m+1
+d( ! ,0>:4+4 if z= !
2m+1 2m+1
(12)
By the previous calculations, we get d(x,y) < (8/3)

[d(x,z) + d(z, y)] for all x, y,z € X. This proves that d is
a b-metric on X with s = 8/3.

(2) We have B(1,2) = {x € X : d(x,1) < 2} = {1,0}. Then
0 € B(1,2).

For each r > 0, since d(0,1/2n) = 1/2n, we have 1/2n €
B(0, 1) for n being large enough. Note that d(1,1/2n) =
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so 1/2n ¢ B(1,2) for all n € N. This proves that B(0,7) ¢
B(1,2). O

We introduce a b-metric on the cone b-metric space and
then prove some equivalences between them as follows.

Theorem 14. Let (X, d) be a cone b-metric space with coeffi-
cient s and

D(x,y)= 1nf{|u|| ueP ux d(x y)} (13)

forall x, y € X. Then one has the following.

(1) D is a b-metric on X.

(2) lim,, _, ,,x,, = x in the cone b-metric space (X, d) if and
only iflim, _,  x,, = x in the b-metric space (X, D).

(3) {x,} is a Cauchy sequence in the cone b-metric space
(X, d) if and only if {x,} is a Cauchy sequence in the
b-metric space (X, D).

(4) The cone b-metric space (X, d) is complete if and only
if the b-metric space (X, D) is complete.

Proof. (1) For all x, y € X, it is obvious that D(x, y) > 0 and
D(x, y) = D(y, x).

If x = y, then D(x, y) = inf{llull : u e P, u>0} =0.

If D(x, y) = inf{|lull : u € P, u > (1/s)d(x, y)} = 0, then,
for eachn € N, there exists u,, € P such thatu, > (1/s)d(x, y)
and |lu,|| < 1/n. Thenlim,, , . u, = 0,and by Lemma 9(6), we
have d(x, y) < 0.Itimplies that d(x, y) € PN(—P). Therefore,
d(x, y) = 0; thatis, x = y.

For each x, y,z € X, we have

D(x,z) = inf{llulﬂ cu € P ouy > ld(x,z)},
s

D(x,y) = inf{“uzu ‘U, €P, uy > 1d (x, y)} ,  (14)
s

D(y,z) = inf{“u3|| ‘us €P, uy 2 ld(y,z)]».
s

(1/s)d(y, z), w

Since u,,u; € Pand u, >
have

(1/s)d(x, y), uz =

s(u2+u3)2d(x,y)+d(y,z)2%d(x,z). (15)
Then we have
1
{ul €P:u > ;d(x,z)}
> {s (u, +us) € P: (16)

1 1
u, > —-d(x,y), Uy 2 d(y,z)}.

%)
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It implies that
inf { s ( +21)]
1 1
Uy, € P, uy > ;d (%, y), us > ;d(y,z)} 17)

> inf{"uln cup €P, uy > lcl(x,z)}.
s
Now, we have

D(x,z) = inf{“ul" cu; €P, uy > ld(x,z)}
s

< inf{ IIs (1 + )| -

Uy, Uy € P, u, > ld (% 9),
s

>1
Uy > —
3_

s

d(32)}
= sinf{ [l + 15 :

Uy Uy € P, uy > lal (x,y),
s

> 14 (» z)} (18)
s
< sinf { ] + ] :
1
Uy, s € P, uy > ;d(x,y),

>ld( z)}

= S y’
= sinf{||u2|| ‘uy €P, uy > ld(x,y)}

s
+sinf{||u3|| ‘U €P, uy > ld (y,z)}
s

=s[D(x,y) + D(y,2)].

By the previously metioned, D is a b-metric on X.

(2) Necessity. Let lim,, _, .,x,, = x in the cone b-metric
space (X, d). For each € > 0, by Lemma 9(8), if 0 < ¢, then
0 < s-€-(c/|c|). Then, for each ¢ € E with 6 < c, there
exists #, such that d(x,,x) < s-¢e-(c/lcl) for all n > n,.
Using Lemma 9(8) again, we get (1/s)d(x,, x) < € - (c/||c|)-
It implies that

D (x,,x) = inf {||u|| ‘u€eP u> %d (xn,x)}
19)

:8’

£
llel
for all n > n,. This proves that lim,, _, ., D(x,,, x) = 0; that is,
lim, _, . x,, = x in the b-metric space (X, D).

Sufficiency. Let lim, ,  x, = x in the b-metric space
(X, D). Foreach 6 < c, thereexistse > 0 such that c+B(0, ¢) C
P. For this ¢, there exists 7, such that

D (x,,x) = inf{”ull ‘u€P, ux> ld (xn,x)} < (20)
s

€
T
Then, there exist v € P and d(x,,, x) < v such that [v|| < /2.
So —v € B(0,¢), and we have ¢ — v € intP. Therefore,
d(x,,x) < v « cforalln > ny. By Lemma 9(1), we get
d(x,,x) < cforall n > n,. This proves that lim, _, ,,x,, = x
in the cone b-metric space (X, d).

(3) Necessity. Let {x,,} be a Cauchy sequence in the cone b-
metric space (X, d). For each ¢ > 0, by Lemma 9(6), if 0 < ¢,
then 0 < s- - (c/|c|). Then for each ¢ € E with 0 < c, there
exists n, such that d(x,, x,,) < s-e-(c/lcll) for all n,m > n,,.
Using Lemma 9(6) again, we get (1/s)d(x,,, x,,,) < €-(c/llc|l)-
It implies that

D(x,,x,,) = inf {||u|| ‘u€eP ux ta (x5 xm)}
s
(21

=&,

C
llel

for all n,m > n,. This proves that {x,} is a Cauchy sequence
in the b-metric space (X, D).

Sufficiency. Let {x,,} be a Cauchy sequence in the b-metric
space (X, D). Then lim, ,, , .,D(x,, x,,) = 0. For each 6 <,
there exists € > 0 such that ¢ + B(0,¢&) C P. For this ¢, there
exists n, such that

D(x,,x,,) = inf {||u|| ‘u€eP u> ld(xn, xm)} < Z
s

(22)

for all n,m > n,. Then, there exists v € P, d(x,,x,,) < v
such that ||v| < &/2. So —v € B(0,¢), and we have c — v €
int P. Therefore, d(x,,,x,,) < v < c for all n,m > n,. By
Lemma 9(1), we get d(x,,,x,,) < c for all n,m > n. This
proves that {x,} is a Cauchy sequence in the cone b-metric
space (X, d).

(4) It is a direct consequence of (2) and (3). O

By choosing s = 1 in Theorem 14, we get the following
results.

Corollary15 (see [13, Lemma 2.1]). Let (X, d) be a cone metric
space. Then

D(x,y) =

forall x, y € X is a metric on X.

inf {|ull :ueP, u>d(x,y)}, (23)

Corollary 16 (see [10, Theorem 2.2]). Let (X,d) be a cone
metric space and

D(x,y) =

forallx, y € X. Then the metric space (X, D) is complete if and
only if the cone metric space (X, d) is complete.

inf{llull :ueP, u>d(x,y)}, (24



The following examples show that Corollaries 15 and 16
are not applicable to cone b-metric spaces in general.

Example 17. Let (X,d) be a cone b-metric space as in
Example 11. We have
D(x,y) =inf {Jul :u € P, u>d(x,y)}

= |d (x, y)|| = sup {|x - y|2et t €0, 1]} (25)

2
=e|lx-y|".

It implies that

D(0,2)=4e>D(0,1)+ D(1,2) =e+e =2e. (26)
Then D is not a metric on X. This proves that Corollaries 15
and 16 are not applicable to given cone b-metric space (X, d).
Example 18. Let (X,d) be a cone b-metric space as in
Example 12. We have

D (u,v) =inf{|z||: z € P, z >d (u,v)}

= lld (u, V)

= sup {et Jl lu (s) — v(s)lzds 1t €0, 1]} (27)
0

1
= ej lu(s) — v (s)|°ds.
0

For u(s) = 0, v(s) = 1, and w(s) = 2 for all s € [0, 1], we have
D(u,w)=4e>D(u,v)+D (v,w)=e+e=2e.  (28)

Then D is not a metric on X. This proves that Corollaries 15
and 16 are not applicable to given cone b-metric space (X, d).

Next, by using Theorem 14, we show that some contrac-
tion conditions on cone b-metric spaces can be obtained from
certain contraction conditions on b-metric spaces.

Corollary 19. Let (X,d) be a cone b-metric space with
coefficient s, let T : X — X be a map, and let D be defined as
in Theorem 14. Then the following statements hold.
() If d(Tx, Ty) < kd(x, y) for some k € [0,1) and all
x,y € X, then

D(Tx,Ty) <kD(x,y), (29)
forallx,y € X.
(2) Ifd(Tx, Ty) < Ad(x, Tx) +A,d(y, Ty) + A;d(x, T'y) +
Ayd(y, Tx) for some Ay, Ay, A5, A € [0,1) with A, +
A, +s(A; +A,) <min{l,2/s} and all x, y € X, then
D(Tx,Ty) < AD(x,Tx) + A,D(y,Ty)

(30)
+A;D (x,Ty) + A,D (3, Tx),

forallx,y € X.

Proof. (1) For each x, y € X and v € P with v > (1/s)d(x, y),
it follows from Lemma 9(8) that

kv > kid(xy) > d(Tx,Ty). 31)
S S
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Thus, (kv : v € P, v > (1/s)d(x,y)} C {u :u € P, u >

(1/s)d(Tx, Ty)}. Then we have

D(Tx,Ty) = inf {||u|| cueP, u> La (Tx, Ty)}
s

< inf {||kv|| Vel v td(x y)}
$ (32)

= kinf{||v|| :veP v> ld(x,y)}
s

=kD (x, ).
It implies that D(Tx, Ty) < kD(x, y).
(2) Let x, y € X and v;, v,, v3, v, € P satisty
d(y.Ty),

vy 2 —d(x,Tx), v, >

(33)
d(x,Ty), =

vy > d(y,Tx).

©nl= | =
A

From Lemma 9(8), we have
Ay + A0, + Asvs + Ay,
> ! [A,d (x,Tx) + A,d (v, Ty)
s
(34)
+A;d (x, Ty) + A,d (3, Tx)]
>1g (Tx,Ty).
s

It implies that

{v :veEP v> La (Tx,Ty)}
s
> {)tlvl + A0, + Ay + Ay,

1
V1, Vy V3, Vg € Py vy > —d (x,Tx), (35)
s

vz =d(nTy), vy = =d (x.Ty),
S S

V> ld(y,Tx)} :
s

Then we have
D (Tx,Ty)

1
=inf {||v|| :vePv>=d(Tx, Ty)}
s
< inf{ A vy + Avy + Agvs + Ay -
1
Vs Vy V3, Vg € P, vy 2 ;d (x,Tx),

1 1
v 2 =d(y,Ty), vs 2 ;d(x, Ty),

—_ ©

vy > —d(y,Tx)}

%)
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< inf {/\1 [vi ]| + A5 vl

+ As [[vs]l + Ag val -

Vi, Vy V3, V4 € P,

= éd(x,Tx), v, > éd(y,Ty),
1 1
vy > ;d (. Ty), vy = ;d (y,Tx)}
= inf {/\1 [vil : vy € P, vy > ld(x,Tx)}
s

+inf A, vy i v, € P, vy 2 %d(y,Ty)}

\%

+inf A5 |vs) s v € P, vy %d(x,Ty)}

+inf A, [|lvy] : vy € P, vy > lal(y,Tx)}
s

-1, inf{“vl” v €D v = ld(x,Tx)}
S

+A, inf{”vz” (v, €P, vy > ld(y,Ty)}
s
+ A, -inf{||v3|| tv3 €P, vy > ld(x,Ty)}>
s
+Ay inf{||v4|| tv €P vy > ld(y,Tx)}
s
=A,D(x,Tx) + A,D (y,Ty)
+A3D(x,Ty) + A,D (3, Tx).
(36)
This proves that D(Tx,Ty) < A,D(x,Tx) + A,D(y,Ty) +
AsD(x, Ty) + A,D(y, Tx). O

Now, we show that main results in [9] are consequences
of preceding results on b-metric spaces.

Corollary 20. Let (X,d) be a complete cone b-metric space
with coefficient s, and let T : X — X be a map. Then the
following statements hold.

(1) (see [9, Theorem 2.1]) If d(Tx, Ty) < kd(x, y) for all
x,y € X, then T has a unique fixed point.

(2) (see [9, Theorem 2.3]) If d(Tx,Ty) < Ad(x,Tx) +
Ad(y, Ty) + Asd(x,Ty) + A,d(y,Tx) for some
AbAyuAsn Ay € [0,1) with A + A, + s(A5 + Ay) <
min{l1,2/s} and all x, y € X, then T has a unique fixed
point.

Proof. Let D be defined as in Theorem 14. It follows from
Theorem 14(4) that (X, D) is a complete b-metric space.

(1) By Corollary 19(1), we see that T satisfies all assump-
tions of [5, Theorem 2]. Then T has a unique fixed
point.

(2) By Corollary 19(2), we see that T satisfies all assump-
tions in [6, Theorem 3.7], where K = s, f = T, g is
the identity, and a; = 0, a, = A, a3 = A,,and g, =
A3, as = A,. Note that condition (3.10) in [6, Theorem
3.7] was used to prove (3.16) and K (a,+a;+a,+as) < 2
atline 3, page 7 in the proof of [6, Theorem 3.7]. These
claims also hold ifa; = 0and A, + A, + s(A5 + A,) <
min{1,2/s}. Then T has a unique fixed point.

O

Remark 21. By similar arguments as in Corollaries 19 and 20,
we may get fixed point theorems on cone b-metric spaces in
[8,10] from preceding ones on b-metric spaces in [3, 5].
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