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This paper is concerned with gap functions of generalized vector variational inequalities (GVVI). By using scalarization approach,
scalar-valued variational inequalities of (GVVI) are introduced. Some relationships between the solutions of (GVVI) and its
scalarized versions are established. Then, by using these relationships and some mild conditions, scalar-valued gap functions for
(GVVI) are established.

1. Introduction

The concept of vector variational inequalities was firstly
introduced by Giannessi [1] in a finite-dimensional space.
Since then, extensive study of vector variational inequali-
ties has been done by many authors in finite- or infinite-
dimensional spaces under generalized monotonicity and
convexity assumptions. See [2–10] and the references therein.
Among solution approaches for vector variational inequali-
ties, scalarization is one of the most analyzed topics at least
from the computational point of view; see [8–10].

Gap functions are very useful for solving vector vari-
ational inequalities. One advantage of the introduction of
gap functions in vector variational inequalities is that vector
variational inequalities can be transformed into optimization
problems. Then, powerful optimization solution methods
and algorithms can be applied for finding solutions of vector
variational inequalities. Recently, some authors have inves-
tigated the gap functions for vector variational inequalities.
Yang and Yao [11] introduced gap functions and established
necessary and sufficient conditions for the existence of a
solution of vector variational inequalities. Chen et al. [12]
extended the theory of gap function for scalar variational
inequalities to the case of vector variational inequalities.
They also obtained the set-valued gap functions for vector

variational inequalities. Li and Chen [13] introduced set-
valued gap functions for a vector variational inequality and
obtained some related properties. Li et al. [14] investigated
differential and sensitivity properties of set-valued gap func-
tions for vector variational inequalities and weak vector
variational inequalities. Meng and Li [15] also investigated
the differential and sensitivity properties of set-valued gap
functions for Minty vector variational inequalities andMinty
weak vector variational inequalities.

The purpose of this paper is to define a single variable
gap function for generalized vector variational inequalities by
using the scalarization approach. To this end, we first trans-
form the generalized vector variational inequality into an
equivalent scalar variational inequality by using the scalariza-
tion approach of [9].Then, we establish the relations between
vector variational inequalities and variational inequalities.
Finally, we apply the results to obtain gap functions for
generalized vector variational inequalities.

2. Generalized Vector Variational Inequalities

Throughout this paper, let the set of nonnegative real num-
bers be denoted by 𝑅

+
, the origins of all finite-dimensional

spaces denoted by 0, the norms of all finite-dimensional
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spaces denoted by ‖ ⋅ ‖, and the inner products of all finite-
dimensional spaces denoted by ⟨, ⟩. Furthermore, let 𝐾 ⊆ 𝑅

𝑛

be nonempty closed convex set. Let 𝐹
𝑖
: 𝑅
𝑛

→ 𝑅
𝑛
(𝑖 = 1, 2,

. . . , 𝑚) be vector-valued functions, and let 𝑔
𝑖
: 𝑅
𝑛

→ 𝑅(𝑖 =

1, 2, . . . , 𝑚) be real-valued functions. For abbreviation, we put

𝐹 := (𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑚
) , 𝑔 := (𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑚
) , (1)

and for any 𝑥, V ∈ 𝑅
𝑛,

⟨𝐹 (𝑥) , V⟩ := (⟨𝐹
1
(𝑥) , V⟩ , ⟨𝐹

2
(𝑥) , V⟩ , . . . , ⟨𝐹

𝑚
(𝑥) , V⟩) .

(2)

In this paper, we consider the following generalized vector
variational inequality (GVVI):

(GVVI)
{{

{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
) ∉ − int𝑅𝑚

+
,

for any𝑥 ∈ 𝐾.

(3)

The solution set of (GVVI) is denoted by sol (GVVI).
If 𝑔 = 0, then (GVVI) collapses to the following vector

variational inequality (VVI), introduced and studied by [2, 3]:

(VVI)
{{

{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ ∉ − int𝑅𝑚

+
,

for any 𝑥 ∈ 𝐾.

(4)

The solution set of (VVI) is denoted by sol (VVI).
Clearly, for𝑚 = 1, (GVVI) and (VVI) collapse to the gen-

eralized variational inequality (GVI)

(GVI)
{{

{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨𝐹
1
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔
1
(𝑥) − 𝑔

1
(𝑥
0
) ≥ 0,

for any 𝑥 ∈ 𝐾,

(5)

and the variational inequality (VI)

(VI)
{{

{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨𝐹
1
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ ≥ 0,

for any 𝑥 ∈ 𝐾,

(6)

respectively.
Now, by using the scalarization scheme of Lee et al. [9], we

introduce scalar gap functions for (GVVI) and (VVI). So, for
any 𝜉 ∈ 𝑅

𝑚

+
\ {0}, we consider the following scalar variational

inequalities:

(GVI)
𝜉

{{{{{{{

{{{{{{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥)

−

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥
0
) ≥ 0 for all 𝑥 ∈ 𝐾,

(VI)
𝜉

{{

{{

{

Find 𝑥
0
∈ 𝐾 such that

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ ≥ 0 for all 𝑥 ∈ 𝐾.

(7)

The solution sets of (GVI)
𝜉
and (VI)

𝜉
are denoted by

sol (GVI)
𝜉
and sol (VI)

𝜉
, respectively.

Lemma 1. The following properties hold.

(i) If 𝑔
𝑖
is an affine function for every 𝑖, then,

⋃

𝜉∈int𝑅𝑚
+

sol (GVI)
𝜉
⊂ sol (GVVI) = ⋃

𝜉∈𝑅
𝑚

+
\{0}

sol (GVI)
𝜉
. (8)

(ii) If 𝐹
𝑖
and 𝑔

𝑖
are continuous functions for every 𝑖, then

sol (GVVI) is a closed set.

Proof. (i) We first prove the inclusion. In fact, take any 𝑥
0
∈

sol (GVI)
𝜉
, where 𝜉 ∈ int𝑅𝑚

+
. Then, for any 𝑥 ∈ 𝐾,

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥) −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥
0
)

=

𝑚

∑

𝑖=1

𝜉
𝑖
(⟨𝐹
𝑖
(𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑥
0
))

= ⟨𝜉, ⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
)⟩

≥ 0.

(9)

Thus, there cannot exist 𝑥 ∈ 𝐾 such that

⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
) ∈ − int𝑅𝑚

+
, (10)

which means that 𝑥
0
∈ sol (GVVI).

Now, we prove the equality in (8). If 𝑥
0

∈ sol (GVVI),
then,

{⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
) : 𝑥 ∈ 𝐾}

∩ (− int𝑅𝑚
+
) = 0.

(11)

Moreover, since each 𝑔
𝑖
is an affine function

{⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
) : 𝑥 ∈ 𝐾} (12)

is a convex set.Thus, by using the separation theorem (see [16,
Theorem 11.3]), there exists 𝜉 ∈ 𝑅

𝑚
\ {0} such that

inf
𝑥∈𝐾

{𝜉
𝑇

(⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
))}

≥ sup
V∈− int𝑅𝑚

+

𝜉
𝑇V.

(13)

This means that 𝜉 ∈ 𝑅
𝑚

\ {0}, and for any 𝑥 ∈ 𝐾,

𝜉
𝑇

(⟨𝐹 (𝑥
0
) , 𝑥 − 𝑥

0
⟩ + 𝑔 (𝑥) − 𝑔 (𝑥

0
)) ≥ 0. (14)

Then, 𝑥
0
∈ sol (GVI)

𝜉
. Conversely, for any 𝑥

0
∈ sol (GVI)

𝜉
,

where 𝜉 ∈ 𝑅
𝑚

+
\ {0}, it is easy to see that 𝑥

0
∈ sol (GVVI).

(ii) Set

Δ := 𝑅
𝑚

\ (− int𝑅𝑚
+
) . (15)

Then, Δ is a closed set. For any 𝑥 ∈ 𝐾, let

𝐾 (𝑥) := {𝑦 ∈ 𝐾 : ⟨𝐹 (𝑦) , 𝑥 − 𝑦⟩ + 𝑔 (𝑥) − 𝑔 (𝑦) ∈ Δ} .

(16)
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Since 𝐹 and 𝑔 are continuous,𝐾(𝑥) is a closed set. Moreover,
since

sol (GVVI) = ⋂

𝑥∈𝐾

𝐾 (𝑥) , (17)

we get that sol (GVVI) is a closed set. The proof is complete.

Taking 𝑔 = 0 in Lemma 1, we can easily get the following
result.

Corollary 2 (see [9]). The following properties hold.

(i)

⋃

𝜉∈int𝑅𝑚
+

sol (𝑉𝐼)
𝜉
⊂ sol (VVI) = ⋃

𝜉∈𝑅
𝑚

+
\{0}

sol (𝑉𝐼)
𝜉
. (18)

(ii) If 𝐹
𝑖
is a continuous function for every 𝑖, then sol (VVI)

is a closed set.

3. Gap Functions for (GVVI) and (VVI)

In this section, we propose some new gap functions for
(GVVI). Now, we first introduce the definitions of gap
functions for (GVVI) and (VVI).

Definition 3. A real-valued function 𝜓 : 𝑋 → 𝑅 is said to
be a scalar-valued gap function of (GVVI) if it satisfies the
following conditions:

(i) 𝜓(𝑥) ≥ 0, for any 𝑥 ∈ 𝐾;
(ii) 𝜓(𝑥

0
) = 0 if and only if 𝑥

0
∈ 𝐾 is a solution of

(GVVI).

Definition 4. A real-valued function 𝜑 : 𝑋 → 𝑅 is said
to be a scalar-valued gap function of (VVI) if it satisfies the
following conditions:

(i) 𝜑(𝑥) ≥ 0, for any 𝑥 ∈ 𝐾;
(ii) 𝜑(𝑥

0
) = 0 if and only if 𝑥

0
∈ 𝐾 is a solution of (VVI).

Now, by using Lemma 1 and Corollary 2, we generalize
the gap function introduced by Auslender [17] for scalar
variational inequalities to the case of vector variational
inequalities. The gap functions for (GVVI) and (VVI) are
defined by

𝜓 (𝑥) = inf
𝜉∈𝑆
𝑚

{sup
𝑦∈𝐾

{⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑦)}

+

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥)} ,

(19)

𝜑 (𝑥) = inf
𝜉∈𝑆
𝑚

sup
𝑦∈𝐾

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ , (20)

respectively. The symbol 𝑆𝑚 in the above expression denotes
the unit simplex in 𝑅

𝑚

+
; that is, it is given as

𝑆
𝑚

= {𝑥 ∈ R
𝑚

+
:

𝑚

∑

𝑖=1

𝑥
𝑖
= 1} . (21)

The use of 𝑆𝑚 in the above expression is to stress the fact that
the vector 𝜉 ̸= 0, and we just express the normalized version.
Further, use of 𝑆𝑚 has an advantage since if additionally 𝐾 is
compact and each 𝑔

𝑖
is convex for any 𝑖 = 1, 2, . . . , 𝑚, then,

the functions 𝜓 and 𝜑 are finite.

Theorem 5. If 𝑔
𝑖
is an affine function for every 𝑖, then, the

function 𝜓 defined by (19) is a gap function for (𝐺𝑉𝑉𝐼).

Proof. (i) It is easy to prove that 𝜓(𝑥) ≥ 0 for all 𝑥 ∈ 𝐾.
(ii) If there exists 𝑥 ∈ 𝐾 such that 𝜓(𝑥) = 0, set

𝜃 (𝑥, 𝜉) = sup
𝑦∈𝐾

{⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑦)} . (22)

Then,

𝜓 (𝑥) = inf
𝜉∈𝑆
𝑚

{𝜃 (𝑥, 𝜉) +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥)} . (23)

It is easy to observe that for 𝑥 ∈ 𝐾, the function 𝜃(𝑥, ⋅) is
a convex function. Moreover, since 𝜓(𝑥) = 0, 𝜃(𝑥, ⋅) is a
proper lower semicontinuous convex function. Then, there
exists 𝜉∗ ∈ 𝑆

𝑚 such that

𝜃 (𝑥, 𝜉
∗

) +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥) = 𝜓 (𝑥) = 0, (24)

which follows that for all 𝑦 ∈ 𝐾,

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥) −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑦) ≤ 0. (25)

Then,

⟨

𝑚

∑

𝑖=1

𝜉
𝑖
𝐹
𝑖
(𝑥) , 𝑦 − 𝑥⟩ +

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑦) −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑔
𝑖
(𝑥) ≥ 0. (26)

Thismeans that 𝑥 solves (GVI)
𝜉
.Thus, using Lemma 1, we get

that 𝑥 is a solution of (GVVI).
Conversely, let 𝑥 ∈ sol (GVVI). By Lemma 1, there exists

𝜉
󸀠
∈ 𝑆
𝑚 such that 𝑥 ∈ sol (GVI)

𝜉
󸀠 . Then, for all 𝑦 ∈ 𝐾,

⟨

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝐹
𝑖
(𝑥) , 𝑦 − 𝑥⟩ +

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝑔
𝑖
(𝑦) −

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝑔
𝑖
(𝑥) ≥ 0; (27)

that is,

⟨

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝐹
𝑖
(𝑥) , 𝑥 − 𝑦⟩ +

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝑔
𝑖
(𝑥) −

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝑔
𝑖
(𝑦) ≤ 0. (28)
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Then,

𝜃 (𝑥, 𝜉
󸀠

) +

𝑚

∑

𝑖=1

𝜉
󸀠

𝑖
𝑔
𝑖
(𝑥) ≤ 0. (29)

So, 𝜓(𝑥) ≤ 0. Moreover, as 𝜓(𝑥) ≥ 0 for all 𝑥 ∈ 𝐾, then,
𝜓(𝑥) = 0 and the proof is complete.

By Theorem 5, it is easy to see that the following result
holds.

Corollary 6. The function 𝜑 defined by (20) is a gap function
for (𝑉𝑉𝐼).

4. Conclusions

In this paper, by using the scalarization approach of [9],
we transform a generalized vector variational inequality
into an equivalent scalar variational inequality. Then, we
establish some relationships between the solutions of vector
variational inequalities and variational inequalities. By using
these relationships and some mild conditions, we obtain gap
functions for the generalized vector variational inequalities
and vector variational inequalities.
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