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Double differential transform method has been employed to compute double Laplace transform. To illustrate the method, four
examples of different forms have been prepared.

1. Introduction

The concept of the DTM was first proposed by Zhou [1],
who solved linear and nonlinear problems in electrical circuit
problems. Chen and Ho [2] developed this method for
partial differential equations and applied it to the system
of differential equations. During the recent years, many
authors have used this method for solving various types of
equations. For example, this method has been used for dif-
ferential algebraic equations [3], partial differential equations
[4, 5], fractional differential equations [6], Volterra integral
equations [7], and difference equations [8]. The main goal
of this paper is to extend the study of single Laplace trans-
form by using differential transform (see [9]) and to compute
double Laplace transform by means of double differential
transform method. As we know, the standard derivation of
Laplace transforms inherits an improper integration which
may, in certain cases, not be analytically tractable. However,
in contrast, the proposed straightforward approach merely
requires easy differentiations and algebraic operations. Three
examples are proposed.

The one-dimensional differential transform of the func-
tion 𝑢(𝑥) is defined by the following formula:

𝑈 (𝑘) =

1

𝑘!

[

𝑑
𝑘
𝑢 (𝑥)

𝑑𝑥
𝑘

]

𝑥=0

, (1)

where 𝑢(𝑥) and 𝑈(𝑘) are the original and transform func-
tions, respectively. The inverse differential transform of 𝑈(𝑘)
is specified as follows:

𝑢 (𝑥) =

∞

∑

𝑘=0

[𝑈 (𝑘) 𝑥
𝑘
] . (2)

Consider an analytical function 𝑢(𝑥, 𝑡) of two variables; then
this function can be represented as a series in (𝑥0, 𝑡0) ∈ 𝐷

using differential transform

𝑈 (𝑚, 𝑛) =

1

𝑚!𝑛!

[

𝜕
𝑚+𝑛

𝑢(𝑥, 𝑡)

𝜕𝑥
𝑚
𝜕𝑡
𝑛

]

𝑥=𝑥0 ,𝑡=𝑡0

(3)

and inverse double differential transform

𝑢 (𝑥, 𝑡) =

∞

∑

𝑚=0

∞

∑

𝑛=0

1

𝑚!𝑛!

[

𝜕
𝑚+𝑛

𝑢(𝑥, 𝑡)

𝜕𝑥
𝑚
𝜕𝑡
𝑛

]

𝑥=0,𝑡=0

. (4)

From the definition of double Laplace transform,we canwrite

𝐿𝑥𝐿 𝑡 [𝑓 (𝑥, 𝑡)] = 𝐹 (𝑝, 𝑠)

= [∫

𝑥

𝑥0

𝑒
−𝑝𝑥

[∫

𝑡

𝑡0

𝑒
−𝑠𝑡
𝑓 (𝑥, 𝑡) 𝑑𝑡]

𝑡=∞

𝑡0=0

𝑑𝑥]

𝑥=∞

𝑥0=0

,

(5)

where 𝑥, 𝑡 > 0 and 𝑝, 𝑠 is a complex value.
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On using double direct and inverse differential transform
with respect to 𝑥 and 𝑡 for both sides of the previous,

𝐹 (𝑝, 𝑠)

= 𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠

×

{

{

{

𝐷𝑇𝑥𝐷𝑇𝑡

×

{

{

{

[∫

𝑥

𝑥0

𝑒
−𝑝𝑥

[∫

𝑡

𝑡0

𝑒
−𝑠𝑡
𝑓 (𝑥, 𝑡) 𝑑𝑡]

𝑡=∞

𝑡0=0

𝑑𝑥]

𝑥=∞

𝑥0=0

}

}

}

}

}

}

,

𝐹 (𝑝, 𝑠)

= [ [𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠

×{𝐷𝑇𝑥

∫

𝑥

𝑥0

𝑒
−𝑝𝑥

{𝐷𝑇𝑡 ∫

𝑡

𝑡0

𝑒
−𝑠𝑡
𝑓 (𝑥, 𝑡) 𝑑𝑡} 𝑑𝑥}]

𝑡=∞

𝑡0=0

]

𝑥=∞

𝑥0=0

.

(6)

Lemma 1. Let 𝑚 and 𝑛 be a finite positive integers such that
𝑚, 𝑛 ≥ 1 and 𝑠, 𝑝 > 0, 𝑠, 𝑝 ∈ 𝑅2; then

lim
𝑥→∞
𝑡→∞

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚
𝑟
𝑛

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
] = 0. (7)

Proof. By using mathematical induction, letting𝑚, 𝑛 = 1, we
have

(

∞

∑

𝑘=1

𝑘

𝑘!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟

𝑟!

(−𝑝𝑥)
𝑟
)

= (

∞

∑

𝑘=1

1

(𝑘 − 1)!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

1

(𝑟 − 1)!

(−𝑝𝑥)
𝑟
)

= (

∞

∑

𝑘=0

1

𝑘!

(−𝑠𝑡)
𝑘+1
)(

∞

∑

𝑟=0

1

𝑟!

(−𝑝𝑥)
𝑟+1
)

= ((−𝑠𝑡)

∞

∑

𝑘=0

1

𝑘!

(−𝑠𝑡)
𝑘
)((−𝑝𝑥)

∞

∑

𝑟=0

1

𝑟!

(−𝑝𝑥)
𝑟
)

= (−𝑠𝑡) 𝑒
−𝑠𝑡
(−𝑝𝑥) 𝑒

−𝑝𝑥
.

(8)

Then lim𝑥→∞
𝑡→∞

∑
∞

𝑘=1
∑
∞

𝑟=1
[(𝑘𝑟/𝑘!𝑟!)(−𝑠𝑡)

𝑘
(−𝑝𝑥)

𝑟
] =

lim𝑥→∞
𝑡→∞

(−𝑠𝑡)𝑒
−𝑠𝑡
(−𝑝𝑥)𝑒

−𝑝𝑥
= 0; since (∑∞

𝑘=1
(𝑘/𝑘!)(−𝑠𝑡)

𝑘
)

(∑
∞

𝑟=1
(𝑟/𝑟!)(−𝑝𝑥)

𝑟
) = (−𝑠𝑡)𝑒

−𝑠𝑡
(−𝑝𝑥)𝑒

−𝑝𝑥 we conclude that

lim
𝑥→∞
𝑡→∞

(−𝑠𝑡) (−𝑝𝑥)(

∞

∑

𝑘=1

𝑘

𝑘!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟

𝑟!

(−𝑝𝑥)
𝑟
) = 0, (9)

for𝑚, 𝑛 = 2,

(

∞

∑

𝑘=1

𝑘
2

𝑘!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟
2

𝑟!

(−𝑝𝑥)
𝑟
)

= (

∞

∑

𝑘=1

𝑘

(𝑘 − 1)!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟

(𝑟 − 1)!

(−𝑝𝑥)
𝑟
)

= (

∞

∑

𝑘=0

𝑘 + 1

𝑘!

(−𝑠𝑡)
𝑘+1
)(

∞

∑

𝑟=0

𝑟 + 1

𝑟!

(−𝑝𝑥)
𝑟+1
)

= (−𝑠𝑡) (

∞

∑

𝑘=0

𝑘

𝑘!

(−𝑠𝑡)
𝑘
+

∞

∑

𝑘=0

(−𝑠𝑡)
𝑘

𝑘!

)

× (−𝑝𝑥)(

∞

∑

𝑟=0

𝑟

𝑟!

(−𝑝𝑥)
𝑟
+

∞

∑

𝑟=0

(−𝑝𝑥)
𝑟

𝑟!

)

= (−𝑠𝑡) [(−𝑠𝑡) 𝑒
−𝑠𝑡

+ 𝑒
−𝑠𝑡
]

× (−𝑝𝑥) [(−𝑝𝑥) 𝑒
−𝑝𝑥

+ 𝑒
−𝑝𝑥

] .

(10)

Consequently

lim
𝑥→∞
𝑡→∞

(

∞

∑

𝑘=1

𝑘
2

𝑘!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟
2

𝑟!

(−𝑝𝑥)
𝑟
)

= lim
𝑥→∞
𝑡→∞

(−𝑠𝑡) [(−𝑠𝑡) 𝑒
−𝑠𝑡

+ 𝑒
−𝑠𝑡
]

× (−𝑝𝑥) [(−𝑝𝑥) 𝑒
−𝑝𝑥

+ 𝑒
−𝑝𝑥

] = 0.

(11)

Similarly

lim
𝑥→∞
𝑡→∞

(−𝑠𝑡) (−𝑝𝑥)(

∞

∑

𝑘=1

𝑘
2

𝑘!

(−𝑠𝑡)
𝑘
)(

∞

∑

𝑟=1

𝑟
2

𝑟!

(−𝑝𝑥)
𝑟
)

= lim
𝑥→∞
𝑡→∞

(−𝑠𝑡)
2
[(−𝑠𝑡) 𝑒

−𝑠𝑡
+ 𝑒
−𝑠𝑡
]

× (−𝑝𝑥)
2
[(−𝑝𝑥) 𝑒

−𝑝𝑥
+ 𝑒
−𝑝𝑥

] = 0.

(12)

Assume that, for𝑚, 𝑛 = 1 to 𝑖, 𝑗, it holds that

lim
𝑥→∞
𝑡→∞

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚
𝑟
𝑛

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
] = 0, (13)

and also

lim
𝑥→∞
𝑡→∞

(−𝑠𝑡) (−𝑝𝑥)(

∞

∑

𝑘=1

𝑘
𝑚

𝑘!

(−𝑠𝑡)
𝑘
)

× (

∞

∑

𝑟=1

𝑟
𝑛

𝑟!

(−𝑝𝑥)
𝑟
) = 0.

(14)
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Now, we are going to prove that

lim
𝑥→∞
𝑡→∞

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚+1

𝑟
𝑛+1

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
] = 0, (15)

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚+1

𝑟
𝑛+1

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
]

=

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚
𝑟
𝑛

(𝑘 − 1)! (𝑟 − 1)!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
]

= (−𝑠𝑡) (−𝑝𝑥)

∞

∑

𝑘=0

∞

∑

𝑟=0

[

(𝑘 + 1)
𝑚
(𝑟 + 1)

𝑛

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
] .

(16)

By using the definition of polynomial, we have

(−𝑠𝑡)

∞

∑

𝑘=0

[

(𝑘 + 1)
𝑚

𝑘!

(−𝑠𝑡)
𝑘
] (−𝑝𝑥)

∞

∑

𝑟=0

[

(𝑟 + 1)
𝑛

𝑟!

(−𝑝𝑥)
𝑟
]

= (−𝑠𝑡)

∞

∑

𝑘=0

[

(1 + (
𝑚
1 ) 𝑘 + (

𝑚
2 ) 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚
)

𝑘!

(−𝑠𝑡)
𝑘
]

× (−𝑝𝑥)

∞

∑

𝑟=0

[

(1 + (
𝑛
1 ) 𝑟 + (

𝑛
2 ) 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
)

𝑟!

(−𝑝𝑥)
𝑟
]

= ((−𝑠𝑡)

∞

∑

𝑘=0

(−𝑠𝑡)
𝑘

𝑘!

+ (

𝑚

1
) (−𝑠𝑡)

∞

∑

𝑘=0

𝑘(−𝑠𝑡)
𝑘

𝑘!

+ (

𝑚

2
) (−𝑠𝑡)

∞

∑

𝑘=0

𝑘
2
(−𝑠𝑡)
𝑘

𝑘!

+ ⋅ ⋅ ⋅ + (−𝑠𝑡)

∞

∑

𝑘=0

𝑘
𝑚
(−𝑠𝑡)
𝑘

𝑘!

)

× ((−𝑝𝑥)

∞

∑

𝑟=0

(−𝑝𝑥)
𝑟

𝑟!

+ (

𝑛

1
) (−𝑝𝑥)

∞

∑

𝑟=0

𝑟(−𝑝𝑥)
𝑟

𝑟!

+ (

𝑛

2
) (−𝑝𝑥)

∞

∑

𝑟=0

𝑟
2
(−𝑝𝑥)

𝑟

𝑟!

+ ⋅ ⋅ ⋅ + (−𝑝𝑥)

∞

∑

𝑟=0

𝑟
𝑛
(−𝑝𝑥)

𝑟

𝑟!

) .

(17)

Thus

lim
𝑥→∞
𝑡→∞

∞

∑

𝑘=1

∞

∑

𝑟=1

[

𝑘
𝑚+1

𝑟
𝑛+1

𝑘!𝑟!

(−𝑠𝑡)
𝑘
(−𝑝𝑥)

𝑟
] = 0. (18)

2. Relation between Double Laplace and
Differential Transforms

In this section, we compute the double Laplace transform by
means of double differential transform by proposing some
examples as follows.

Example 2. Double Laplace transform of function 𝑒
𝑎𝑥+𝑏𝑡;

consider

𝐿𝑥𝐿 𝑡 {𝑒
𝑎𝑥+𝑏𝑡

}

= [𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠

× {𝐷𝑇𝑥𝐷𝑇𝑡

× {∫

𝑦

𝑦0

𝑒
𝑎𝑥−𝑝𝑥

𝑑𝑥∫

𝛽

𝛽0

𝑒
𝑏𝑡−𝑠𝑡

𝑑𝑡}}]

𝑦=∞,𝛽=∞

𝑦0=0,𝛽0=0

= [𝐷𝑇
−1

𝑝
{

(−𝑝 + 𝑎)
𝑟−1

𝑟 (𝑟 − 1)!

}]

𝑦=∞

𝑦0=0

× [𝐷𝑇
−1

𝑠
{

(−𝑠 + 𝑏)
𝑘−1

𝑘 (𝑘 − 1)!

}]

𝛽=∞

𝛽0=0

= [

∞

∑

𝑟=0

{

(−𝑝 + 𝑎)
𝑟−1
𝑦
𝑟

𝑟 (𝑟 − 1)!

}]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

(−𝑠 + 𝑏)
𝑘−1
𝛽
𝑘

𝑘 (𝑘 − 1)!

}]

𝛽=∞

𝛽0=0

=

1

(𝑎 − 𝑝)

[

∞

∑

𝑟=0

{

(−𝑝 + 𝑎)
𝑟
𝑦
𝑟

𝑟!

}]

𝑦=∞

𝑦0=0

×

1

(𝑏 − 𝑠)

[

∞

∑

𝑘=0

{

(−𝑠 + 𝑏)
𝑘
𝛽
𝑘

𝑘!

}]

𝛽=∞

𝛽0=0

=

1

(𝑎 − 𝑝)

[𝑒
(𝑎−𝑝)𝑦

]

𝑦=∞

𝑦0=0

1

(𝑏 − 𝑠)

[𝑒
(𝑏−𝑠)𝛽

]

𝛽=∞

𝛽0=0

=

1

(𝑝 − 𝑎) (𝑠 − 𝑏)

, 𝑝 > 𝑎, 𝑠 > 𝑏.

(19)

In the next example, we apply double differential transform
to compute double Laplace transform as follows.

Example 3. If we consider the function 𝑥
𝑚
𝑡
𝑛, then double

Laplace transform is given by

𝐿𝑥𝐿 𝑡 {𝑥
𝑚
𝑡
𝑛
; 𝑝, 𝑠}

= [𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠

×{𝐷𝑇𝑥𝐷𝑇𝑡 {∫

𝑦

𝑦0

𝑥
𝑚
𝑒
−𝑝𝑥

𝑑𝑥∫

𝛽

𝛽0

𝑡
𝑛
𝑒
−𝑠𝑡
𝑑𝑡}}]

𝑦=∞,𝛽=∞

𝑦0=0,𝛽0=0
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= [

∞

∑

𝑟=0

{𝐷𝑇𝑥 {∫

𝑦

𝑦0

𝑥
𝑚
𝑒
−𝑝𝑥

𝑑𝑥}𝑦
𝑟
}]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{𝐷𝑇𝑡 {∫

𝛽

𝛽0

𝑡
𝑛
𝑒
−𝑠𝑡
𝑑𝑡}𝛽

𝑘
}]

𝛽=∞

𝛽0=0

.

(20)

From the properties of double differential transform, we have

𝐿𝑥𝐿 𝑡 {𝑥
𝑚
𝑡
𝑛
}

= 0 + [

∞

∑

𝑟=0

{

𝑟−1

∑

𝑙=0

{

𝛿 (𝑟 − 𝑚 − 𝑙 − 1)

𝑟

(−𝑝)
𝑙

𝑙!

} 𝑦
𝑟
}]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

𝑘−1

∑

𝑐=0

{

𝛿 (𝑘 − 𝑛 − 𝑐 − 1)

𝑘

(−𝑠)
𝑐

𝑐!

} 𝛽
𝑘
}]

𝛽=∞

𝛽0=0

.

(21)

On using definition of Kronecker delta function forces, we
have

𝐿𝑥𝐿 𝑡 {𝑥
𝑚
𝑡
𝑛
}

= [

∞

∑

𝑟=0

{

1

𝑟

(−𝑝)
𝑟−1−𝑚

(𝑟 − 1 − 𝑚)!

}𝑦
𝑟
]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

1

𝑘

(−𝑠)
𝑘−1−𝑛

(𝑘 − 1 − 𝑛)!

} 𝛽
𝑘
]

𝛽=∞

𝛽0=0

= [

(−1)
𝑚+1

𝑝
𝑚+1

×

∞

∑

𝑟=1

{

(𝑟 − 1) (𝑟 − 2) ⋅ ⋅ ⋅ (𝑟 − 𝑚) (−𝑝)
𝑟

𝑟!

𝑦
𝑟
}]

𝑦=∞

𝑦0=0

× [

(−1)
𝑛+1

𝑠
𝑛+1

×

∞

∑

𝑘=0

{

(𝑘 − 1) (𝑘 − 2) ⋅ ⋅ ⋅ (𝑘 − 𝑛) (−𝑠)
𝑘

𝑘!

𝛽
𝑘
}]

𝛽=∞

𝛽0=0

.

(22)

From the previous equation, we have

𝐿𝑥𝐿 𝑡 {𝑥
𝑚
𝑡
𝑛
; 𝑝, 𝑠}

=

(−1)
𝑚+1

𝑝
𝑚+1

([

∞

∑

𝑟=1

{

(−1) (−2) ⋅ ⋅ ⋅ (−𝑚) (−𝑝)
𝑟

𝑟!

𝑦
𝑟
}]

𝑦=∞

𝑦0=0

+

𝑚

∑

𝑖=1

𝑎𝑖 lim
𝑦→∞

∞

∑

𝑟=1

{

𝑟
𝑖

𝑟!

𝑦
𝑟
} − 0)

×

(−1)
𝑛+1

𝑠
𝑛+1

([

∞

∑

𝑘=1

{

(−1) (−2) ⋅ ⋅ ⋅ (−𝑛) (−𝑠)
𝑘

𝑘!

𝛽
𝑘
}]

𝛽=∞

𝛽0=0

+

𝑛

∑

𝑗=1

𝑏𝑗 lim
𝛽→∞

∞

∑

𝑘=1

{

𝑘
𝑗

𝑘!

𝛽
𝑘
} − 0) ,

(23)

where 𝑎𝑖 and 𝑏𝑗 are constant coefficients of the polynomials
generated by (𝑟−1)(𝑟−2) ⋅ ⋅ ⋅ (𝑟−𝑚) and (𝑘−1)(𝑘−2) ⋅ ⋅ ⋅ (𝑘−𝑛),
respectively. According to the lemma, the last summations of
(23), lim𝑦→∞∑

∞

𝑟=1
{(𝑟
𝑖
/𝑟!)𝑦
𝑟
}, and lim𝛽→∞∑

∞

𝑘=1
{(𝑘
𝑗
/𝑘!)𝛽
𝑘
}

are zeros, such that

𝐿𝑥𝐿 𝑡 {𝑥
𝑚
𝑡
𝑛
}

=

(−1)
𝑚+1

𝑝
𝑚+1

[

∞

∑

𝑟=1

{

(−1) (−2) ⋅ ⋅ ⋅ (−𝑚) (−𝑝)
𝑟

𝑟!

𝑦
𝑟
}]

𝑦=∞

𝑦0=0

×

(−1)
𝑛+1

𝑠
𝑛+1

[

∞

∑

𝑘=1

{

(−1) (−2) ⋅ ⋅ ⋅ (−𝑛) (−𝑠)
𝑘

𝑘!

𝛽
𝑘
}]

𝛽=∞

𝛽0=0

=

(−1)
𝑚+1

𝑚!

𝑝
𝑚+1

[

∞

∑

𝑟=1

{

(−𝑝)
𝑟

𝑟!

𝑦
𝑟
}]

𝑦=∞

𝑦0=0

×

(−1)
𝑛+1
𝑛!

𝑠
𝑛+1

[

∞

∑

𝑘=1

{

(−𝑠)
𝑘

𝑘!

𝛽
𝑘
}]

𝛽=∞

𝛽0=0

=

−𝑚!

𝑝
𝑚+1

[

∞

∑

𝑟=1

{

(−𝑝)
𝑟

𝑟!

𝑦
𝑟
}]

𝑦=∞

𝑦0=0

×

−𝑛!

𝑠
𝑛+1

[

∞

∑

𝑘=1

{

(−𝑠)
𝑘

𝑘!

𝛽
𝑘
}]

𝛽=∞

𝛽0=0

=

−𝑚!

𝑝
𝑚+1

[(𝑒
−𝑝𝑦

− 1)]

𝑦=∞

𝑦0=0

×

−𝑛!

𝑠
𝑛+1

[(𝑒
−𝑠𝛽

− 1)]

𝛽=∞

𝛽0=0

=

𝑚!𝑛!

𝑝
𝑚+1

𝑠
𝑛+1

.

(24)

In the next example, we apply double integral transform as
follows.

Example 4. If we consider the function sin(𝑎𝑥) sin(𝑏𝑡), then
double Laplace transform is given by

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠

×{𝐷𝑇𝑥𝐷𝑇𝑡
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×{∫

𝑦

𝑦0

∫

𝛽

𝛽0

sin (𝑎𝑥) sin (𝑏𝑡) 𝑒−𝑝𝑥𝑒−𝑠𝑡𝑑𝑡 𝑑𝑥}}]
𝑦=∞,𝛽=∞

𝑦0=0,𝛽0=0

,

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [𝐷𝑇
−1

𝑝

×{

𝑟−1

∑

𝑙=0

{

𝑎
𝑗

𝑗!

sin(
𝑗𝜋

2

)

(−𝑝)
𝑟−𝑗−1

/ (𝑟 − 𝑗 − 1)!

𝑟

}}]

𝑦=∞

𝑦0=0

× [𝐷𝑇
−1

𝑠

×{

𝑘−1

∑

𝑖=0

{

𝑏
𝑖

𝑖!

sin(𝑖𝜋
2

)

(−𝑠)
𝑘−𝑖−1

/ (𝑘 − 𝑖 − 1)!

𝑘

}}]

𝛽=∞

𝛽0=0

,

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [

∞

∑

𝑟=0

{

𝑟−1

∑

𝑙=1,3,5

{

𝑎
𝑗

𝑗!

(𝑟 − 1) (𝑟 − 2) ⋅ ⋅ ⋅ (𝑟 − 𝑗)

𝑝
𝑗+1

×(−1)
(𝑗−1)/2−𝑗−1

}

𝑦
𝑟
(−𝑝)
𝑟

𝑟!

}]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

𝑘−1

∑

𝑖=1,3,5

{

𝑏
𝑖

𝑖!

(𝑘 − 1) (𝑘 − 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖)

𝑠
𝑖+1

× (−1)
(𝑖−1)/2−𝑖−1

}

𝛽
𝑘
(−𝑠)
𝑘

𝑘!

}]

𝛽=∞

𝛽0=0

,

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [

∞

∑

𝑟=0

{

𝑟−1

∑

𝑙=1,3,5

{

𝑎
𝑗

𝑗!

(𝑟 − 1) (𝑟 − 2) ⋅ ⋅ ⋅ (𝑟 − 𝑗)

𝑝
𝑗+1

× (−1)
(𝑗+3)/2

}

𝑦
𝑟
(−𝑝)
𝑟

𝑟!

}]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

𝑘−1

∑

𝑖=1,3,5

{

𝑏
𝑖

𝑖!

(𝑘 − 1) (𝑘 − 2) ⋅ ⋅ ⋅ (𝑘 − 𝑖)

𝑠
𝑖+1

× (−1)
(𝑖+3)/2

}

𝛽
𝑘
(−𝑠)
𝑘

𝑘!

}]

𝛽=∞

𝛽0=0

.

(25)

By calculating the summation inside the bracket we have

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [

∞

∑

𝑟=0

{

𝑎

𝑝
2

(𝑟 − 1) (−𝑝𝑦)
𝑟

𝑟!

−

𝑎
3
(𝑟 − 1) (𝑟 − 2) (𝑟 − 3)

𝑝
4

(−𝑝𝑦)
𝑟

𝑟!

+

𝑎
5
(𝑟 − 1) (𝑟 − 2) (𝑟 − 3)

𝑝
6

(−𝑝𝑦)
𝑟

𝑟!

+ ⋅ ⋅ ⋅ } ]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{

𝑏

𝑠
2

(𝑘 − 1) (−𝑠𝛽)
𝑘

𝑘!

−

𝑏
3
(𝑘 − 1) (𝑘 − 2) (𝑘 − 3)

𝑠
4

(−𝑠𝛽)
𝑘

𝑘!

+

𝑏
5
(𝑘 − 1) (𝑘 − 2) (𝑘 − 3)

𝑠
6

(−𝑠𝛽)
𝑘

𝑘!

+ ⋅ ⋅ ⋅ } ]

𝛽=∞

𝛽0=0

.

(26)

From the previous lemma, we know that, for 𝑚, 𝑛 ≥ 1,
lim𝑦→∞∑

∞

𝑟=1
{(𝑟
𝑚
/𝑟!)(−𝑝𝑦)

𝑟
} = 0, and lim𝛽→∞ ∑

∞

𝑘=1

{(𝑘
𝑚
/𝑘!)(−𝑠𝛽)

𝑘
} = 0, we have the following form:

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= [

∞

∑

𝑟=0

{−

𝑎

𝑝
2

(−𝑝𝑦)
𝑟

𝑟!

+

𝑎
3

𝑝
4

(−𝑝𝑦)
𝑟

𝑟!

−

𝑎
5

𝑝
6

(−𝑝𝑦)
𝑟

𝑟!

+ ⋅ ⋅ ⋅ }]

𝑦=∞

𝑦0=0

× [

∞

∑

𝑘=0

{−

𝑏

𝑠
2

(−𝑠𝛽)
𝑘

𝑘!

+

𝑏
3

𝑠
4

(−𝑠𝛽)
𝑘

𝑘!

−

𝑏
5

𝑠
6

(−𝑠𝛽)
𝑘

𝑘!

+ ⋅ ⋅ ⋅ }]

𝛽=∞

𝛽0=0

= [(−

𝑎

𝑝
2
+

𝑎
3

𝑝
4
−

𝑎
5

𝑝
6
+ ⋅ ⋅ ⋅ ) 𝑒

−𝑝𝑦
]

𝑦=∞

𝑦0=0

× [(−

𝑏

𝑠
2
+

𝑏
3

𝑠
4
−

𝑏
5

𝑠
6
+ ⋅ ⋅ ⋅ ) 𝑒

−𝑠𝛽
]

𝛽=∞

𝛽0=0

= (

𝑎

𝑝
2
−

𝑎
3

𝑝
4
+

𝑎
5

𝑝
6
+ ⋅ ⋅ ⋅ )

× (

𝑏

𝑠
2
−

𝑏
3

𝑠
4
+

𝑏
5

𝑠
6
+ ⋅ ⋅ ⋅ ) .

(27)

From the definition of infinite geometric series and the
summation of the previous terms, we have

𝐿𝑥𝐿 𝑡 {sin (𝑎𝑥) sin (𝑏𝑡) ; 𝑝, 𝑠}

= lim
𝑚→∞

𝑎

𝑝
2

(1 − (−𝑎
2
/𝑝
2
)

𝑚+1

)

1 − (−𝑎
2
/𝑝
2
)
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× lim
𝑛→∞

𝑏

𝑠
2

(1 − (−𝑏
2
/𝑠
2
)

𝑛+1

)

1 − (−𝑏
2
/𝑠
2
)

= (

𝑎/𝑝
2

1 + 𝑎
2
/𝑝
2
)(

𝑏/𝑠
2

1 + 𝑏
2
/𝑠
2
) =

𝑎𝑏

(𝑝
2
+ 𝑎
2
) (𝑠
2
+ 𝑏
2
)

.

(28)

In the next example, we apply double differential trans-
form to find double Laplace transform of the function
(sin(𝑥)/𝑥)(sin(𝑡)/𝑡) as follows.

Example 5. The double Laplace transform of the function
(sin(𝑥)/𝑥)(sin(𝑡)/𝑡), as follows:

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= [𝐷𝑇
−1

𝑝
𝐷𝑇
−1

𝑠
{𝐷𝑇𝑥𝐷𝑇𝑡 {∫

𝑦

𝑦0

∫

𝛽

𝛽0

sin (𝑥)
𝑥

sin (𝑡)
𝑡

× 𝑒
−𝑝𝑥

𝑒
−𝑠𝑡
𝑑𝑡 𝑑𝑥}}]

𝑦=∞, 𝛽=∞

𝑦0=0, 𝛽0=0

.

(29)

By using sin series, we have

sin (𝑥)
𝑥

sin (𝑡)
𝑡

= (

∑
∞

𝑖=0
((−1)
𝑖
𝑥
2𝑖+1

/ (2𝑖 + 1)!)

𝑥

)

× (

∑
∞

𝑗=0
((−1)
𝑗
𝑡
2𝑗+1

/ (2𝑗 + 1)!)

𝑡

)

= (

∞

∑

𝑖=0

(−1)
𝑖
𝑥
2𝑖

(2𝑖 + 1)!

)(

∞

∑

𝑗=0

(−1)
𝑗
𝑡
2𝑗

(2𝑗 + 1)!

) .

(30)

By applying double differential transform, we have

𝐷𝑇𝑥𝐷𝑇𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

}

= {

∞

∑

𝑖=0

(−1)
𝑖

(2𝑖 + 1)!

𝐷𝑇𝑥 {𝑥
2𝑖
}}

×

{

{

{

∞

∑

𝑗=0

(−1)
𝑗

(2𝑗 + 1)!

𝐷𝑇𝑡 {𝑡
2𝑗
}

}

}

}

.

(31)

On using double inverse differential transform, we have

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= [𝐷𝑇
−1

𝑝
{

(−1)
𝑚/2

(𝑚 + 1)!

(−𝑝)
𝑘−𝑚−1

/ (𝑘 − 𝑚 − 1)!

𝑘

}]

𝑦=∞

𝑦0=0

× [𝐷𝑇
−1

𝑠
{

(−1)
𝑛/2

(𝑛 + 1)!

(−𝑠)
𝛽−𝑛−1

/ (𝛽 − 𝑛 − 1)!

𝛽

}]

𝛽=∞

𝛽0=0

= [

∞

∑

𝑘=0

{

𝑘−1

∑

𝑚=0,2,4

{

(−1)
𝑚/2

(𝑘 − 1) (𝑘 − 2) ⋅ ⋅ ⋅ (𝑘 − 𝑚)

(𝑚 + 1)!(−𝑝)
𝑚+1

× (−1)
𝑚+1

}

(−𝑝𝑥)
𝑘

𝑘!

}]

𝑦=∞

𝑦0=0

×
[

[

∞

∑

𝛽=0

{

𝛽−1

∑

𝑛=0,2,4

{

(−1)
𝑛/2
(𝛽 − 1) (𝛽 − 2) ⋅ ⋅ ⋅ (𝛽 − 𝑛)

(𝑛 + 1)!(−𝑠)
𝑛+1

× (−1)
𝑛+1
}

(−𝑠𝑡)
𝛽

𝛽!

}
]

]

𝛽=∞

𝛽0=0

,

(32)

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= [

∞

∑

𝑘=0

{(−

1

𝑝

+

(𝑘 − 1) (𝑘 − 2)

3!𝑝
3

−

(𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝑘 − 4)

5!𝑝
5

+ ((𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝑘 − 1)

× (𝑘 − 5) (𝑘 − 6)) × (7!𝑝
7
)

−1

+ ⋅ ⋅ ⋅ )

×

(−𝑝𝑥)
𝑘

𝑘!

}]

𝑦=∞

𝑦0=0

×
[

[

∞

∑

𝛽=0

{(−

1

𝑠

+

(𝛽 − 1) (𝛽 − 2)

3!𝑠
3

−

(𝛽 − 1) (𝛽 − 2) (𝛽 − 3) (𝛽 − 4)

5!𝑠
5

+ ( (𝛽 − 1) (𝛽 − 2) (𝛽 − 3)
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× (𝛽 − 1) (𝛽 − 5) (𝛽 − 6)) × (7!𝑠
7
)

−1

+ ⋅ ⋅ ⋅ )

×

(−𝑠𝑡)
𝛽

𝛽!

}
]

]

𝛽=∞

𝛽0=0

.

(33)

According to the previous lemma, we have

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= [

∞

∑

𝑘=0

{(−

1

𝑝

+

2!

3!𝑝
3
−

4!

5!𝑝
5
+

6!

7!𝑝
7
+ ⋅ ⋅ ⋅ )

×

(−𝑝𝑥)
𝑘

𝑘!

}]

𝑦=∞

𝑦0=0

×
[

[

∞

∑

𝛽=0

{(−

1

𝑠

+

2!

3!𝑠
3
−

4!

5!𝑠
5
+

6!

7!𝑠
7
+ ⋅ ⋅ ⋅ )

×

(−𝑠𝑡)
𝛽

𝛽!

}
]

]

𝛽=∞

𝛽0=0

,

(34)

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= (−

1

𝑝

+

2!

3!𝑝
3
−

4!

5!𝑝
5
+

6!

7!𝑝
7
+ ⋅ ⋅ ⋅ ) [𝑒

−𝑝𝑥
]

𝑦=∞

𝑦0=0

× (−

1

𝑠

+

2!

3!𝑠
3
−

4!

5!𝑠
5
+

6!

7!𝑠
7
+ ⋅ ⋅ ⋅ ) [𝑒

−𝑠𝑡
]

𝛽=∞

𝛽0=0
,

(35)

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠}

= (

1

𝑝

−

1

3𝑝
3
+

1

5𝑝
5
−

1

7𝑝
7
+ ⋅ ⋅ ⋅ )

× (

1

𝑠

−

1

3𝑠
3
+

1

5𝑠
5
−

1

7𝑠
7
+ ⋅ ⋅ ⋅ ) .

(36)

By using the definition of

∫

𝑑𝑥

𝑥
2
+ 𝑎2

=

1

𝑎

arctan(𝑥
𝑎

) , (37)

we have

arctan( 1
𝑝

) arctan(1
𝑠

)

= (

1

𝑝

−

1

3𝑝
3
+

1

5𝑝
5
−

1

7𝑝
7
+ ⋅ ⋅ ⋅ )

× (

1

𝑠

−

1

3𝑠
3
+

1

5𝑠
5
−

1

7𝑠
7
+ ⋅ ⋅ ⋅ ) .

(38)

So that

𝐿𝑥𝐿 𝑡 {

sin (𝑥)
𝑥

sin (𝑡)
𝑡

; 𝑝, 𝑠} = arctan( 1
𝑝

) arctan(1
𝑠

) .

(39)

Also, we can use the same idea to compute double Laplace
transform for convolution function, single or double.
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