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We study the problem of bifurcation of critical periods of a time-reversible polynomial system of degree n. We first present a new
method to find the number of zeros of the period function. Then applying our results, we study the number of critical periods for

some polynomial systems and obtain new results.

1. Introduction

Consider a two-dimensional analytic real differential system
of the form

y=G(xy), 0))

where we suppose there is a nondegenerate center at the
origin O. Let L(h) denote the orbit passing through the point
(h,0) with 1 > 0 of (1) and T'(h) denote its period. As we
all know, the isolated zeros of derivative of T'(h) are named
critical periods. An interesting problem is to investigate the
number of the critical periods. This is an important problem
in the research of period functions and a lot of results
have been obtained for polynomial differential systems, for
example, monotonicity [1-8], finiteness of critical periods
[9, 10] and isochronicity [11-13], and local bifurcation of
critical periods [14]. The number of critical periods was also
discussed in [15-17] for perturbations of isochronous vector
fields.

Recently, the authors in [18] studied the following system:

x=F(xy),

x=-y+F,(x,y)+e) B(xy),
i=2

)
y=x+K, (xy) +e)Q(xy),

i=2

wheren,m >2,0<e <« 1,

[n/2]

_ n+l-2j 2j-1
F,(x,y) = Z Api1-2j,2j-1% Yoo
=i

i+1)/2]

[G+1)
= i+1-2j 2j-1
P (x,y) = Z bi+1—2j,2j—1x1 Ty,
=

3)
[n/2]

- n=2j,2j
K,(x,y) = Z Api1-2j2j-1% "V
=

[+2)/2] S
i+2-2j 2j-2

Q; (x,y) = Z Giv2-2j2j-2% y
=1

Under the conditions above, system (2) is time-reversible and
hence has a center at the origin.

As shown in [15-20], for 0 < & <« 1, the period function
T(h,€) of system (2) can be written as

T (he) =Ty + +ZO°Ti (W€, (4)

i=1

where T, is a positive constant. The authors [18] gave
expressions of Tl (h) and Tz(h). It is also proved in [18] that
one critical period can appear for the case n = m = 2 and two
critical periods can be found for the case n = m = 3.
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In this paper, we consider the following system:
k= = y+[F, (%) +AF (x.y)]
+8[Pm (x, y) + AP (x,y)], “
5
= x+[K,(xy) + 2K (x.y)]
+€[Qu (%) + AQx (. 3)]
where
A 2j+1  2j-1
e _
F,(xy) = Zan+172j,2j71x Ty
=1
= A 1-2j+1  2j-1
Fi(x,y) = Zalﬂ—zj,zj—lx Tyt
=1
m [(i+1)/2] o i
P, (x,y) = Z bi+1—2j,2j—1xl+ Iy
=2 j=1
k [+1)/2] iy
= Z bz+1 -2j.2j-1% X Ty (6)
=2 j=1
[n/2] o
e
K, (x,y) = Z Ap1-2j2j-1% Ty,
=1
o [1/2]_ Lai i
K (x,y) = Zalﬂ—zj,zj—lx Ty,
j=1
m [(i+2)/2] i 2in
Qu(x,y) = Z Civ2-2j2j-2% X Ty,
=2 j=1
_ k [42)/2] eyt 2
Q (%, y) = Z Ei+2—2j,2j—2xl+ Ty (7)
=2 j=1

m, n, I, k > 2, and both € and A are small parameters. From
the above expressions, we know that the system (5) satisfies
the following properties: (i) it is a time-reversible system, and
the perturbations with ¢ are of general form; (ii) for all ¢, the
origin is a center, and for ¢ = 0, the origin is isochronous
since there exist polynomials ¢, (x, y) and ¢;(x, y) such that

Fy(xy) = x9,(x9), K,(x,y) = yp,(x,9), Filx,y) =
X%, ), Ky(x, y) = ygu(x, ).

Let T'(h, &, A) denote the period of the periodic orbit of
system (5) passing through the point (h,0). Then it has the
following expansion:

+00
T(hed)=Ty+ ) T;(hA)E, (8)
i=1
where

) =Ty )+ Y

Jj=1

T;; (h) N, 9
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and since (5) becomes (2) as A = 0, we have T(h,&,0) =
T(h,¢).
Next section, we give some preliminary lemmas.

2. Preliminary Lemmas

In this section, we cite some results obtained in [18].

Lemma 1 (see [18]). For system (5),

Tl (h) 0) = T10 (h)

m—1 s i
_ r H'S, (6) e
i=1 70 a1 (0 i/(n-1)
(1+(1—n)h Iy Go(oc)doc)
(10)
T, (h,0) = Ty (h)
2m 2
. (6,h)S; (0
J |:<Zr0( )S; ( )> )
m-1
=N @by 0,8 (6) | do
i=1
where

0 1/(1-n)
ro (6,h) = [h“"+(1 —n) L G, () doc] , (12)

[n/2] ‘ ‘
Gy (0) = ) a1 jpjrcos™ 2 (O)sin® ' (6),  (13)
=1
([(i+1)/2]
Gir1-2j2j — bi+2—2j,2j—1)
x cos' 2721 (0) sin¥ (6)
S (0) = —byj8in”? (0), ieven, (14)
[(+1)/2]
(Ci+1—2j,2j - bi+2—2j,2j—1)
| x cost¥7% (0)sin¥ (0), i odd,
0 | m-1
ry (6,h) = J [ r "(a, h) G; () - Gy ()
i=1
x Z " (o, h)S; (oc)] (15)

0
exp (j nrlt™ (B,1) Gy (B) dﬁ) des
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moreover, if n is odd, Sy(0) = 0, and

T; (h,0)
((m=1)/2] (om 2k
_ J' h*S, (0) 4.
0 0 2k/(n—1)
S (1 A= m [ Gy (o) da)
(16)

Lemma 2 (see [18]). Letn =m =2 and A = 0 in (5). Then
T, (h,0)

= (Doz - 3Dzo) T

2(D,, — D 4(D,, - D
+ ( 02 20)77+ ( 20 02)77

W2 h
. 2(1 = h) [Dyyh® + 2(Dygy — Dyg) h+ Dy — Dy |
W21 - 2h ’
17)

where h € (0,1/2) and Dy; are constants depending on the
coefficients appearing in F,, K,,, P,,, and Q,,,. Furthermore, for
sufficiently small €,

(i) the center O preserves the isochronicity when D,, =
Dy, = 0; period function T (h, €, 0) is increasing (resp.,
decreasing) for h € (0, 1/2) when D,y = 0 and Dy, > 0
(resp., < 0);

(ii) there is at most one critical period in (0,1/2) when
D,, #0. Moreover, there is exactly one critical period
in (0,1/2) if and only if

(18)

\»)

20
Lemma 3 (see [18]). Letn=m =3 and A = 0 in (5). Then

1-Vi-w
(1+ Vi-mR)Vi-12

T, (h,0) =

(19)
X [2303 —2D; + (Bys + By — Dy, — Dsp)

V1= 12 + 2Dyl

where h € (0,1) and By;, D;; are constants depending on the
coefficients appearing in F,, K,,, P,,, and Q,,,. Furthermore, for
sufficiently small €, one has the following results.

(i) The center O preserves the isochronicity when

D,y =By; = Dy, =0,
(20)
D5y = By3 = By; — Dy, = 0.

(ii) If (20) do not hold, there are at most two critical periods
in (0, 1) and the maximum is achievable.

3. Main Results

As in [18], one can make the polar coordinates x = r cos(),
y = rsin(0), so that system (5) becomes

7 =1"Gy (0) + MGy (0)

>

m=1 k-1
+e [ Y G 0) + 1) G, (6)

P P (1)
. m=1 k-1 '_
O=1+¢ [ r'S; (0) + )»ZrlSi (0):| ,
i=1 i=1
where G,(0) and S;(0) are given by (13) and (14),
= L2 1-2j 2j-1
Go(0) = ) Gy pja;1c08 7 (8)sin® ™ (6), (22)
=1
([(i+2)/2]
biaajoj1 + Ci+3—2j,2j—2)
=

x cos' ™74 (0) sin¥ ™! (0), i even,

G, (0) = { 16+
bz ajaje1 + Giyszjo j—z)

1
x cos 727 (0) sin¥ ™! ()
+Go418i02 (), i odd,
(23)
([G+2)/2]
biiaajoj-1 * Civamajo j—2)
=1
x cos ™72 (@) sin¥ 1 (0), i even,
G.(0) = {162y _ )
biiz2jaj1t Civsajn j—2)
j=1
x cos 727 (0) sin® ! ()
+Co 1802 (6), i odd,
(24)
[ [(+1)/2] B
Civ1-2j2j — birrs .2 j—l)
=0
x cos ™71 (0) sin* (0)
Si (6) = A _ Eo,i+1Sini+2 (6) , i even, (25)
[(i+1)/2] B
Civ1-2j2j — bi+2—2j,2j—1)
=
x cos ™72 (@) sin* (0), i odd.

Obviously, 0 = 1 when ¢ = 0, which implies that the
unperturbed system (5) |,_, has an isochronous center at O
which is called a rigidly or uniformly isochronous center. We
have the following fundamental result.



Theorem 4. Let (8) and (9) hold. Then, for system (5), one has

-1 c2n
Tyh)= -y L ir'=1 (6,h) oy (6,1) S, (6) dO
- (26)
k-1 2T . _
-y j r (6,1, (6) b,
i=1 70
where
h
oo (0, h) = 0 Ue-D" (27)
[1+ 0 -mhr [[ Gy (@) da]
6 ; _
o, (B, h) = L Too (@0 1) Gy ()
(28)

-[expj w1 (B.1) G, (B) dﬁ]d(x

Proof. We follow the idea of proving Lemmal which is
Theorem 2.1 given in [18].
From (21), we have

dr n —
i <r Gy (6) + Ar'G, ()

m—1 k-1
+e [ PG, (0) + 1) G, (6)

i=1 i=1

) (29)

m-1 k-1 -1
x<1+s[ r'Si(6)+/\Zr'§i(0)]> :

i=1 i=1

Let 7(0,¢, A, h) be the solution of the above equation

satisfying the initial condition r(0,&,A,h) = h. It can be
written as a series of &
+00 i
r@,&A,h) =Y r,6,Lh)¢, (30)

i=0

where 1,(0, A, h) = h, r;(0,A,h) = 0,7 > 1.

Substituting (30) into differential equation (29) and com-
paring the coefficients of & we have

%ro 0, A, h) = (B, A, h) G, () + A (0, A, h) G, (6) .

(31)

We can write 7,(0, A, h) = r4,(0,h) + 15, (0,h)A + - - -, where
700(0, 1) = h, r,;(0, h) = 0,7 > 1. Then, substituting (0, A, h)
into (31), then comparing the coeflicients of A% and A, we can
obtain
dry, (6,h
o) .G, 6),
d

57 O, h) = nrli (0, h) 70, (6,h) Gy (0) + 1y (B, 1) Gy (6) .

(32)
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Solving the above ODEs associated with the initial values
700(0, 1) = hand ry,(0,h) = 0, we can get (27) and (28). By
(21) we have

2m 1

T (he ) :J L
( ) 5

0

B JZTr 4o

0 L+e[Yr s (0) + A Y #S, (0)]
2m [ m=1
o i ' (33)
2 L[;m@LMMw
k-1

+A) 7 (6,A,h)S; (6) [ df - £

i=1
+0 (82) .

Therefore,

2 [m=1
T, (W) = —L [ng 0,1, 1), (0)

i=1

k-1

+A) 1 (6,A,h) S, (6) | db
i=1

m=1 27
_ j i (6,1)S,; (0) dO
=1 70 (34)

m=1 .27
_ [ J ir'=1 (6,h) oy (6.1) S, (6) d6
0

i=1

k-1

+y J:ﬂ r (6.5 6) de] A

It implies that

m—1

2
Ty =-Y L r (6., (6) db,

i=1

m—1

T, (h) = -[ j it (0. h) oy (B.1)S; (8)dO  (35)

i=1

+Zj ENCYOE (e)de].

Thus, (26) is proved. This ends the proof of Theorem 4. [

With the same method as for ry, (6, h), we can compute
10;(0, h) for i > 2 and give an expression of Ty;(h) fori > 2
from the proof of Theorem 4, which are omitted here.

Define
dT,, (h)

dh

Another fundamental result is as follows.

dr;, ()

My (h) = L

M, (h) = (36)
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Theorem 5. Let T'(h, ¢, A) be defined as before with h € (0, K).
Then for 0 < |e| < |A| < 1, one has the following.

(i) The period function T (h, &, A) of system (5) is increasing
(resp., decreasing) in h € (0, K) if My(h) > 0 (resp., <
0) for all h € (0, K).

(ii) If M (h) is not identically zero, the number of critical
periods of T'(h, &, A) in (0, K) is not more than the num-
ber of zeros (take the multiplicity into consideration) of
M, (h) in (0, K). And there are exactly k critical periods
if My (h) has exactly k simple positive zeros.

(iil) If My(h) = 0, the number of critical periods of T (h, ¢,
A) in (0, K) is not larger than the number of zeros of
M, (h) in (0,K). And k critical periods can appear if
M, (h) has k simple zeros. Similarly, the period function
T(h,&, M) of (5) is increasing (resp., decreasing) in h €
(0,K) if M, (h) > 0 (resp., < 0).

Proof. From (8) and (9)

oT (he,\) &SOT; (hA)
(ah ): Z Egh )s =el(h,e M),

i=1

O (1) | 30T 0u1)

Fhet)=—3, L7 on O
anmm_fﬂMmM (37)
oh & dh
QAT (h)
=M, (h)+ Yy —H )
0 ; dh
=T, (hA).

If My(h) > 0, h € (0, K), then there exists a A, such that
for0 < |A| < Ay, 0T (h, A)/0h has the same sign with dT,(h)/
dh. For 0 < ¢ < A, the sign of the function 0T'(h, &, A)/0h is
the same as 0T (h, 1)/0h. Then the conclusion (i) is proved.

Further, suppose that h;,h,,...,h;, are the k zeros of
M, (h) with the multiplicity m,,m,, ..., m, respectively. We
only need to prove that the number of critical periods of
T(h, &, A) is less than or equal to Z’;:I m;. For the purpose,

it suffices to prove that 0T'(h,&,A)/0h has at most Z’;Zl m;
roots. Thus, we only need to prove that 0T (h, &, A)/0h has
at most m; zeros near hj, j = 1,2,...,k. At first, we prove
that 0T (h, A)/0oh has at most m; zeros near h; for A small.
If it is not the case, then 0T;(h,A)/0h has at least m; +
1 zeros near h; that is, there exists A, — 0 such that
oT(h,A,)/0h has at least m; + 1 zeros h;,, (i = 1,2,...,m; +
1) near hj, where h;, — hj (n — 00). By Rolls
theorem, ale(h, )Ln)/ah2 has at least m; zeros near hj, -
and 0™ T, (h, A,))/Oh™*! has at least one zero h;, near h;.

Thus, amf“Tl(hzn, A)/OW™T = 0. Letting n — oo, we
have E)"‘f“Tl(hj,0)/ahmf+1 = ameO(hj)/ahm/ = 0. This is
a contradiction. Thus, 0T (h, A)/0h has at most m; zeros near
h;. Using the same method, for sufficiently small ¢, I'(h, &, )

or 0T /0h has at most m; zeros near h]-. Thus, T'(h, &, 1) has at

most m; critical periods for each h;. Thus, we have proved the
first part of (ii).

For the second part of (ii), assume that hy,h,,..., h
are the k simple zeros of M(h); that is, Mo(hj) = 0 and

My(h;)#0, j = 1,2,...,k. Then

3T, (h,\)

F h', 0 = = 0)
(1:0) oh A=, 0
(38)
o, (h, ) _ T (hA) £0
Oh =0 OR {4, 00

By the Implicit Function Theorem, there is a unique function
hj()t) such that Fl(hj(/\),)t) = 0 and hj(O) = hj, j =
1,2,...,k. Therefore h, (1), hy(A), ..., hi (L) are k simple zeros
of 0T|(h,A)/0h. By the same method, there is a unique
function h; (g, A) such that F(h;.‘ (e,A),€) = 0,and h;.‘ (0,1) =
h j()t). The second part of (ii) is proved.

When M, = 0, then

oT, (h,A) _ B XdTy; (h) ;
= —an—; pral
Ty, (h) . &dTy; (h)
= A+ Sy}
= AL, (W, M),

= T . (h) .
an=MNM+Z_%#JM

i=1
Then, we can prove conclusion (iii) in the same way as
proving conclusion (ii). The proof is completed. O
4. Application
In this section, we apply Theorems 4 and 5 to the cases n =
m=2l=k=3n=m=3,l=k=4andn=1=2,

m = k = 3, respectively.

Casel (n = m = 2,1 = k = 3). In this case, system (5)
becomes

X= —y+a;xy+ Aﬁzlxzy
+& [buxy +A (Euxy + EZIxzy + 503)/3)] ,
y=x+a,y +Aayxy’ (40)
e [onx” + 6y’
+A (Ezoxz + Eozyz + E30x3 + Elzxyz)] ,
where a;; #0. For system (40), O is a center because of the
symmetry.
We only need to consider the case of a;; > 0 in (40);

otherwise, we can use the transformationx — —-x,y — —y
to change (40) into the same form with opposite signs to



the coeflicients. Further, suppose a;; = 1, otherwise, system
(40) can be simplified as the form of system (41) by the
transformation u = a,;x, v = a;, y. In this case, system (40)
becomes
= —y+xy+Aay,xy
7 T2 7 .3
+e [buxy +A (bnxy +byx°y +bysy )] ,
y=x+ y2 + Aﬁzlxyz (41)
+&[c0x” + ¢y

_ 2.,- 2.- 3. - _ 2
+A (czox + ool + CapX" 4 C1pXy )]

It is easy to conclude that system (41) |,_, has a first integral
of the form

C2(1+2@y) x+(1+Aa,) y -1

H(x,y) = . (42)
() (1+Ady, )1 - (1 + @y ) x]?
Theorem 6. For system (41), one has
(i)
Ty (h) = (502 —by, - 3"20) T
N 2(cp = by — )7 + 4(cp = oo + b)) 7
h? h

+(2(1-h [ozohz +2(c— by — ) h (43)

+Cy = Gy + by | ”)
x (R*V1 —2h)71,

where h € (0, 1/2). For sufficiently small € and A, there
is at most one critical period if M (h) is not identically
zero and ¢,y # 0; there is exactly one critical period if
and only if p := (¢, — by;)/cyy < —3. Otherwise, the
period function T'(h, €, ) is increasing for h € (0,1/2)
(resp., decreasing) if ¢,y > 0 (resp., < 0);

(ii) if My(h) = T}y(h) = 0, then for 0 < h < 1,
Ty (h) = —[A0* + Ah° + A

(44)
+A + Agh® + 0O (hﬁ)] T,

where
1, = 3_ 3_
Ay = = 1 (Coz - bn) 0T %0
1, - 3-
T (512 - bll) - Zbop

A, =24,
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Ay= - %Ezo + %Ew - g (Eoz _l;ll)
- %503 + ° (212 521)’

As = 2503 - %Ezo + g (_12 521)
+ 271530 - % (Eoz _511)>

6~ ~ 66745_20 - %Em - % (Eoz _Eu)
%530 * % (212 - 521)

(45)

There can appear three critical periods in h € (0,1/2) if Ty, (h)
is not identically zero.

Proof. For system (41), from (13), (14), (22)-(25), we have

G, (0) = sin (0), G, (0) = Gy, cos (0) sin (),
G, (0) = (¢ + by ) cos” (B) sin (6) + cyysin” (6),
G, (0) = (by; +7y) cos’ (6) sin () + Eyysin’ (6) ,

G, (0) = (by +¢y) cos’ (6) sin ()

+(Bys + 1, ) cos (B) sin’ (6) , (46)
S, (8) = cypc0s” (8) + (cyy — by ) cos (0) sin” (6),
S, (8) = Typc08” () + (Cgp — by ) cos (B) sin® (6)
5, (6) = tycos” (0) + (1, — by, ) cos” (6) sin” (6)
— by,sin* ().
From (27), we have
roo (B:h) = h (47)

1-h+hcos(0)
From (10), we have

T,o (h)

H'S; (0)

[1+@=mm [ Gy (@) da

JOZH B O)
J

do

:Ii/(nfl)

1-h Jj sin (&) da

mh [roos3 (0) + (cop — by, ) cos (6) sin® (9)]
0 1-h+hcos(0)
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_ r” hcos (0)
~Jo 1-h+hcos(8)
X [c,zocos2 ) + (¢, — by, ) sin® (6)] do

[ i)
) 1-h+hcos(09)

X [roosz ) + (¢ — by, ) sin’ (9)] de
2(cp = b1 — )7

= (cpp = b1y = 3cy) 7 +

2
+ 4(c — G tbu)m
h
+2(1 —h)[caoh2+2(c02 —byy — ) ht g+ by _Coz]”
W2\1-2h '
(48)
Then, from [18], we have
dT,(h) (A -8)F)n
= ) 49
dh 8 (1-0)° )
where § = V1 - 2h and
F(8) = 8" + 46,08 + (20 + 46 — 4by;) & (50)

+ 46,50 + 5.

Support that ¢,; # 0. By (50) we have four zeros of F(§) as
follows:

8, =-1-+T-px\l-p-2/1-p, -
- 51
S,=-1+\1-p+x\1-p-2T-p,

where p is given by p = (¢, — by;)/cy- It is not difficult to
examine that §, is not in (0,1) and & is not in (0,1). In
addition, 5_ € (0,1) if and only if p < -3. Thus, there is
at most one critical period in (0, 1/2). If p > -3, F(§) has
no zero in h € (0,1/2). From the expression of dT,,(h)/dh,
we can easily check that dT,(h)/dh > 0 (resp., < 0) when
Gy > 0 (resp., < 0). Therefore, for sufficiently small € and A,
0T (h,&,1)/0h > 0 (resp., < 0) if 5y > O (resp., < 0). The proof
of conclusion (i) is completed.

For conclusion (ii), let M (h) = 0, which gives ¢,; = ¢, —
by, =0or S,(0) = 0. From (26), we have that

Ty, (h)

21 2
. L roo (6,1)3, (6) d6 - J v (6,15, (6)d6

0

2mh [Ezocos3 @) + (Eoz - EH) cos (6) sin” (6)]
:_Jo 1-h+hcos(9) 0

- J.:n ((h2 [530cos4 (9)+(E12 - 521) cos® (6) sin” ()

~byssin® (0)]) (1 — h + hcos (6))") d.
(52)

7
Then we expand T;,(h) at h = 0 by letting
Ty, (h) = = [Ah + Al + A
(53)
+Ah + Agh® + O (h6)] TT.
By (52), we have
1, - 3_ 3_
A, = T (Coz - bll) - Zczo T ~C3
1, - 3-—
+ 1 (C12 - b21) - Zbos’
Ay =24,
23_ 33_ 7 /- - 21—
Ay= _gczo + Ecso -3 (Coz - bu) Ebos
9, -
+ 3 (512 - b21) > (54)
9-— 11_ 5, - 21_
As = _5503 - 7520 + 5 (512 - 521) + 7530
3, -
) (502 - bu) >
675_ 99— 165 ,_ - 323_
6= T gq 207 16707 o (Coz - bll) + g G0
69 ,_ -
+ 1_6 (C12 - b21) .
Note that
Ty, (h) = = [2A,h + 3A,0% + 4A 1 + 5450
(55)
+6A N +O(h5)] I,
and that
d 0(Ay Ay As, Ag)
et ——— ——— =
d (C20>C02 = b1, b3, €1 - bu)
3283
4 8 4 64
17 16 56
4 8 8 64| 41175
BEREIERE -
4 8 2 16
1 9 _99 69
4 8 16 16

Therefore, A,, A, A5, Ag can be taken as free parameters.
Hence, we can change the sign of A,, A,, A5, A, satistying

0<-A, <A, < -As < Ag, (57)

which ensures that Tl' 1(h) has three positive zeros in h near
h = 0. Thus, conclusion (ii) is proved. O]

We remark that for cubic system (40), we obtain three
critical periods using T;,(h), which is one more than the
results in Lemma 2.3 obtained in [18].



Case 2 (n = m = 3,1 = k = 4). In this case, system (40)
becomes

X = -y +a, X'y +Aa, Xy + Ad;xy°
+& [b”xy + bnxzy + b03y3
+A (Euxy + mezy + 1303)/3
+hy Xy + El3xy3)] ,
(58)
Y = x+ay,xy" + Aay, x°y* + Aayt
+e [ozox2 + el + G + Xy’
+A (Ezox2 + Eozyz + E30x3
+E12xy2 + E40x4 + Ezzxzy2 + 504)/4)] R

where we suppose a,; #0. This is a new system which is not
studied in [18]. For the case a,; > 0, by the rescaling

u = \/ayx, V=, (59)

system (58) can be written as
. 2 5 .3 5 .3
U=—v+u v+ AA v+ AA uv
2 3
+e [B”uv + Byju"v + Byzv
= R 2 . R .3
+A (B“uv + B, u"v + Byzv

o 3 o 3
+B3 v + Bysuv )] ,

(60)
. 2 9r .22 x4
v=u+uvt + AAuTVT + LAY
2 2 3 2
+e [Dzou + Dy, v" + Dsgu” + D,uv
= 2. = 2 = 3 = 3
+A (Dzou + Dy,v" + Dygu” + Dyuv
= 4 = 22 = 4
+Dyyu” + Dyu™v" + Dy,v )],
where
- _ 43 - ags _ b,
<) B l— A= By, >
a1Vl a1 Vo Va1
_ by bos = _ by
By =—, By = —, By, = >
21 ) Va1
g o_bw g _be o by
21 = > 03 = > 31 = >
a1 a1 1Va1
— b
By, = E Dy, = 0 : Dy, = 02 :
ay1 Va1 Va1 Va1
c c — C
30 12 20
30 > 12 > 20 >
) ) Va1
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— c — C — c
Dy, = = > Ds, = ﬂ> D,, = _12)
Va1 ) )
= _ S = _ ‘» = _  Co4
0= —> b R — Dy = ———.
a1V a1 Vo a1 Vo

(61)

If a,, < 0, system (58) can be simplified as (60) similarly by
the change u = \/—ay,x, v = \/=a,1 ¥

Theorem 7. For system (60), one has

0
S T v
e T VTR VIR

(62)
X [2By; = 2Ds3g + (Bys + By, — Dy, — Dsy)

V1= 12 + 2Dyl

where h € (0,1). If My(h) is not identically zero,
there are at most two critical periods in h € (0,1) for
sufficiently small € and A, and the maximum can be
achievable;

(ii) if My(h) = 0, one has

T (h) = 1-V1-h .
T V) VIR

X [ZEB - 2530 + (§03 + E21 - B12 -

V1= k2 + 2Dy

and there are at most two critical periods in h € (0, 1)
if Ty, (h) is not identically zero.

Proof. From (13), (14), (22)-(25), we have that for system (60)

G, (6) = cos (8) sin (8),
G, (8) = Ay cos” (B)sin (8) + A ,sin’ (),
G, (8) = (By, + Dyy) cos” (6) sin () + Dy,sin’ (9),
G, (8) = (By, + Dsy) cos” (6) sin (0)
+ (Bys + D)) cos (0) sin’ (0)
G, (6) = (By; + Dyy) cos’ (6) sin () + Dyysin’ (6) ,
G, (0) = (By + Ds,) cos’ (6) sin (6)

+ (§03 + 512) cos (0) sin’ (6)
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S, (8) = Dyycos’ (8) + (Dy, — By, ) cos (8) sin” (8),

S, (8) = Dyycos* (8) + (D, — B,;) cos” (8) sin” (8)
— By,sin® (9),

S, (6) = Dyycos’ (6) + (D, — Byy ) cos (6) sin” (6) ,

S, (6) = Dyycos” (0) + (Dy, — By, ) cos” () sin” (6)
— By,sin* (),

S, (6) = Dypcos’ (0) + (D,, — By ) cos (6) sin” ()

+ (504 - EB) sin® (0) cos (6).

(64)
From (27) and (28), we have
h
too (6, h) = ——,
\1 - h2sin® (6)
(65)
s 1 — /1 - h2sin? (9)
701 (6, h) = 15, (6, h) . .
Hence, from (10),
Ty (h)
m—1 2 i
- J' H'S; (0) . 460
2 |, 9 iftn1)
S 1+ - [ Gy (@) da
o rﬂ hS, (6) 5 Jzﬂ WS, (0)
[ ’1 _ ]’lZSinz (6) o 1- hZSil’l2 (9) (66)
ViR
(1+ VI-R)V1-12

X [2By; = 2D3+ (By; + By — Dy, — Dyp) V1 —h?
+2D30h2] .

Thus, dT,o(h)/dh = —(2nE(8)/8°(1 +8)*)V1 — 82, where
8 = V1-h% E©) = Dyd* + 2D38° + (D, — By))&* -
2By30 — Bys. If Dy, = 0, F(8) = (D, — B,,)8” — 2By — By,
we can control the coefficients D,, — B,,;, =2B;, —B;, which
gives two zeros of F(8) in (0, 1). If D5, # 0, according to the
expression of F(8), we suppose that &}, 8,, 85, 8, are four zeros
of F(8). From the relationship of root and coefficients, we
have §, + §, + 8; + 8, = —2; thus not all of the zeros are
in (0, 1). Then from [18], and it is impossible for F(8) to have
3 zerosin (0, 1). Thus, the first part of conclusion (i) is proved.

Next, we give an example to show that the zeros in (0, 1)
can be achievable. We can choose D3, = 1300, D}, — B,; =
~2553, By; = 116, then, F(8) = 13008* + 26008° — 25538> —
2328 - 116 = (26 — 1)(58 — 2)(1308° + 3778 + 58), so, F(S)

has two simple zeros 2/5 and 1/2 in (0, 1). Thus, T'(h, €, A) has
exactly two critical periods in (0, 1). The proof of conclusion
(i) is completed.

For the conclusion (ii), if M(h) = 0, we get D5, = By; =
Dy, —B,; =00rS,(0) =0.

Hence, from (26), we have

2

2
T, (h) = - JO ro, (6,1) S, (6)d - J roo 0,15, (6)dO

0

2 _ 2T _
- I roo (6:1) S, (6) d6 - L 1o, (0,1) S5 (6) dO

0

~ 1-Vi-w
(VIR VIR

X [2303 —2D;, + (Eos +B, - D, - 1_)30)

xV1 =1 + 2Dyl |
(67)

So, dTy,(h)/dh = —(rF(8)/6*(1 + 8)*)V1 - 82, where § =

V1 =12, E(8) = Dyy8* +2D3,8° +(D,, — B, )8* — 2By;8 — Bys.
From the proof above, we can get result (ii). This ends the
proof of Theorem 7. O

Corollary 8. For system (58) with a,; > 0, one obtains

1-4/1-ayh?

Ty (h) = s

<1 +41- a21h2) \1 - ayh?

X <2b03 = 2¢30 + (bys + by — 13 — &3)

X 1 —a, h?+ 2c30a21h2> (am)_l,

where h € (0,1/+/a,,). For sufficiently small € and A, there are
at most two critical periods for T(h, e, A) in h € (0,1) and the
maximum number can be achievable.

(68)

Proof. Let T'(h, e, A) denote the period function of (60) and
T(h,e, 1) denote the period function of (58). Then we have
h = \f@yh, and T(h,e, V)|, o_ o = T(h, &, A)|,_s_o- Hence by
Theorem 7 and (61), we have for system (58),

Ty, (h) = v

(1 41 —a21h2> V1 - a2

X <2503 =230 + (bys + by — €10 = &3)

X 1 —a, h?+ 2c30a21h2> (am)fl,

which gives the formula of Tjy(h). Other conclusions in
the corollary can also be gotten from results in Theorem 7
similarly. This ends the proof of Corollary 8. O

(69)
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Case3(n =1 =2, m = k = 3). In this case, system (5)
becomes

X =—y+a;xy+Aa; xy
+& [bllxy + b21x2y + b03y3
+A (l;nxy + Euxzy + Eo3y3)] ,
(70)
y=x+ allyz + /\au)’z
+é [Czox2 + Coz)’2 + %oxs + Clzx)/2
+A (Ezox2 + Eozyz + E30x3 + Elzxyz)] .

Without loss of generality, we suppose a;; = 1, otherwise,
system (70) can be simplified as the form of system (71) by
the transformation u = a;;x, v = a;; y. In this case, system
(70) becomes

X =—y+xy+Aa;xy
+e [bnxy + b21x2y + 1903)/3
+A (E”xy + Enxzy + 503)/3)] ,
(71)
y = x+y2 +/\511y2
+¢ [czox2 + c02y2 + c30x3 + clzxy2
+A (Ezoxz + Eozyz + E30x3 + Elzxyz)] .

Theorem 9. For system (71) and sufficiently small € and A, one
has

(i)
Ty (h) = -n (I, +1,), (72)
where
2 b, - 4(cyy— b,
L= (o + byy — 36,0) + (co2 +h211 Qo)+ (e Z)Z+ 1)

N 2(1-h) [Qoh2+2 (cortbii—c) h+ 69 — oo + bn]
W\1-2h ’

L= (6o —bys —cp +by) Iy

+ (c1p = by +2by3) Ly — b3 s,
Iy = (-4h° - 10n° + 78K — 140K’ — 1121
—7(1 = 2h)°H? + 121 - 2h)**h
~6(1 - 2h)** + 6 — 42h) ((1 - 2h)5/2h2)_1,

b+ W —7h +5h— 1 - (1 - 2h)°?
Ly =~ 572 ’
(1-2h)

! 21* (40° - 8W* + 5h— 1)
B (1-2h)"?

(73)
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There can exist three critical periods for system (71) if
T,0(h) is not identically zero;

(i) if Myo(h) = T}, (h) = 0, one has
Ty, (h) = -n(I; + 1), (74)
where

_ Cpy— by -C
I; = (Eoz —byy + 3520) + —2 (COZ = CZO)

2
E 1+ D

N 4(520 :102+ 11)

+2(1-h) [Ezoh2 +2 (Eoz - EH - Ezo) h (75)

+Cp0 — Cop + I;M] (h2V1 - Zh)_l,
I, = (530 - 503 —Cpp t 521) I
+ (512 - I;Zl + 2503) L, - 503123-

There can appear three critical periods for system (71) if Ty, (h)
is not identically zero.

Proof. From (13), (14), (22)-(25), we have
Gy(0) =sin(@), G, (6) =ay,sin(9),
G, (8) = (cy + by ) cos” (8) sin (6) + y,sin” (0)
G, (8) = (by, + ¢3) cos’ (8) sin (6)
+ (by; + ¢1,) cos (0) sin’ (9),
S, (0) = c,pc0s” (8) + (¢, — by, ) cos () sin® (),
S, (6) = cpc0s* (0) + (¢ — by, ) cos® (6) sin” ()
— bysin® (0), (76)
G, (0) = (by, + ) cos” (B) sin () + Egysin’ (6) ,
G, (0) = (by +3) cos’ (6) sin (6)
+ (Bys + €12 ) cos (B) sin* (6),
S, (6) = Typc08” () + (Cpy — by ) cos () sin® (6)
S, (8) = Sycos” (6) + (€1, — byy ) cos” (0) sin” (6)

— by;sin* (6) .
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From (10), we can get

N hS, (6)
Tho (h) = - L 1-h+hcos(0)

~ rﬂ WS, (6)
o (1-h+hcos(0))*

2
= L ((h (czocos3 ) + (cp, —b1y)
x cos (6) sin’ (9)))

x (1-h+hcos(0))™")do

2
_ JO ((h2 [gocos4 0) + (¢ — byy)

x cos” () sin” () — byssin” (6)])
x(1—h+hcos())do
=-n(I, +1,),
(77)

where

2 (c2 = b — &)
I = (%2_b11_3%0)+%

4(cyp — Gy + byy)
+ —

+2(1-h) [Qohz +2 (e — by — ) h
ey — 6oy + by | (PVT=20)
L= (c3 —bps —cip + ) Iy
+ (c1p = by + 2by3) Iy — bys s,

Ly = (~4h° — 10° + 78K* — 140K* - 1121 (78)

—7(1 = 2h)°PH? + 12(1 - 2h)°h

~6(1 - 2h)* + 6 — 42h)

x((1- 2h)5/2h2)_1,

b+ W =7 +5h—1— (1 -2h)°?
Ly = 5/2 ’
(1-2h)

] 21* (4k° - 8K° + 5h— 1)
o (1-2n)">

By the same method as the proof of Theorem 6, we have
conclusion (i).

1

For conclusion (ii), if M, (h) = T1I0(h) = 0, giving $,(0) =
S,(0) = 0, thus from (26),

2
T, (h) = - L roo (6,1)3, (6) d6
2 ) _
- JO 72 (6,15, (8)d6

[ (1 [eaeor’ @
0
+ (Eoz - I;H) cos (0) sin” (6)])

x(1-h+hcos(6))™")d6

2 _
- J (1 [Es9c05" (0) + (G4 — by )

0

x cos” () sin® (0) — l;(,3sin4 (9)])
x (1-h+hcos(6))*)d6

=-n(L+1,),
(79)

where

_ Cyy— by —C
L= (Eoz—b11+3zzo)+2(C02 h211 CZO)

Cox + bn)
h

+2 (1= h) [eyoh” +2(Gop = by — ) I (80)

+Cy0 — Cop + En] (h2 m)_l,

. 4(2y -

I, = (530 —bz— it b21) I,
+ (612 —by + 2503) I, = bos s

We can get conclusion (ii) with the same method as the proof
of Theorem 6. This ends the proof of Theorem 9. O
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