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We present a convergence analysis for a general numerical method to estimate measure function. By combining Lagrange
interpolation, we propose a specific method for approximating the measure function and analyze the convergence order. Further,
we analyze the error bound of numerical measure integration and prove that the numerical measure integration can decrease the
singularity for singular integrals. Numerical examples are presented to confirm the theoretical results.

1. Introduction

A numerical integration based on the definition of the
Lebesgue integral was proposed in the paper “A New
Approach to Numerical Integration” [1]. The method was
said to be particularly useful for integrands which are highly
oscillatory in character or singular. It provides an exact
reduction of multidimensional integrals to one-dimensional
integrals. It appeared to be amore economical way of treating
certain multidimensional integrals. For concise writing, we
call the new numerical integration proposed by B. L. Burrows
the numerical measure integration (NMI).

Consider the integral ∫
𝐼
𝑓(𝑥)𝑑𝑥, where 𝑓(𝑥) ∈ 𝐿(𝐼) is a

nonnegative function and 𝐼 = [𝑎, 𝑏]. Firstly, define 𝐸(𝑓(𝑥) ⩾
𝑦) := {𝑥 ∈ 𝐼 : 𝑓(𝑥) ⩾ 𝑦} and 𝜇

𝑓
(𝑦) := 𝑚(𝐸(𝑓(𝑥) ⩾ 𝑦)), 𝑦 ∈

R. It is easy to obtain that 𝜇
𝑓
(𝑦) is amonotonically decreasing

and bounded function with 0 ⩽ 𝜇
𝑓
(𝑦) ⩽ 𝑏 − 𝑎, 𝑦 ∈ R. Define

𝑦
0
:= min

𝑥∈𝐼
𝑓(𝑥) and 𝑦

𝑁
:= max

𝑥∈𝐼
𝑓(𝑥). Denote the range

of 𝑓 by 𝑅(𝑓) := [𝑦
0
, 𝑦
𝑁
], where 𝑦

0
⩾ 0 and 𝑦

𝑁
can be infinite

whichmeans that𝑓(𝑥) is singular.The foundational equation
of NMI proposed by [1] is

(𝐿) ∫
𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑦0𝜇𝑓 (𝑦0) + (𝑅) ∫
𝑦𝑁

𝑦0

𝜇
𝑓
(𝑦) 𝑑𝑦. (1)

When calculating the Lebesgue integral numerically
through (1), there are three kinds of errors [1]:

(i) the error in themethod used to estimate ∫𝑦𝑁
𝑦0

𝜇
𝑓
(𝑦)𝑑𝑦;

(ii) the error in the estimate of 𝜇
𝑓
(𝑦) for some 𝑦 when

necessary;
(iii) the error in estimates of 𝑦

0
and 𝑦

𝑁
whose values are

not known.

If the values of 𝜇
𝑓
(𝑦), 𝑦

0
, and 𝑦

𝑁
can be obtained

exactly, the accuracy of the Lebesgue integral of 𝑓(𝑥) is
determined by the properties of 𝜇

𝑓
(𝑦) such as continuity

and differentiability. One advantage of this method is that
even though 𝑓(𝑥) is oscillatory or singular in its bounded
domain, its relative measure function 𝜇

𝑓
(𝑦) keeps some good

properties, bounded and monotonically decreasing. It offers
the opportunity to have better results than conventional
numerical integral methods.

However, it is often difficult, or perhaps impossible, to
find explicit formula for 𝜇

𝑓
(𝑦) and exact bound 𝑦

0
and 𝑦

𝑁
.

The required values need to be estimated which leads to new
errors (ii) and (iii) in the numerical results. What we desire
is to reduce the effects of the additional errors on the final
error of the Lebesgue integration as possible as we can and to
obtain the extent of additional errors’ effects.Thenwe need to
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developmethods to estimate the unknown values and analyze
the rate of convergence.

In this paper, we will mainly discuss the second kind of
error caused by the numerical measures and its effect on the
NMI. The paper is organized in 6 sections. In Section 2, we
recall a general estimation of the measure function. Then
we present its corresponding convergence analysis. Further,
by combining Lagrange interpolation, we propose a specific
method for approximating the measure function and analyze
the rate of convergence. A highly accurate algorithm is
presented especially for strictly monotonic functions. In Sec-
tion 3, we present two examples of estimating measure with
one monotonic function and another oscillatory function.
In Section 4, we present the error bound of NMI which
is controlled by the error of numerical measure and error
of integral of exact measure. Further, we prove that the
singularity can be reduced by NMI for singular integrals.
In Section 5, we give three examples of numerical integrals
calculated by NMI based on the numerical measure. Finally,
we make a conclusion in Section 6.

2. Estimation of the Measure Function and Its
Convergence Analysis

To calculate the Lebesgue integrals by the method NMI, it is
significant to obtain the values of measure function at some
necessary points. However, the values of measure function
cannot be obtained exactly through an explicit formula in
most of cases. They need to be estimated numerically. And
it will be found that the accuracy of the values of measure
function will greatly affect the final accuracy of the Lebesgue
integral.

To estimate the measure of one-dimensional function
𝑓(𝑥), we divide 𝐼 into 𝑛 subsets, {𝐼

𝑖
:= [𝑥

𝑖
, 𝑥
𝑖+1
] : 𝑖 =

1, 2, . . . , 𝑛}. Define 𝑝
𝑖
:= 𝑚(𝐼

𝑖
) = 𝑥
𝑖+1
− 𝑥
𝑖
and obviously

𝑛

∑
𝑖=1

𝑝
𝑖
= 𝑏 − 𝑎. (2)

On each interval 𝐼
𝑖
, we choose 𝑥

𝑖
⩽ 𝑥
𝑖,1
< 𝑥
𝑖,2
< ⋅ ⋅ ⋅ < 𝑥

𝑖,𝑘
⩽

𝑥
𝑖+1

, 𝑘 ∈ N, as testing points. Then the values {𝑓(𝑥
𝑖𝑗
) : 𝑥
𝑖𝑗
∈

𝐼
𝑖
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘}, 𝑘 ∈ N, are calculated. Given any
𝑦 ∈ 𝑅(𝑓), the approximation of 𝜇

𝑓
(𝑦) follows

𝜇
𝑓
(𝑦) =

𝑛

∑
𝑖=1

𝜖
𝑖
𝑝
𝑖
, (3)

where 0 ⩽ 𝜖
𝑖
⩽ 1.

Different methods of choosing {𝜖
𝑖
: 𝑖 = 1, 2, . . . , 𝑛}

will determine different approximations of 𝜇
𝑓
(𝑦). A general

assignment for {𝜖
𝑖
: 𝑖 = 1, 2, . . . , 𝑛}which was proposed by [1]

is

𝜖
𝑖
=

{{{{
{{{{
{

0, if 𝑦 > max
1⩽𝑗⩽𝑘

𝑓 (𝑥
𝑖𝑗
) ,

1, if 𝑦 ⩽ max
1⩽𝑗⩽𝑘

𝑓 (𝑥
𝑖𝑗
) ,

an arbitrary number in (0, 1) , otherwise.
(4)

Let 𝜒
𝐸
(𝑥) be the characteristic function, defined by

𝜒
𝐸 (𝑥) := {

1, if 𝑥 ∈ 𝐸,
0, if 𝑥 ∉ 𝐸.

(5)

Set 𝑔(𝑥) := 𝜒
𝐸(𝑓(𝑥)⩾𝑦)

(𝑥). We have

𝜇
𝑓
(𝑦) = ∫

𝐼

𝑔 (𝑥) 𝑑𝑥. (6)

Define 𝜇
𝑖
(𝑦) := ∫

𝐼𝑖

𝑔(𝑥)𝑑𝑥. Then 𝜇
𝑓
(𝑦) = ∑𝑛

𝑖=1
𝜇
𝑖
(𝑦).

Set𝑀
𝑦
:= number of the segments of 𝐸(𝑓(𝑥) ⩾ 𝑦). For

example, consider 𝑓(𝑥) = | sin 2𝑥| on [0, 𝜋]; then𝑀
𝑦
= 2 for

𝑦 ∈ (0, 1). The following theorem gives the error analysis of
measure approximation (3).

Theorem 1. Let 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝑓(𝑥) ⩾ 0 for 𝑥 ∈ [𝑎, 𝑏].
{𝐼
𝑖
: 𝑖 = 1, . . . , 𝑛}, 𝑛 ∈ N, is a partition of [𝑎, 𝑏]. If 𝜇

𝑓
(𝑦) and

{𝜖
𝑖
: 𝑖 = 1, 2, . . . , 𝑛} are determined by (3) and (4), respectively,

then
󵄨󵄨󵄨󵄨󵄨𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨 ⩽ 2𝑀𝑦max
𝑖∈V
𝑝
𝑖
, (7)

where V = {𝑖 ∈ N : ∃𝑥󸀠, 𝑥󸀠󸀠 ∈ 𝐼
𝑖
𝑠.𝑡. 𝑓(𝑥󸀠) ⩽ 𝑦 < 𝑓(𝑥󸀠󸀠)}.

Proof. According to the approximate formula (3) and equa-
tion (6), we have

󵄨󵄨󵄨󵄨󵄨𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝜇
𝑖
(𝑦) − 𝜖

𝑖
𝑝
𝑖
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝜇𝑖 (𝑦) − 𝜖𝑖𝑝𝑖
󵄨󵄨󵄨󵄨 .

(8)

Set V = {𝑖 ∈ N : ∃𝑥󸀠, 𝑥󸀠󸀠 ∈ 𝐼
𝑖
s.t. 𝑓(𝑥󸀠) ⩽ 𝑦 < 𝑓(𝑥󸀠󸀠)}.

According to the definition of 𝜖
𝑖
, we have 𝜇

𝑖
(𝑦) − 𝜖

𝑖
𝑝
𝑖
= 0 for

𝑖 ∉ V . Then the inequality (8) can be simplified as
󵄨󵄨󵄨󵄨󵄨𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨 ⩽ ∑
𝑖∈V

󵄨󵄨󵄨󵄨𝜇𝑖 (𝑦) − 𝜖𝑖𝑝𝑖
󵄨󵄨󵄨󵄨 . (9)

Here it is apparent that
󵄨󵄨󵄨󵄨𝜇𝑖 (𝑦) − 𝜖𝑖𝑝𝑖

󵄨󵄨󵄨󵄨 ⩽ 𝑝𝑖, (10)

for 0 ⩽ 𝜇
𝑖
(𝑦), 𝜖
𝑖
𝑝
𝑖
⩽ 𝑝
𝑖
.

By the intermediate value theorem, 𝐼
𝑖
, 𝑖 ∈ V contains at

least one end of a segment in the domain 𝐸(𝑓(𝑥) ⩾ 𝑦). Since
𝐸(𝑓(𝑥) ⩾ 𝑦) has only𝑀

𝑦
segments, the number of 𝐼

𝑖
, 𝑖 ∈ V

is not more than 2𝑀
𝑦
; that is,

Card (V) ⩽ 2𝑀𝑦, (11)

where Card (V) denotes the cardinality of the set V .
Combining inequalities (9), (10), and (11), we obtain

󵄨󵄨󵄨󵄨󵄨𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨 ⩽ 2𝑀𝑦max

𝑖∈V
𝑝
𝑖
. (12)
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We note that when 𝑀
𝑦
is bounded and the domain 𝐼 is

equally divided into 𝑛 segments, the numerical measure is
uniformly convergent and the order of convergence is linear
according toTheorem 1.

When the integrand functions have some better prop-
erties, the numerical measure can be approximated more
correctively. Suppose that nonnegative function 𝑓(𝑥) is
invertible in each subinterval 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Define 𝑓i :=

𝑓|
𝐼𝑖
and 𝜇
𝑓𝑖
:= 𝑚(𝐸(𝑓

𝑖
(𝑥) ⩾ 𝑦)∩𝐼

𝑖
). Denote by𝑅(𝑓

𝑖
) the range

of 𝑓
𝑖
in 𝐼
𝑖
and by 𝑓−1

𝑖
the inverse function of 𝑓

𝑖
in 𝐼
𝑖
. Then we

obtain

𝜇
𝑓
(𝑦) =

𝑛

∑
𝑖=1

𝜇
𝑓𝑖
(𝑦) ,

𝜇
𝑓𝑖
(𝑦)

=

{{{{{{
{{{{{{
{

𝑓−1
𝑖
(𝑦) − 𝑥

𝑖
, if 𝑓

𝑖
is decreasing and 𝑦 ∈ 𝑅 (𝑓

𝑖
) ,

𝑥
𝑖+1
− 𝑓−1
𝑖
(𝑦) , if 𝑓

𝑖
is increasing and 𝑦 ∈ 𝑅 (𝑓

𝑖
) ,

𝑝
𝑖
, if 𝑦 < min

𝑥∈𝐼𝑖

𝑓
𝑖 (𝑥) ,

0, if 𝑦 > max
𝑥∈𝐼𝑖

𝑓
𝑖 (𝑥) .

(13)

Construct a (𝑘 − 1)th Lagrange interpolation polynomial
𝑃
𝑖
(𝑥) in 𝑅(𝑓

𝑖
) which interpolates {(𝑓(𝑥

𝑖𝑗
), 𝑥
𝑖𝑗
) : 𝑗 =

1, 2, . . . , 𝑘}. Then the approximations of 𝜇
𝑓𝑖
(𝑦) and 𝜇

𝑓
(𝑦) are,

respectively,

𝜇
𝑓𝑖
(𝑦)

=

{{{{{{
{{{{{{
{

𝑃
𝑖
(𝑦) − 𝑥

𝑖
, if 𝑓

𝑖
is decreasing and 𝑦 ∈ 𝑅 (𝑓

𝑖
) ,

𝑥
𝑖+1
− 𝑃
𝑖
(𝑦) , if 𝑓

𝑖
is increasing and 𝑦 ∈ 𝑅 (𝑓

𝑖
) ,

𝑝
𝑖
, if 𝑦 < min

𝑥∈𝐼𝑖

𝑓
𝑖 (𝑥) ,

0, if 𝑦 > max
𝑥∈𝐼𝑖

𝑓
𝑖 (𝑥) ,

(14)

𝜇
𝑓
(𝑦) =

𝑛

∑
𝑖=1

𝜇
𝑓𝑖
(𝑦) . (15)

Set 𝜖
𝑖
= 𝜇
𝑓𝑖
(𝑦)/𝑝

𝑖
which reveals that the estimation (15) is

a specific case of the general assignment (4). That means that
Theorem 1 is valid for the estimation (15).

Theorem 2. Suppose that nonnegative function 𝑓(𝑥) has a
partition {𝐼

𝑖
: 𝑖 = 1, 2, . . . , 𝑛} in 𝐼 and has inverse function

𝑓−1
𝑖
∈ 𝐶𝑘(𝑅(𝑓

𝑖
)) in each subinterval. If 𝜇

𝑓
(𝑦) are determined

by (14) and (15), then

󵄩󵄩󵄩󵄩󵄩𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)
󵄩󵄩󵄩󵄩󵄩∞ = O (𝑛−𝑘) , (16)

where V = {𝑖 ∈ N : ∃𝑥󸀠, 𝑥󸀠󸀠 ∈ 𝐼
𝑖
𝑠.𝑡. 𝑓(𝑥󸀠) ⩽ 𝑦 < 𝑓(𝑥󸀠󸀠)}.

Proof. According to Theorem 1 and (13), (14), and (15), we
have
󵄨󵄨󵄨󵄨󵄨𝜇𝑓 (𝑦) − 𝜇𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨

⩽ min(𝑛max
𝑖

󵄩󵄩󵄩󵄩󵄩𝑓
−1

𝑖
(𝑦) − 𝑃

𝑖
(𝑦)
󵄩󵄩󵄩󵄩󵄩∞, 2𝑀𝑦max

𝑖∈V
𝑝
𝑖
) .

(17)

The proof is finished combining the well-known error of
Lagrange interpolation polynomials.

According to the proof of Theorem 2, the accuracy of
measure function depends on the accuracy of Lagrange
interpolation polynomials of the inverse functions in each
subinterval. Numerical experiments will be done to affirm the
validity of the method. At the end of this section, we would
like to introduce a highly accurate algorithm to calculate
the measure especially for strictly monotonic functions. It is
called split-half algorithm.

Algorithm 3 (split-half algorithm). Consider the following
steps.

Step 1. Given 𝑦 ∈ 𝑅(𝑓) and 𝑁 ∈ N, set 𝑖 := 0, Δ = 𝑏 − 𝑎,
𝑥
𝑚
= (𝑏 − 𝑎)/2, and 𝜇𝑖

𝑓
(𝑦) = 0. Determine the monotonicity

of the function 𝑓, increasing or decreasing.

Step 2. Evaluate the function at 𝑥
𝑚
:

𝑇
1
:=
{{
{{
{

1, 𝑓 (𝑥
𝑚
) > 𝑦,

−1, 𝑓 (𝑥
𝑚
) < 𝑦,

0, 𝑓 (𝑥
𝑚
) = 𝑦.

(18)

Step 3. If 𝑇
1
= 0, we can get the accurate measure

𝜇𝑖+1
𝑓
(𝑦) = 𝜇𝑖

𝑓
(𝑦) +

Δ
2
. (19)

Otherwise,

𝜇𝑖+1
𝑓
(𝑦) = 𝜇𝑖

𝑓
(𝑦) +

𝑇
1
+ 1
2

Δ
2
. (20)

Set 𝑖 ← 𝑖 + 1, Δ ← Δ/2, and 𝑥
𝑚
← 𝑥
𝑚
−𝑇
1
Δ/2 for increasing

functions or 𝑥
𝑚
← 𝑥
𝑚
+𝑇
1
Δ/2 for decreasing functions. And

go back to Step 2 until 𝑖 = 𝑁.

The error of split-half algorithm satisfies
󵄩󵄩󵄩󵄩󵄩𝜇𝑓(𝑦) − 𝜇

𝑁

𝑓
(𝑦)
󵄩󵄩󵄩󵄩󵄩∞ ⩽ 2

−𝑁 (𝑏 − 𝑎) . (21)

3. Numerical Examples of Measure

Example 1. Consider 𝑓(𝑥) = ln𝑥, 𝑥 ∈ [1, 5].

Since ln𝑥 is monotonically increasing, 𝑦
0
= 0, 𝑦

𝑁
= ln 5,

and 𝜇
𝑓
(𝑦) = 5 − 𝑒𝑦, 𝑦 ∈ 𝑅(𝑓). 𝑓−1(𝑥) ∈ 𝐶∞(𝑅(𝑓)).

Table 1 lists the respective measure errors and their
convergence orders (briefly, C.O.). The error of the approx-
imation for values 𝑛 and 𝑘 is presented by 𝑒

𝑛,𝑘
:=

‖𝜇
𝑓
(𝑦) − 𝜇

𝑓
(𝑦)‖
∞
, where 𝜇

𝑓
(𝑦) is determined by (14) and

each convergence order is computed by ln(𝑒
𝑛
/𝑒
𝑚
)/ ln(𝑚/𝑛).
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Table 1: Errors of 𝜇(𝑦).

n Errors (𝑘 = 2) C.O. Errors (𝑘 = 4) C.O.
8 2.5284𝑒 − 002 2.2050𝑒 − 005
16 6.9679𝑒 − 003 1.8594 1.6494𝑒 − 006 3.7408
32 1.8272𝑒 − 003 1.9311 1.1349𝑒 − 007 3.8614
64 4.7207𝑒 − 004 1.9526 5.4007𝑒 − 009 4.3932
128 1.1997𝑒 − 004 1.9763 3.9920𝑒 − 010 3.7580
256 2.7692𝑒 − 005 2.1151 2.6089𝑒 − 011 3.9356
512 7.1502𝑒 − 006 1.9534 1.5805𝑒 − 012 4.0450

Table 2: Errors of 𝜇(𝑦).

n Errors (𝑘 = 2) C.O. Errors (𝑘 = 4) C.O.
20 2.2045𝑒 − 001 1.0791𝑒 − 001
40 1.2578𝑒 − 001 .80948 8.3284𝑒 − 002 .37371
80 6.4771𝑒 − 002 .95754 4.6044𝑒 − 002 .85501
160 2.6235𝑒 − 002 1.3039 6.8435𝑒 − 003 2.7502
320 5.3436𝑒 − 003 2.2956 7.4735𝑒 − 005 6.5168
640 6.7018𝑒 − 004 2.9952 1.7822𝑒 − 005 2.0682
1280 2.6427𝑒 − 004 1.3425 4.8946𝑒 − 007 5.1863

Example 2. Consider an oscillatory function 𝑓(𝑥) =
| sin 30𝑥|, 𝑥 ∈ [0, 𝜋/3].

Theminimumandmaximumof𝑓(𝑥) are𝑦
0
= 0 and𝑦

𝑁
=

1, respectively. For 𝑓(𝑥) is a periodic function, we can obtain
the explicit formula of measure function:

𝜇 (𝑦) =
1
3
(𝜋 − 2 arcsin𝑦) , 𝑦 ∈ 𝑅 (𝑓) . (22)

Numerical results of errors are shown in Table 2. Since
the measure function does not possess good differentiability
when 𝑦 = 0, the errors do not have stable convergence order
of O(𝑛−𝑘).

4. Error Analysis of NMI

In this section, we will analyze the whole error of the
integral ∫𝑏

𝑎
𝑓(𝑥)𝑑𝑥. As we care greatly about the influence

of errors caused by the numerical measures, we assume
that the maximum and minimum of the function 𝑓(𝑥) are
known; that is, we will not consider the errors of 𝑦

0
and

𝑦
𝑁
here. To analyze the error of the integral ∫𝑏

𝑎
𝑓(𝑥)𝑑𝑥, it is

necessary to choose an integral rule for the Riemann integral
of the measure function. An appropriate rule for the one-
dimensional integral is dependent on the character of 𝜇(𝑦).

Let 𝑈 ⊂ R be an interval and assume 𝑔 ∈ 𝐶(𝑈). To
approximate the integral 𝑄(𝑔) := ∫

𝑈
𝑔(𝑡)𝑑𝑡, we consider

numerical quadrature rule of the form

𝑄
𝑛
(𝑔) :=

𝑛

∑
𝑗=0

𝑤
𝑛,𝑗
𝑔 (𝑡
𝑛,𝑗
) , (23)

where 𝑡
𝑛,𝑗
∈ 𝑈, 𝑗 = 0, 1, . . . , 𝑛, are quadrature points and

𝑤
𝑛,𝑗
, 𝑗 = 0, 1, . . . , 𝑛, are real quadrature weights.

Define 𝐸
𝑄𝑛
(𝑔) := 𝑄(𝑔) − 𝑄

𝑛
(𝑔) the integral error of 𝑔

under the given quadrature rule.
Integrating the measure function by the numerical

quadrature rule (23) in the fundamental equation (1), we have

∫
𝐼

𝑓 (𝑥) 𝑑𝑥

= 𝑦
0 (𝑏 − 𝑎) + 𝑄𝑛 (𝜇𝑓) + 𝐸𝑄𝑛 (𝜇𝑓)

= 𝑦
0 (𝑏 − 𝑎) + 𝑄𝑛 (𝜇𝑓) + 𝑄𝑛 (𝜇𝑓 − 𝜇𝑓) + 𝐸𝑄𝑛 (𝜇𝑓) ,

(24)

where 𝜇
𝑓
and 𝜇

𝑓
are, respectively, the measure function

and numerical measure function of 𝑓(𝑥). So the numerical
quadrature rule of NMI corresponding to 𝑓 is

𝐿𝑄
𝑛
(𝑓) := 𝑦

0 (𝑏 − 𝑎) + 𝑄𝑛 (𝜇𝑓) . (25)

Define𝐸
𝐿𝑄𝑛
(𝑓) := ∫

𝐼
𝑓(𝑥)𝑑𝑥−𝐿𝑄

𝑛
(𝑓).We have the following

fundamental theorem for the error of NMI.

Theorem 4. Let 𝑓(𝑥) ∈ C[𝑎, 𝑏] and 𝑓(𝑥) ⩾ 0 for 𝑥 ∈ [𝑎, 𝑏].
By estimating ∫

𝐼
𝑓(𝑥)𝑑𝑥 by the numerical quadrature rule of

NMI (25), the error satisfies

󵄨󵄨󵄨󵄨󵄨𝐸𝐿𝑄𝑛 (𝑓)
󵄨󵄨󵄨󵄨󵄨 ⩽
󵄨󵄨󵄨󵄨󵄨𝑄𝑛 (𝜇𝑓 − 𝜇𝑓)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝐸𝑄𝑛 (𝜇𝑓)

󵄨󵄨󵄨󵄨󵄨

⩽
󵄩󵄩󵄩󵄩󵄩𝜇𝑓 − 𝜇𝑓

󵄩󵄩󵄩󵄩󵄩∞

𝑛

∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑤𝑛,𝑗
󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝐸𝑄𝑛 (𝜇𝑓)

󵄨󵄨󵄨󵄨󵄨 .
(26)

According to Theorem 4, the accuracy of numerical
quadrature rule of NMI depends on the accuracy of numer-
ical measure and the character of measure function 𝜇

𝑓
. A

necessary condition to have better accuracy by NMI is that
the measure function 𝜇

𝑓
should possess better properties.

For bounded oscillatory functions, the integral of the exact
measure function can be approximated more accurate for
its monotonic property. As to singular functions, it can be
verified in the following that NMI can decrease the degree
of the singularity of the integral.

When 𝑦
𝑁

is infinite, by making the variable change of
𝑧 = 1/𝑦 in the fundamental equation (1) of NMI, it can be
rewritten as

∫
𝐼

𝑓 (𝑥) 𝑑𝑥 = 𝑦0 (𝑏 − 𝑎) + ∫
1/𝑦0

0

1
𝑧2
𝜇
𝑓
(
1
𝑧
) 𝑑𝑧, (27)

where 𝑦
0
is supposed to be 𝑦

0
⩾ 𝜖 > 0.

Denote 𝑔(𝑥) := (1/𝑥2)𝜇
𝑓
(1/𝑥), 𝑥 ∈ (0, 1/𝑦

0
]. Before we

prove that 𝑔(𝑥) is less singular than 𝑓(𝑥), a lemma should be
stated.

Lemma 5. Let𝑓(𝑥) ∈ 𝐶(𝐼), ℎ(𝑡) := 𝑓(𝑥(𝑡)), and 𝑥(𝑡) := 𝑘𝑡+𝑐
where 𝑘 > 0, 𝑐 ∈ R. 𝜇

𝑓
and 𝜇

ℎ
are the measure functions

corresponding to 𝑓 and ℎ, respectively. Then 𝜇
𝑓
(𝑦) = 𝑘𝜇

ℎ
(𝑦),

∀𝑦 ∈ 𝑅(𝑓), where 𝑅(𝑓) is the range of 𝑓.
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Proof. Since 𝑘 > 0, 𝑔 has the same monotonicity as 𝑓. When
𝑓 is monotonically decreasing, 𝜇

𝑓
(𝑦) = 𝑓−1(𝑦) − 𝑎 and

𝜇
ℎ
(𝑦) = ℎ−1(𝑦) − (𝑎 − 𝑐)/𝑘, respectively. We obtain

ℎ−1 (𝑦) =
1
𝑘
(𝑓−1 (𝑦) − 𝑐) . (28)

Substituting the inverse function of ℎ into 𝜇
ℎ
, we have

𝜇
ℎ
(𝑦) =

1
𝑘
(𝑓−1 (𝑦) − 𝑎) =

𝜇
𝑓
(𝑦)
𝑘

. (29)

When 𝑓 is monotonically increasing, 𝜇
𝑓
(𝑦) = 𝑏 − 𝑓−1(𝑦)

and 𝜇
ℎ
(𝑦) = (𝑏−𝑐)/𝑘−ℎ−1(𝑦), respectively. It can be obtained

similarly that 𝜇
ℎ
(𝑦) = 𝜇

𝑓
(𝑦)/𝑘.

For any 𝑓 ∈ 𝐶(𝐼), there is a partition {𝐼
𝑖
: 𝑖 ∈ N} of 𝐼 such

that 𝑓 is monotonic in each subinterval. Define 𝑓
𝑖
:= 𝑓|
𝐼𝑖
and

𝜇
𝑓𝑖
:= 𝑚(𝐸(𝑓

𝑖
⩾ 𝑦) ∩ 𝐼

𝑖
), 𝑖 ∈ N. Correspondingly, define

ℎ
𝑖
:= 𝑓
𝑖
(𝑥(𝑡)) and 𝜇

ℎ𝑖
:= 𝑚(𝐸(ℎ

𝑖
⩾ 𝑦) ∩ 𝑥−1(𝐼

𝑖
)), 𝑖 ∈ N.

Then it is obvious that

𝜇
𝑓
(𝑦) = ∑

𝑖∈N

𝜇
𝑓𝑖
(𝑦) , 𝜇

ℎ
(𝑦) = ∑

𝑖∈N

𝜇
ℎ𝑖
(𝑦) . (30)

According to the preceding proof,

𝜇
𝑓𝑖
(𝑦) = 𝑘𝜇

ℎ𝑖
(𝑦) (31)

since 𝑓
𝑖
, ∀𝑖 ∈ N, is monotonic in its domain. Combining (30)

and (31), we finally arrive at the equation 𝜇
𝑓
(𝑦) = 𝑘𝜇

ℎ
(𝑦).

Let 𝑆 be a set of 𝐼 = [𝑎, 𝑏] containing a finite number of
points. Define a function associated with 𝑆 by

𝑤
𝑆
:= inf {|𝑥 − 𝑡| : 𝑡 ∈ 𝑆} . (32)

For 0 < 𝛼 < 1, a real unbounded function 𝑓 is said to be of
Type(𝛼, 𝐼, 𝑆), if

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ⩽ 𝐶[𝑤𝑆 (𝑥)]

−𝛼, 𝑥 ∉ 𝑆, 𝑓 ∈ 𝐶 (𝐼 \ 𝑆) , (33)

where𝐶 is a positive constant.The parameter𝛼 is called index
of singularity.
Theorem 6. Let 𝑓 ∈ 𝑇𝑦𝑝𝑒(𝛼, 𝐼, 𝑆) and 𝑓(𝑥) ⩾ 𝜖 > 0 for 𝑥 ∈ 𝐼.
𝑔(𝑥) = (1/𝑥2)𝜇

𝑓
(1/𝑥), 𝑥 ∈ (0, 1/𝑦

0
], where 𝜇

𝑓
is the measure

function of 𝑓 and 𝑦
0
= min

𝑥∈𝐼
𝑓(𝑥) ⩾ 𝜖 > 0. Then 𝑔(𝑥) ∈

𝑇𝑦𝑝𝑒((2𝛼 − 1)/𝛼, (0, 1/𝑦
0
], {0}).

Proof. Assume 𝑆 = {𝑎} or {𝑏}. By making the variable
change 𝑥(𝑡) = (𝑏 − 𝑎)𝑡 + 𝑎 for 𝑆 = {𝑎} or 𝑥(𝑡) = (𝑏 − 𝑎)𝑡 + 𝑏
for 𝑆 = {𝑏}, we define ℎ(𝑡) := 𝑓(𝑥(𝑡)), 𝑡 ∈ (0, 1]. Then ℎ ∈
Type(𝛼, (0, 1], {0}).

Since ℎ(𝑡) is singular at 𝑡 = 0, there exists 𝑡
0
∈ (0, 1] such

that ℎ(𝑡) is monotonic in the interval (0, 𝑡
0
]. That means that

∀𝑦 ⩾ ℎ−1(𝑡
0
) s.t. 𝜇

ℎ
(𝑦) = |ℎ−1(𝑦)|. According to the property

of ℎ, we can obtain

𝑦 = ℎ (ℎ−1 (𝑦)) ⩽
1

󵄨󵄨󵄨󵄨ℎ−1 (𝑦)
󵄨󵄨󵄨󵄨
𝛼
. (34)

The resultant inequality reveals that 𝜇
ℎ
(𝑦) ⩽ 𝑦−1/𝛼.

By Lemma 5, we have 𝜇
𝑓
(𝑦) = (𝑏−𝑎)𝜇

ℎ
(𝑦) ⩽ (𝑏−𝑎)𝑦−1/𝛼.

Then combining the inequality of 𝜇
𝑓
and the expression

of 𝑔, we can obtain 0 ⩽ 𝑔(𝑥) ⩽ (𝑏 − 𝑎)𝑥−(2𝛼−1)/𝛼, ∀𝑥 ∈ (0, 𝑡
0
].

Since 𝑔(𝑥) is continuous in [𝑡
0
, 1/𝑦
0
], there exists a

positive constant 𝐶 such that ∀𝑥 ∈ (0, 1/𝑦
0
],

0 ⩽ 𝑔 (𝑥) ⩽ 𝐶𝑥−(2𝛼−1)/𝛼. (35)

According to the definition (33), we have 𝑔(𝑥) ∈ Type((2𝛼 −
1)/𝛼,(0, 1/𝑦

0
],{0}).

More generally, 𝑆 contains more than one point. Assume
𝑆 = {𝑎 = 𝑠

1
< 𝑠
2
< ⋅ ⋅ ⋅ < 𝑠

𝑚
= 𝑏}. Set

𝑡
2𝑖
= 𝑠
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

𝑡
2𝑖−1
=
1
2
(𝑠
𝑖
+ 𝑠
𝑖+1
) , 𝑖 = 1, 2, . . . , 𝑚 − 1.

(36)

In each interval (𝑡
𝑖
, 𝑡
𝑖+1
), the function 𝑓(𝑥) has only one

singularity. Namely, a singularity is located at 𝑡
𝑖
if 𝑖 is even

and at 𝑡
𝑖+1

if 𝑖 is odd.
Define 𝑓

𝑖
(𝑥) := 𝑓(𝑥)|

(𝑡𝑖 ,𝑡𝑖+1)
, 𝜇
𝑓𝑖
(𝑦) := 𝑚(𝐸(𝑓(𝑥) ⩾ 𝑦) ∩

(𝑡
𝑖
, 𝑡
𝑖+1
)), and 𝑔

𝑖
(𝑦) := (1/𝑦2)𝜇

𝑓𝑖
(1/𝑦). Then we have

𝜇
𝑓
(𝑦) =

2𝑚

∑
𝑖=1

𝜇
𝑓𝑖
(𝑦) , 𝑔 (𝑦) =

2𝑚

∑
𝑖=1

𝑔
𝑖
(𝑦) . (37)

By the preceding proof, it can be obtained that 0 ⩽ 𝑔
𝑖
(𝑥) <

𝐶
𝑖
𝑥−(2𝛼−1)/𝛼, ∀𝑥 ∈ (0, 1/𝑦

0𝑖
], where 𝑦

0𝑖
:= min

𝑥∈(𝑡𝑖 ,𝑡𝑖+1)
𝑓(𝑥) ⩾

𝑦
0
and 𝐶

𝑖
is a positive constant, 𝑖 = 1, 2, . . . , 2𝑚. Since

𝜇
𝑓𝑖
(1/𝑥) = 0 for 𝑥 ∈ (1/𝑦

0𝑖
, 1/𝑦
0
], 0 ⩽ 𝑔

𝑖
(𝑥) < 𝐶

𝑖
𝑥−(2𝛼−1)/𝛼 is

valid for 𝑥 ∈ (0, 1/𝑦
0
]. Combining (37), we prove that 𝑔(𝑥) ∈

Type((2𝛼 − 1)/𝛼, (0, 1/𝑦
0
], {0}).

Since (2𝛼 − 1)/𝛼 < 𝛼, ∀𝛼 ∈ (0, 1), NMI can reduce the
singularity for singular integrals. It supplies the possibility to
improve the accuracy of integrals. Theoretically, we need not
know where the singularities lie.

As to whether NMI can realize the better accuracy of
integrals, it depends on the accuracy of the numerical mea-
sure. In the following part, we will present some numerical
integrals results by NMI and compare them with results by
conventional methods.

5. Numerical Examples of NMI

In this section, we will present three kinds of integrals,
including normal, oscillatory, and singular integrals, to verify
the efficiency of NMI. In the numerical experiments, the
Gauss-Legendre formula or its composite one will be used to
calculate the integral of measure functions.

Example 1. Consider the integration ∫5
1
ln(𝑥)𝑑𝑥 = 5 ln 5 − 4.

We have known that 𝑦
0
= 0, 𝑦

𝑁
= ln 5, and 𝜇(𝑦) = 5− 𝑒𝑦,

𝑦
0
⩽ 𝑦 ⩽ 𝑦

𝑁
.

In this numerical example, we adopt 5-point Gauss-
Legendre formula to calculate the integral of measure func-
tion and original integral. The errors of original integral and
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Table 3: Errors of integration ∫5
1
ln(𝑥)𝑑𝑥 by NMI.

n Errors (𝑘 = 1) Errors (𝑘 = 3) Errors (𝑘 = 5)
8 3.0958𝑒 − 001 1.9666𝑒 − 005 3.4806𝑒 − 008
16 9.9805𝑒 − 002 1.7423𝑒 − 005 2.5702𝑒 − 009
32 7.5973𝑒 − 002 4.3251𝑒 − 006 2.3129𝑒 − 010
64 6.4057𝑒 − 002 5.6059𝑒 − 007 1.6858𝑒 − 010
128 2.8068𝑒 − 002 2.2432𝑒 − 008 1.6776𝑒 − 010
256 1.3053𝑒 − 002 3.5017𝑒 − 009 1.6779𝑒 − 010
512 7.9865𝑒 − 003 5.2533𝑒 − 010 1.6778𝑒 − 010

Table 4: Errors of integration ∫𝜋/3
0
|sin 30𝑥|𝑑𝑥.

n CS GL
8 1.5199𝑒 − 003 5.0402𝑒 − 004
16 8.9723𝑒 − 005 1.1475𝑒 − 005
32 5.5303𝑒 − 006 9.1145𝑒 − 008
64 3.4446𝑒 − 007 4.8650𝑒 − 010
128 2.1510𝑒 − 008 2.1969𝑒 − 012
256 1.3441𝑒 − 009 8.9928𝑒 − 015
512 8.4001𝑒 − 011 1.1102𝑒 − 016

the integral of exact measure function are 3.4407𝑒 − 005 and
1.6778𝑒 − 010, respectively. It shows clearly that the accuracy
of the numerical integral can be greatly improved by making
the NMI transform for this example. Numerical results of
errors of the integration by NMI are shown in Table 3. The
measure is estimated by (14) and (15) with values 𝑛 and 𝑘.
The high accuracy of numerical results of NMI requires the
accuracy of measure functions as illustrated in Table 3.

Example 2. Consider the integration of an oscillatory func-
tion ∫𝜋/3

0
| sin 30𝑥|𝑑𝑥 = 2/3.

In this example, 𝑦
0
= 0, 𝑦

𝑁
= 1, and 𝜇(𝑦) = 𝜋/3 −

(2 arcsin(𝑦)/3), 𝑦
0
⩽ 𝑦 ⩽ 𝑦

𝑁
. Since the measure function is

weakly singular at 𝑦 = 1, we adopt the Gauss-type quadrature
for weakly singular integrals proposed by [2]. According to
the quadrature rule, we set the parameters 𝑘 = 4 and 𝑞 = 6.
In detail, set 𝑁 = 𝑛/𝑘, where 𝑛 is the number of evaluations
of the function showed in Table 4.Then choose (𝑁+1) points
𝑡
𝑗
= 1 − (𝑗/𝑁)𝑞 so that the subintervals 𝐼

𝑗
:= [𝑡
𝑗
, 𝑡
𝑗+1
], 𝑗 =

0, 1, . . . , 𝑁, form a partition for [0, 1]. Then transform the
partition into the domain of integral and use k-point Gauss-
Legendre formula in each subinterval to calculate the integral.
By the quadrature, the errors of the integral with exact
measure function is showed in Table 4 represented by GL.
To show the efficiency of the proposed method, we compare
the results with those obtained by composite Simpson’s rule
with 𝑛 + 1 evaluations of function which is denoted by CS in
Table 4. It is obvious that the accuracy can be improved under
the correct measure function.

Errors of the integration by NMI combining GL are
shown in Table 5 which is denoted by GLNMI. We set the
number of evaluations of function 32 for the integral of
measure function by theGauss-type quadrature.Themeasure

Table 5: Errors of integration ∫𝜋/3
0
|sin 30𝑥|𝑑𝑥 by GLNMI.

n Errors (𝑘 = 1) Errors (𝑘 = 3) Errors (𝑘 = 5)
20 1.4307𝑒 − 001 3.1465𝑒 − 002 2.7730𝑒 − 002
40 4.5358𝑒 − 002 7.8500𝑒 − 003 1.1460𝑒 − 002
80 3.9992𝑒 − 003 1.2441𝑒 − 003 1.8890𝑒 − 003
160 1.5046𝑒 − 002 1.4846𝑒 − 004 1.8805𝑒 − 004
320 3.9658𝑒 − 003 2.6296𝑒 − 005 3.4863𝑒 − 005
640 4.1803𝑒 − 003 2.1141𝑒 − 006 7.1482𝑒 − 006
1280 2.9805𝑒 − 004 4.0182𝑒 − 007 2.3580𝑒 − 007

Table 6: Errors of integration ∫1
0
(1/𝑥0.7)𝑑𝑥.

n GL GLNMI
8 7.5026𝑒 − 001 2.1705𝑒 − 001
16 2.1096𝑒 − 001 3.9276𝑒 − 002
32 2.7858𝑒 − 002 4.0278𝑒 − 003
64 2.4575𝑒 − 003 3.1686𝑒 − 004
128 1.8065𝑒 − 004 2.2109𝑒 − 005
256 1.2212𝑒 − 005 1.4597𝑒 − 006
512 7.9320𝑒 − 007 9.5708𝑒 − 008

is estimated by (14) and (15) with values 𝑛 and 𝑘.The accuracy
of NMI is extremely restricted by the accuracy of measure.

Example 3. Consider the integration of a singular function
∫
1

0
(1/𝑥0.7)𝑑𝑥 = 10/3.

Since the integral and the measure integral are both
weakly singular, we adopt the Gauss-type quadrature used in
Example 2. We set the parameters 𝑘 = 2 and 𝑞 = 50/3. Split-
half algorithm is used to approximate the measure function
with 𝑁 = 100 in this example. The numerical results are
presented in Table 6 where GL represents using only the
method of Gauss-type quadrature while GLNMI represents
combining NMI and Gauss-type quadrature together. It is
illustrated that the accuracy can be improved by NMI.

6. Conclusion

In this paper, we mainly discuss how to estimate the measure
of a function and the convergence of the numerical measure.
Further, we analyze the error of numerical measure integral
and verify that the singular integrals can be improved theo-
retically. Accordingly, some numerical examples are given to
validate the theoretical results.

To calculate the integration by NMI, it is greatly impor-
tant to estimate the measures accurately as possible as we
can.Themethod presented here is very effective for functions
which have piecewise differential inverse function.

The study of the NMI field is still new. Investigations
should be expanded to the multidimensional measures and
integrations. Maybe, the method NMI is more suitable for
multidimensionality because it presents an exact reduction
of multidimensional integrals to one-dimensional integrals.
More researches can be done in this field.
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