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We establish several oscillation criteria for a class of second-order neutral delay dynamic equations with nonlinearities given by
Riemann-Stieltjes integrals. Our results extend and unify a number of other existing results and handle the cases which are not
covered by known criteria. The new results we obtain are of significance because the equations we study allow an infinite number

of nonlinear terms and even a continuum of nonlinearities.

1. Introduction

In this paper, we consider the oscillatory behavior of solutions
of the following second-order neutral delay dynamic equa-
tions with nonlinearities given by Riemann-Stieltjes integrals:

(ro|z 0 2 (t))A +f (X @ (1))
M

o1y (g (t,s)) AE(s) =0,

o(b)
+ J k(t,s)|x(g(ts))

where t € [t),00)} = [ty,00) NT,t, € T, Tis a time scale
which is unbounded above, Z(t) = x(t) + p(t)x(z(t)), « > 0
is a constant, and the following conditions are satisfied:

(H,) a,b € T,, T, is another time scale, C,4(D, S) denotes
the collection of all functions f: D — S which are
right-dense continuous on Dj

(H,) r(t) € Cyq([ty, 00)7, (0,00)), R(t, t,) = Lz r%(s)As,
lim, , (R(t,t,) = 00, p(t) € C.4([ty, 00)y,[0,1)),0 €
Cyq([a,b]y, R) is a strictly increasing and satisfying
0 <0 < a<0b),k e Cytyo0) X [a, by,
[0, 00));

(H3) T(t) € Crd([toa OO)T) [t()’ OO)'IT)) T(t) S t) fOr
t € [ty00)y, lim,_, 7(t) = o0, 8() €
C.q([tg, 00)7, [ty 00)y), 8(t) < t, for t € [ty 00)y,
lim, , ,6(t) = o0, g(t,s) € C4([ty,00)y %
[a,bly , [ty, 00)y), lim, _, o g(t,s) = oo for any s €
[Gl, b]"[[l;

(Hy) 8%() > 0is right-dense continuous on [t,, c0)y, and
8(o(t)) = o(8(t)) forall t € [t,, 00)y, where o(t) is the
forward jump operator on [t,, 00);

(Hs) f(t,u) € C([ty, 00)y x R, R) is a continuous function
such that uf (t,u) > 0, for all u # 0 and there exists a
positive right-dense continuous function g(¢) defined
on [ty, 00)y such that | f(¢,u)| = q(t)|u”| for all t €
[ty,00)y and for all u € R;

(He) & : [a,bly, — Ris strictly increasing; _[:(b) F($)AE(s)
denotes the Riemann-Stieltjes integral of the function
f on [a,0(b)]y, with respect to &

By a solution of (1), we mean a function x(t) such
that x(t) + p(t)x(z(t)) € Crld(tx, oo)y and r(t)|[x(t) +
POX(TEN]A* [x(1) + p(Ox(T(t)]* € Cly(t,, 00)p, t, > 1
and satisfying (1) for all t > t,, where Cl,(t,,c0); denotes
the set of right-dense continuously A-differentiable functions
on (t,,00)r. In the sequel, we will restrict our attention to



those solutions of (1) which exist on the half-line [t,, c0)y
and satisty sup{|x(t)| : t € (T, o0)r} > 0 for anyT > t,.
A nontrivial solution of (1) is called oscillatory if it has
arbitrary large zeros; otherwise, it is called nonoscillatory.
Equation (1) is said to be oscillatory if all its solutions are
oscillatory.

In recent years, there has been much research activity
concerning the oscillation and nonoscillation of solutions of
neutral functional equations on time scales, and we refer the
reader to the papers [1-10] and the references cited therein.
For an introduction to time scale calculus and dynamic
equations, we refer the reader to the landmark paper of Hilger
[11] and the seminal book by Bohner and Peterson [12] for a
comprehensive treatment of the subject.

Recently, Saker and O’Regan [13] studied the the quasi-
linear equation of the form

(pO(y©+r®ya@®)) + fErEm) =0

teT, t >ty
2

where | f(t,u)| = q(t)|u"], y > 0 is an odd positive integer.
Wu et al. [14] obtained several oscillation criteria for the
equation

(rO(y©+pOya@l*)) + £y ) =0

teT, t>t,
3)

with | f(¢,u)l = q(®)|ul”, y = 1 is a quotient of odd positive
integers.

Chen [15] investigated the following second-order
Emden-Fowler neutral delay dynamic equation

wahAaW”%Au»A+f@Jwéa»)=& "

teT, t>t,

with x(t) = y(t) + p&)y(x®)), | f(t,u)| = q(®)|ul’,y > 0isa
constant.

It is obvious that (2)-(4) are special cases of (1). In the
present paper, we will establish several oscillation criteria
for the more general (1), which is of significance because
(1) allows an infinite number of nonlinear terms and even
a continuum of nonlinearities determined by the function
&. Our results extend and unify a number of other existing
results and handle the cases which are not covered by known
criteria. Finally, two examples are demonstrated to illustrate
the efficiency of our work.

2. Preliminaries

In the sequel, we denote by L¢[a,b] the set of Riemann-
Stieltjes integrable functions on [a, cr(b))Tl with respect to &,

and we use the convention thatIn0 = —0c0, e™® = 0.
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Lemma 1 (see [15]). Suppose that (H,) holds. Let x : T — R.
Ifo exists for all sufficiently large t € T, then (x(8@®))? =
xA(8(t))8A(t)for all sufficiently larget € T.

Lemma 2 (see [12]). Assume that x(t) is A-differentiable and
eventually positive or eventually negative, then

(x* ()" = « “1 [(1-h)x(t) + hx (o (t))]“‘ldh} ().
0
(5)

Lemma 3 (see [16]). Suppose that X and Y are nonnegative,
then

yXY" XV < (y-1)YY, p>1, (6)

where equality holds if and only if X =Y.

Lemma 4 (see [17]). Let u(t) € C,4([a, b]m, R) and n(t) €
Lela,b] satisfy u(t) = 0 (# 0), n(t) > 0 on [a,bly, and

a(b)
j n(s) AE(s) = 1. @)

a

Then,

o(b)

o(b)
| n@)u@)A&@)zexp(I

a a

n(s)In[u(s)] A (S)) :
(8)

Lemma 5 (see [17]). Let 7(t) € C([ty, 00)7, [ty 00)7)
satisfying 0 < 7(t) < t and 7, = inf{z(t) : t €
[ty, 00)r}. Assume x(t) € Cy([7,> 00)1, (0, 00)) such that
r(®)x2 ()% X2 () is nonincreasing on [t,, co)y, where r(t) €
C.q([ty, 00)7, (0,00)), & > 0 is a constant. Then,

x@®) _ R(r®).7,)

x@®) ~ R(o®m,) ®)

3. Main Results

Theorem 6. Assume that (H,)-(Hg) hold. If there exist a
function ¢(t) € Cid([to, 00), (0,00)) and a function n(s) €
Le(a, b] such that n(s) > 0 on [a,b]y,

a(b)
j n(s) AE(s) = 1, (10)
o(b)
[neowase - a
—_ e (st o)
Sango L(M(t)_ (a+ 1D (1) (82 ()" At = co,
12)
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where

M (#)
=) p)+¢(1)

a(b)
X exp ( J 1 (s)

x In <11_1 (s)k(t,9)

. [R(g (t.9).9r,) (1-p (g (1.5))) ]9‘”)

R (G (t) ’ng)
xA& (s) >,

PO=q0[1-p@®)]% ("), = max{¢"(®),0},

(13)
then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t),
then there exists T, (¢ T) > t, such that x(¢)#0 for all
t € [T,,00)7. Without loss of generality, we assume that
x() > 0, x(z(t)) > 0, x(6(t)) > 0, and x(g(t,s)) > 0 for
t € [Ty, 00)y, s € [a, b]y , because a similar analysis holds for
x(t) < 0, x(z(t)) < 0, x(8(t)) < 0, and x(g(t,s)) < 0. Then,
from (1), (H,), and (H;), we get

zwzxm>0,  (rol2 o2 o) <o

(14)
t € [Ty, 00);-

Therefore, r(t)|Z2()|* 1 Z2(1) is a nonincreasing function,

and Z%(t) is eventually of one sign.
We claim that

Z8) >0 or Z%(t)=0, te[T)00). (15)

Otherwise, if there exists a t; (¢ T) > T such that ZAt) <0
for t € [t;,00)y, then, from (14), there exists some positive
constant K such that

(1) (-2°®)" <K, te[h00)y,  (6)
that is,
K 1/«
-Z (t)>< (ﬂ) , te[t;,o0), 17)

and integrating the above inequality from ¢, to t, we have
Z(t) < Z(t) - K" (R(t,t,) - R(t;,1,)).  (18)

Letting t — oo, from (H,), we get lim, , Z(t) = —oo,
which contradicts (14). Thus, we have proved (15).

We choose some T, (€ T) > T, such that §(t) > T, for t €
[T}, 00)y. Therefore, from (14), (15), and the fact §(¢) < o(t),
we have that

ro®) (28 (e@))" <r@em (z2*© ),

€ [T}, 00),

(19)

which follows that

A A (o)) \"*
Z8@ ) =2 (a(t))<r(6(t))> , te[T,00).
(20)

On the other hand, from (1), (Hs), and (15), we obtain
(r®) (2°©)") + ) (2 ®) - p(O6 ) x (6 )"

a(b) o(s)
+ J k(t,s)(x(g(t,s)) AE(s) <0, te€[T},00);.
(21

Notice (15) and the fact Z(t) > x(t), we get
(re (28 ®)) +p® 2 ®)

o(b) 6
+ J k(t,s)(x(g(t,s)))" AE(s) <0, te€[T},00)

(22)
where p(t) = q(t)[1 — p(8(£))]*.
Define
r( (24 )"
w(t)=¢(t) % for t € [T},00). (23)

Obviously, w(t) > 0. From (22), (23), it follows that

A P A \¥\A
w0 = (M))(r(t)(z ®)")
L P OZ W) 90 (2 G )
Z%(8(8) 2% (8 (0 (1))
xr(o®) (2" (1))
< -pMP®)
o (1) o(b) 6(s)
et | keI ((g @) az (o
0N
EETC A
(2@ 1) r (1) (2" (0 )
Z%(8(£)) 2% (8 (o (1))

(24)

Now, we consider the following two cases.



In the first case, o >
2, we have

1. By (15), (H,), and Lemmas 1 and

(z* (5 1))
! 1
=« <H0 [(A-h)ZS @) +hZ(S(o (t)))]‘x— dh}

x (Z (8 )™
>a(Z ()28 (S 1) 8" ().

From (H,), (20), (23)-(25), and the fact that Z(t) is nonde-
creasing, we obtain

w® (t)

<-¢@®p®)

o) (°® o
ZII0)) J k(t,s)(x(g(t,s))" AE(s)

0]
BYeI0)

POAZE)TZ (3 (1) )0 1) (2 (0 (1)
Z (8 (1)) 2% (3 (o (1))

o) [°O -
200, J k(t,9) (x (9 (1:9))"AE(5)

w (0 (1))

<—¢®O)pH) -
¢ (t)
¢( o)

9 (0)az @) M) ®) (2" @)’
Z1 (8 (o (1))

w (0 ()

<-¢ (@) p ()

o) [°® 0(s)
o j k(6,9) (x (9.(,9))" A& ()

¢* (1)
IO R
L ap 8 Or @) (2 0 1) (r (o (1) )”‘"

ZoL (8 (0 (1)) (8 (1)
a(b)

40P s [k (g6 9) a8

L 80

IO

ap (£) 6 (1)

_ (a+1)/e ¢
CICA0) R o) 0):
(26)
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In the second case, 0 < a < 1. By (15), (H,), and Lemmas
1 and 2, we get

(z= @ 1)
1
=« {L [(A-R)Z ) +hZ( (o (t)))]"‘_ldh]»

x (Z (8 )™
>a(Z 8 (o2 (1) 8% ().
(27)

From (H,), (20), (23)-(24), (27), and the fact that Z(¢) is

nondecreasing, we have
w® (1)
<= (B p ()

o) [°® .
IFZ0) J k(t,s) (x (g (t,5)))" A& (s)

)
o @m)

PNAZ@E@OMIZ @) O r (@) (2" (0 1)’
Z5(8.(1) 2 (8 (0 (1))

w (o (1)

<) p )

o) [°® .
INZ0) J k(t,s) (x(g(t,5)))"" A& (s)

L 90
RTI0N

ezt @) @) (24 @)’
Z5 (3 (0 (1))

w (0 (1))

<-¢®)p )

o) [(°® .
IFZ0) J k(t,s) (x (g (t,5)))" A& (s)

)
@)
~ ad (1) 8° (t)

(@ (0 0) @ N

w (o (1)

w N (g (1))
(28)
Therefore, for & > 0, from (26) and (28), we get
w' () < ¢ P (1)

b1 (o0 -
T e 6 (1) L k(t,s)(x(g(t.s)) A& (s)

¢* (1)
BYCI0)

w (0 ()

B ad () 8° (t)
(6 (o (6)"%(r (& (1))

w(a+1 /oc( (f))

(29)
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On the other hand, it is obvious that the conditions in
Lemma 5 are satisfied with x(t), 7(¢), p(t) replaced by Z(t),
g(t,s), and r(t), respectively. So, we have

Z(9(t9) _R(9(®:3).9r,)
Zo () ~ R(a(t),ng))

(30)

in the view of x(t) > (1 — p(t))Z(t), we get

Z(@6(t) < Z(o(1)

R(o(t),gT)
S ————5Z(g ()
R(g(t.s).9r,) (9.9) 31)

3 R(c(t),gr,) x(g(ts))
T R(9(69),91) 1~ P9 (09)

From (29) and (31), we obtain
wh ()< -pOP )

a(b)
—¢(t)j k(ts)

) R(g(t,sxgn)(l—p(g(t,s)))]“”
R(o(®),9r,)

x [Z (0 (1)]797%AE (s)

Fo
A
e (t;“)“lfﬁ "‘ir E(ts)(t)»” e (32)
By (10) and (1), we have
j:(b) N0 (5) - o] A (5) = 0. (33)

0(s)

Therefore, by Lemma 4 and (33), we have that for t € [T}, c0)y
J»a(b> R(g(t,s),ng)(l—p(g(t,s)))]
k(t,s)
a R(o(t),gr,)

x [Z (o (t)]"9 A (s)

o(b) .
- [ nent ©key

X R(g(t,s>,gn)(1—p(g(t,s»)r“’
R(o(t),ng)

X [Z (0 (1)]" AL (5)

a(b)
> exp J n(s)

x In (;1_1 (s)k(t,s)

0(s)

§ R(g(t,s),grl)(l—p(g(t,s)))]
R(O’(t),ng)

VA (t))]“”“) AE (s>>

a(b)
= exp ( J n(s)

x In <;71 (s)k(t,s)

R(O‘ (t)’ng)

xAE (s) )

a(b)
X exp <1n (Z (o)) J n(s)[0(s) - a] AG (S))

o(b)
= exp ( J n(s)

x In <11_1 (s)k(t,s)

) R(g(t,s%gn)(l—p(g(m)))r“))

) [R(g ), 91,) (1-p(g(&9)) ]G“’
R(G(t)’ng)

xAE (s) ) .
(34)
Substituting (34) into (32), we obtain
¢" ()
$ (0 (1))
~ o () 8° (1)
CICI0)) R ACIO) K
(¢" ),
$(a (1)
B ag () 8 ()
(@ ®) ™ © N

wr )< -M@)+

w (o (1))

T O)

< -M(t)+

w (0 (1))

WV (o 1)),

(35)



where M(t) and (gl)A(l‘))Jr are defined by (13).

Taking
o [ i ]a/(aﬂ)w(a (1)
(¢ (o (1)) (r (8 ()" ’
a+1
v (36)
wton [r@ o (9 )" 1"
(a4 1)~ ¢* (£) (8 (t))a )

by Lemma 3 and (35), we obtain

1 e (¢ o)

o+l o A o (37)
(a+1) ¢ (t) (62 (1))

w (1) < -M (1) +

Integrating above inequality (37) from T; to t, we have

w(t) <w(T)

‘ 1 @) (¢ 9)"
_JTI <M(S)_(o¢+1)°‘+1 T o6 )Y

T

< w(T1)+J 1M(s)As
: 1 @) (¢ )"
B L <M O e FeEe)r )
(38)
Since w(t) > 0 for t > T}, we have
: 1 e ()"
L <M O e e e )
(39)

Tl
Sw(T1)+J M(s)As-w () <w(Ty)

to

Tl
+ J M (s) As,
)

which contradicts (12). This completes the proof of
Theorem 6. O

Remark 7. If we take r(x,s) = 0 and use the convention
that In0 = —00, e = 0, then Theorems 6 reduces to [15,
Theorems 3.1]. If furthermore &« > 1 is a quotient of odd
positive integer, then Theorem 6 reduces to [14, Theorem 3.1].

Remark 8. The function #(t) satisfying (10) and (11)
in Theorem 6 can be constructed explicitly for any
nondecreasing function &. In fact, if we assume that
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0(t), 1/6(t) € Lela, by, and let h = sup{s € (a,b)y : 6(s) <
(x})

( o(b) -1
1, (s) = 1 %(J AE(S)) , se€loh),bl,

a(h)
o, s € [ao (W),
(40)
0, s € [0 (h),bly,
O =1 o ((°®, \
\56<L M@O . selao ().
It is easy to see that #;(s) € L¢[a.b]y and
o(b)
J 0) 1 (s)AE(s) =, i=1,2. (41)
Moreover,
o(b)
[ @age=m <1,
’ (42)
o(b)
I 1, () AE () = my > 1.
Let
n(s,)=0-0n (s)+In,(s), forsela,bly, 1€[0,1].
(43)
Then, we obtain that
o(b)
[ ownenage -«
o(b)
| nsnage
a (44)

a(b) a(b)
=04ﬂ m@M@+4 1y (5) AE ()

=1 -1)ymy +Im,.

By the continuous dependence of #(s,I) on I, there exists [* €
(0,1) such that 5(s) := 5(s,1") satisfies

o(b) o) .
J n(s)AE(s)=j n(s,I")AE(s)=1.  (45)

a a
Remark 9. SetT, =N,a=1,b=nforn e N, and
&s) =s;
0(s) = B, (s = 1,2,...,n) satistying B, > 5, > -+ >
:Bm >“>‘Bm+1 > >ﬂn;
k(t,s) =q,(t),s=1,2,...,m;
gt,s) =1,(t),s=12,...,m
Then, (1) reduces to

(r(nle(wr*‘zA<ﬂ)A+—f(nx(6(n»
: - (46)
+Yq;®|x(r; ) x(x; ) = 0.
j=1
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So, if we take T for some peculiar cases in Theorem 6, we can
obtain various results. For example, if we take T = R, p(t) =
0, [f(t,u)] = q()[u”|, and n = 2 in (46), then Theorem 6
generalizes the results by [18, Theorem 2].

Next, we use the general weighted functions from the
class f which will be extensively used in the sequel.

Let D = {(t,s) € [ty, 00)1 X [ty,00) : t = s = t}, we say
that a continuous function H(t, s) € C4(D, R) belongs to the
class g if

(i) H(t,t) = 0 for t € [ty, 00)y and H(t,s) > 0 fort > s >
t, where t, s € [t;, 00)y;
(ii) H(t,s) has a nonpositive right-dense continuous A-

partial derivative H*:(t, s) with respect to the second
variable.

Theorem 10. Assume that (H,)-(Hg) hold. If there exist
functions H(t,s) € £, ¢(t) € Cli([ty, 00)y,(0,00)), 7(t) €
L[a, b] such that y(s) > 0 on [a, by, (10) and (11) hold, and
t

tlingom J;D [H(t,s) M (s) —U (t,s)] As = co, (47)

where
o+l a+l
Ults) = 1 _ O (t, s)rEx(S ) (¢ (o (S)L)
(+1) (H (£,9))%¢* (s) (8" (5))
(48)
H(t,s)(¢"
@, (t,s) = max <|HA’ (t,s) + %, } , (49)

M(t) and ((/SA(t))Jr are defined as in Theorem 6, then (1) is
oscillatory.

Proof. We proceed as in the proof of Theorem 6 to have (35).
From (35), we obtain
(¢*®)

MPTCIO R

B ad () 8° (£)
($ (o (6)"7(r (& (1))

M) < —w" (1)

w0 (1)),

t € [T,00);.
(50)
Multiplying (50) (with ¢ replaced by s) by H(t, s), integrating

it with respect to s from T; to t for t € (T}, 00)y, and using
integration by parts and (i)-(ii), we get

Jt H (t,s) M (s) As
T

< - Jt H (t,s) w® (s) As
T

¢ Ht,s) (6% (9)),
+ Ll —¢ 7I0) w (o (s))As

H (t,s) —m
T, ($ () r @ )

) J o ()6 (s)

x WV (g (5)) As

=H(T,)w(T))+ Li H" (t,5)w (0 (s)) As

t H (t, A
[ BEIEOL

+
r,  $@()

A
) J s o ()6 (5)

T, (6 (a () (r S (o))

x WV (g (5)) As

=H(t,T,)w(T,)

: N H(t,5) (¢" (5)),
+ Ll <H (t,s) + —¢ 7I0) w (o (s))

a (s) 8° (s)

—H{(t,s) s
($(a () @ o))

xw @V (5 (5)) | As

< H(t>T1) w(Tl)

t
+4[
T

@, (t,s)w(0(s))

8A
- H(t,s) mplff}a ) e
((a(s)) " (r(d(5)))

xw® V% (g (s)) | As,

(51)

where @ (¢, s) is defined as in (49).
Taking

A of (a+1)
X:[( aH (t,5) ¢ (s) 8” (s) ] w (0 (s)),

¢ (0 (s)) ™ (6 ()

a+1
Y= P
- (Xot/(ochl) @i#—l (t, S) r ((S (S)) (¢ (0_ (S)))a+1 :|0</(0¢+1)
S DT (H 9 () (00 ()" ’

(52)



by Lemma 3 and (51), we obtain

Jt H (t,s) M (s) As
T

<H(T)w(Ty)
-,

<H(bt)w(T,) + j; U(ts) As,

1

Lo (t,s>r<6<s)>(¢(a(s)>)““] A
@+ DT (H(1,9)°¢" () (8% (9)°

(53)

where U(t, s) is defined as in (48).
Then, it follows that

Jt [H(t,s)M(s)-U(t, )] As < H (t,ty) w(Ty). (54)

T

Thus, from (54), we get
t
J [H (t,5) M (s) — U (t,5)] As
ty

T, ot
:<J +J >[H(t,s)M(s)—U(t,s)]As
to T

. (55)
< J [H (t,s) M (s)] As + H (t,t,) w(T})
T
<H(tt,) j M (s) As + H (t,t) w (T;)
Therefore,
T D L} [H (£ 5) M (s) - U (£, 5)] As
(56)

T
<J M (s) As +w (T;) < oo,
t

0

which contradicts (47). This completes the proof of
Theorem 10. O

Remark 11. In the literature, there are so many results for
second-order nonlinear neutral functional dynamic equa-
tion; however, to the best of our knowledge, there is no work
done attempting to study the neutral functional dynamic
equation with an infinite number of nonlinear terms. Hence,
our paper seems to be the first one dealing with this
untouched problem. Our results not only unify the existing
results in the literature, but also extend the existing results to
a wider class of dynamic equations.

Abstract and Applied Analysis

4. Examples

Example 1. Consider the following dynamic equation:

|

1/2 A

! <x ) +

1+¢2

<x )+ ——x(r (t)))A

1+¢2

A
! x (e () ]

1(1+q(2)t2

S 2
2 t ) L |x (g, S))|S_1x (g(t,s))As =0,
0

t2
teT.
(57)

In (57),r(t) = L, a = 3/2, p(t) = 1/(1 +t%), f(t,u) = 0,a = 1,
b=2,0(s) =s,&(s) = s,and g, > 1 is a constant.

IfT = % = {qp : n € Z}u{0}and 7(t) = t/qlg”,é(t) =t/q,,
g(t,s) = qt, and k(t,s) = 1/t + qétz)/qgtz)s, where k
is an arbitrary positive integer, then 8*(t) = 1/g,. We can
choose #(t) = 1, ¢(t) = t. Then, it is easy to get that M(t) =
1/t, and therefore,

s e (et m)”
slingo LO <M (t) - (a + 1)0c+1 (pa (t) (8A (t))"‘ At

— (1 q8/2
= SEIISOJ ; - T?}/Z At = 00.
to (5/2)"t

Hence, by Theorem 6, (57) is oscillatory.

(58)

Example 2. Consider on T = R the following differential
equation:

[#](x00+ (1= o)
x <x(t)+<1— I:tz)x(t—l))’]’
D) ()

A1 +22)" 1
<t—2) | @rxmas-o

1/2

(59)

+
0

In (59), r(t) = "%, a = 3/2, p(t) = 1 - 1/(1 + %), 7(t)
t —1,8(t) = t/2, 3,A > 0 are constants, f(t,x(5(t))
(BIO(4 + /4P |x(t/2)2x(t/2), q(t) = (/) (4
2)/4)*2, k(t,s) = A1 + 262)*/¢%, g(t,s) = t,a = 0, b
1, 6(s) = 3s,and &(s) = s.

+
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We can choose () = 1, ¢(t) = t. Then, itis easy to get that
M(t) = (B+A)/t, 8'(t) = 1/2, and therefore, from Theorem 6,

r@em (¢ )"
¢ () (8" (1)"

— ((B+A 277
= SILI’IC')IO J;U ( P - 55/2t dt
272N\ — (f1
= A-=— )1 J —dt
(ﬁ + 55/2 ) slpgo o t

27/2
= 00, 1fﬁ+A>W.

s 1
f J M () -
S50 to ® (o +1)*H

(60)

Hence, by Theorem 6, (59) is oscillatory if  + A > 27/2/5%/2,
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