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This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and
corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss
quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the
variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points
beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the
integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data
acquisition systems, without using higher-order extrapolation polynomials.

1. Introduction

Numerical integration methods may be grouped in two
categories. One is the rule for discrete data and the other is for
function of continuous data.TheGauss-Legendre quadrature
[1–6] is a well-known rule belonging to the latter category. In
the former category for discrete data, the Newton-Cotes [7–
9] method is applicable with many orders of integration. The
1st-order rule is the same as the trapezoidal rule [7] which can
be extended to theRomberg integrationmethod [7].The 2nd-
order rule is the same as Simpson’s 1/3rd rule, and 3rd-order
rule is the same as Simpson’s 3/8th rule [7].The 4th-order rule
of Newton-Cotes is known as Boole’s rule using 5 data points
[7]. As the order of integration in the Newton-Cotes methods
increases, Runge’s phenomenon arises and the accuracy of
integration becomes worse owing to the fluctuation of the
interpolated higher-order polynomials [10].

The Gauss-Legendre quadrature uses function values at
interior sampling points with corresponding best weights
to result in a very accurate result in spite of the relatively

small number of sampling points. However, this quadrature
is inapplicable to discrete data points because it does not
use boundary point data. In this study, we provide a lemma
with a formula for the new 3-point Gauss quadrature of
variable sampling points which include the Legendre point as
well.

An examination of the effect of these varied sampling
points found that the one-point, two-point, and three-point
Gauss quadratures adopting the Legendre sampling points
and Simpson’s 1/3 rule were actually special cases of the
variable three-point Gauss quadrature. The order of the
polynomial that can be integrated precisely by conventional
three-point Gauss quadrature is 5. On the other hand, the use
of varied sampling points with a variable three-point Gauss
quadrature does not allow exact integration of a polynomial
order 5.

Despite their reduced accuracy, variable Gauss quadra-
tures can be applied effectively to special situations, for exam-
ple, the shear-locking problems that arise when using the
finite element method for a plate/shell when the ratio of the
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thickness to the width is quite small, as reported previously
[11, 12]. Another effective application is integration of discrete
data, which is the same as Simpson’s rule, rather than the
conventional Gauss quadrature which is inapplicable owing
to its use of inner-range data. For a weighting factor of
𝛼 = 4/3 at the central sampling point, the optimal sampling
positions for the outer sampling points were obtained as
end points. Therefore, when using this specific group of
weighting factor and sampling points, the end point Gauss
quadrature becomes equal to Simpson’s 1/3 rule. If the
central weighting factor of 𝛼 is increased further to 22/12

or 52/27, this produces a 1st extended end point integration
or 2nd extended end point integration, where the outer
sampling points are located at the extended outer end points
±2 or ±3.

Accordingly, this study examined the characteristics of
various groups of weighting factors and sampling points
and tested the performance of the extended end points
quadrature using the outer out-of-domain sampling points.
A newmethod, adopting quadratically extrapolated integrals
and a nonlinearity index, using integrals of the variable three-
point Gauss integrations of the 1st and 2nd extended end
points and conventional end point integration, was applied
to the integration of evenly acquired discrete data to obtain
new four kinds of numerical integration formulae.

2. Variable Three-Point Gauss Integration
Formula with Variable Weighting Factors
and Sampling Points

The modification of the Gauss integration formula with a
near-zero center-weight factor was included in a previous
study [11]. This paper presents a comprehensive interpreta-
tion of the variable three-point Gauss integration formula
with effective applications. Essentially, to vary the Gauss
integration weights, the weighting factors are represented by
a central weighting factor 𝑊

2
= 𝛼, and any changes in

the central weighting factor are reflected in the weights and
locations of outer sampling points for the optimal integration.
The detailed procedure to derive the variable three-point
Gauss integration formula with the weighting factors is as
follows [11]:

∫

1

−1
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3
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2
,
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where 𝑙
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(𝑟) is the Legendre polynomial formula,
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The general expressions for the sampling points and
weights of the Gauss integration can be driven as follows. In
(2), if it is assumed that the weight 𝑊
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= 0 and the

other weights are 𝑊
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then the optimum results can be obtained as follows:
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From (4), the relationship between the central weighting
factor 𝛼 and the corresponding optimal location of outer
sampling point is as follows:

𝑟
3
= −𝑟
1
= 𝜉 = √

2

3 (2 − 𝛼)

. (5)

We present a lemma regarding three-point Gauss quadra-
ture of variable sampling point.

Lemma 1. Integral 𝐼 from −1 to 1 of function 𝑓 is obtained
numerically by the equation
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which is exact for the polynomial of order up to 3.

Proof. Without loss of generality, we assumed the range of
integration 𝑟, which is a mapped variable, from −1 to 1. For
the odd monomials with odd index such as 𝑥

1 and 𝑥
3, the

integrals are 0 obviously. For the constant integrand 𝑐, the
integral is exactly 2c, because sum of the weights is 2.We only
need to verify that the integral of the integrand 𝑥

2 is 2/3.
Equation (6) for the integrand of 𝑥2 is
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(8)

Equation (7) shows the general expression for the sam-
pling points and weights of the variable three-point Gauss
integration rule.Theweighting factor𝛼 (=𝑊

2
) can be selected

arbitrarily within the range of 0∼2.
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Table 1: Different types of 3-point Gauss integration of variable sampling points and the integration characteristics.

Type
Weight
ratio 𝜑

(=𝑊
2
/ 𝑊
1
)

Weighting
factor 𝛼

Integration
weights

Sampling
points Integration characteristics

(a) 0 0.0 1.00000000
0.00000000

±0.57735027
0.00000000

Conventional two-point rule
(Legendre sampling points)

(b) 𝜀 1 × 10
−4 0.99995000

0.00010000
±0.57736470
0.00000000

Quasi two-point rule
(near-zero center-weight

three-point rule)

(c) 1 2/3 0.66666667
0.66666667

±0.70710678
0.00000000

Three-point rule
(even weight)

(d) 8/5 8/9 0.55555556
0.88888889

±0.77459667
0.00000000

Conventional three-point rule
(Legendre sampling points)

(e) 2 1.0 0.50000000
1.00000000

±0.81649658
0.00000000

Three-point rule
(double-center-weight)

(f) 4 4/3 0.33333333
1.33333333

±1.00000000
0.00000000

Three-point rule
(end-point rule and Simpson’s 1/3 rule)

(g) 22 22/12 0.08333333
1.83333333

±2.00000000
0.00000000

Three-point rule
(1st extended end-point)

(h) 52 52/27 0.03703704
1.92592592

±3.00000000
0.00000000

Three-point rule
(2nd extended end-point)

(i) ∞ 2.0 0.00000000
2.00000000

∞

0.00000000
Conventional one-point rule
(Legendre sampling point)

3. Classification of a Set of Weighting
Factors and Sampling Points and Their
Integration Characteristics

In the variable three-point Gauss integration formula, the
term of “variable” was adopted because the weighting factor
𝛼 can be selected arbitrarily within the range of 0∼2. In
addition, any change in the central weighting factor is also
reflected in the weighting factors and locations of outer
sampling points, thereby changing the numerical integration
characteristics ((5) and (7)).These different groups of integra-
tion weights and sampling points can be classified according
to their weight ratio 𝜑 (= 𝑊

2
/𝑊
1
).

Table 1 lists nine fundamental weight ratios. The type (a)
ratio of 𝜑 = 0 corresponds to the conventional two-point
Gauss-Legendre quadrature, which is a special case of the
variable three-point Gauss quadrature. The type (b) ratio of
𝜑 = 𝜀 corresponds to the quasi two-point rule, which is
applied in FEM to prevent numerical instability [11].The type
(c) ratio of 𝜑 = 1 corresponds to the even weight three-
point rule that might be applied effectively to some problems
in the future. The type (d) ratio of 𝜑 = 8/5 corresponds
to the conventional three-point Gauss-Legendre quadrature.
The type (e) ratio of 𝜑 = 2 corresponds to the double-
center-weight three-point rule that might also be applied
effectively to some problems in the future. The type (f) ratio
of 𝜑 = 4 corresponds to the end point rule, which is the
same as Simpson’s 1/3 rule, where the outer sampling points
are located at the end points of a dimensionless domain of
[−1 ∼ 1]. The type (g) ratio of 𝜑 = 22 corresponds to the
1st extended end point rule, where the outer sampling points
are located at the end points of an extended dimensionless

domain of [−2 ∼ 2]. The type (h) ratio of 𝜑 = 52 corresponds
to the 2nd extended end point rule, where the outer sampling
points are located at the end points of a doubly extended
dimensionless domain of [−3 ∼ 3]. Finally, the type (i) ratio
of 𝜑 = ∞ corresponds to the extended end point rule, where
the outer sampling points are located at the end points of
an infinitely extended dimensionless domain of [−∞ ∼ ∞],
which is actually the conventional one-point Gauss-Legendre
quadrature.

The variable three-point rule of a Gauss quadrature
includes the conventional Gauss-Legendre quadrature of the
one-point rule (𝜑 = ∞) and two-point rule (𝜑 = 0), as well as
the three-point rule (𝜑 = 8/5). In addition, it also includes the
well-known Simpson’s 1/3 rule when 𝜑 = 4. This can also be
expanded further to the cases of 𝜑 = 𝜀, 𝜑 = 1, 𝜑 = 2, 𝜑 = 22,
and 𝜑 = 52, respectively. Each case has particular meaning
related to the weighting factors or sampling points. Figure 1
shows the proportional change in the integration weights and
sampling points according to the weight ratio.

We present three corollaries regarding three-point Gauss
quadrature of variable sampling point.

Corollary 2. The three-point Gauss quadrature of Lemma 1
(6)∼(7) reduces to one-point Gauss-Legendre quadrature with
𝛼 = 2.

Corollary 3. The three-point Gauss quadrature of Lemma 1
(6)∼(7) reduces to two-point Gauss-Legendre quadrature with
𝛼 = 0.

Corollary 4. The three-point Gauss quadrature of Lemma 1
(6)∼(7) reduces to Simpson’s 1/3 rule with 𝛼 = 4/3.
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Table 2: Relative errors of the different types of 3-point Gauss integration of variable sampling pints for 5 monomial integrands.

Weight ratio (𝜑) Relative errors for each monomial integrand
𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

0 0.0000𝐸 + 00 0.8974𝐸 − 08 0.1795𝐸 − 07 0.2778E − 01 0.8333E − 01
𝜀 0.0000𝐸 + 00 0.1761𝐸 − 07 0.3522𝐸 − 07 0.2778E − 01 0.8333E − 01
1 0.0000𝐸 + 00 0.1228𝐸 − 07 0.2456𝐸 − 07 0.1042E − 01 0.3125E − 01
8/5 0.0000𝐸 + 00 0.1264𝐸 − 07 0.2528𝐸 − 07 0.3829𝐸 − 07 0.5168𝐸 − 07

2 0.0000𝐸 + 00 0.1830𝐸 − 07 0.3661𝐸 − 07 0.6944E − 02 0.2083 − E01
4 0.0000𝐸 + 00 0.1490𝐸 − 07 0.2980𝐸 − 07 0.4167E − 01 0.1250E + 00
22 0.0000𝐸 + 00 0.1192𝐸 − 06 0.2384𝐸 − 06 0.3542E + 00 0.1063E + 01
52 0.0000𝐸 + 00 0.2533𝐸 − 06 0.5066𝐸 − 06 0.8750E + 00 0.2625E + 01
∞ 0.0000𝐸 + 00 0.2500E + 00 0.5000E + 00 0.6875E + 00 0.8125E + 00
The italic numbers mean improper results.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

−3 −2

−1 0 1

2 3

Figure 1: Various sets of integration weights and optimal sampling
points with respect to the weight ratio 𝜑; (a) 𝜑 = 0, (b) 𝜑 = 𝜀, (c)
𝜑 = 1, (d) 𝜑 = 8/5, (e) 𝜑 = 2, (f) 𝜑 = 4, (g) 𝜑 = 22, (h) 𝜑 = 52, and
(i) 𝜑 = ∞.

4. Extrapolated Quadratic Polynomial of
the Integrals Using Data from End Point
Integral (𝜑 = 4) and Extended End
Point Integrals (𝜑 = 22, 52) for
Evenly Acquired Discrete Data

To test the characteristics of variable three-point Gauss
integration formulae, the error ratios of the integral from 0
to 2 for the 5 types of monomial integrand were compared
(Table 2). Most types exhibited accurate results up to the
cubic monomial except in the case of a weight ratio 𝜑 =

∞ (conventional one-point rule). The type of weight ratio

𝜑 = 8/5 (conventional three-point rule of Legendre sampling
points) results in very accurate result up to the 𝑥5 monomial,
as expected.

According to the formula of Gauss quadrature of variable
three sampling points with corresponding best weights, one
can see that the sampling points may be located at the
boundary points (integral 𝐼

1
) which means that the method

is applicable to discrete data points. Moreover, the outer
sampling points may be located out of region such as
2nd next discrete points (integral 𝐼

2
) and 3rd next discrete

points (integral 𝐼
3
). Using the integrals 𝐼

1
, 𝐼
2
, and 𝐼

3
, we

can extrapolate the integral function 𝐼GL, like Richardson’s
extrapolation to interval ℎ = 0 [7], to the case of Legendre
sampling point of (0.6)1/2, where there is no data.

In other words, when one integrates a function from
−1∼1 in local coordinate 𝜉, the best sampling points are the
Legendre points of 𝑟

1
= −𝑟
3
, 𝑟
2

= 0., and 𝑟
3

= (0.6)
1/2.

However, data are only on the discrete points of 𝑟 = . . . −

3, −2, −1, 0, 1, 2, 3 . . . Thus, we compute the following three
integrals first.

𝐼
1
(𝑟
3
= 1):

weights: 𝑊
1
= 𝑊
3
, 𝑊

2
=

4

3

, 𝑊
3
=

(2 − 𝑊
2
)

2

,

sampling points: 𝑟
1
= −𝑟
3
, 𝑟

2
= 0, 𝑟

3
= 1.

(9)

𝐼
2
(𝑟
3
= 2):

weights: 𝑊
1
= 𝑊
3
, 𝑊

2
=

22

12

, 𝑊
3
=

(2 − 𝑊
2
)

2

,

sampling points: 𝑟
1
= −𝑟
3
, 𝑟

2
= 0, 𝑟

3
= 2.

(10)

𝐼
3
(𝑟
3
= 3):

weights: 𝑊
1
= 𝑊
3
, 𝑊

2
=

52

27

, 𝑊
3
=

(2 − 𝑊
2
)

2

,

sampling points: 𝑟
1
= −𝑟
3
, 𝑟

2
= 0, 𝑟

3
= 3.

(11)



Journal of Applied Mathematics 5

Table 3

𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

𝑎
2

(−1 + √0.6)/12 (8 − 4√0.6)/12 (10 + 6√0.6)/12 (8 − 4√0.6)/12 (−1 + √0.6)/12
−0.018783611 0.40846778 1.2206317 0.40846778 −0.018783611

Then, we extrapolate these integrals to compute the
integral 𝐼GL(𝑟3 = (0.6)

1/2
), which cannot be obtained directly

as follows because there is no data on the sampling point
𝑟
3
= (0.6)

1/2:
𝐼GL(𝑟3 = (0.6)

1/2
):

weights: 𝑊
1
= 𝑊
3
, 𝑊

2
=

8

9

, 𝑊
3
=

(2 − 𝑊
2
)

2

,

sampling points: 𝑟
1
= −𝑟
3
, 𝑟

2
= 0., 𝑟

3
= (0.6)

1/2
.

(12)

The process of extrapolation is presented here. The inte-
gral, which is a function of outer sampling point 𝑥 = 𝑟

3
, may

be treated as a quadratic polynomial and its coefficients are
determined through the interpolating points (1, 𝐼

1
), (2, 𝐼

2
),

and (3, 𝐼
3
). 𝐼
1
= 𝐼{type(𝑓), 𝑥 = 1}, 𝐼

2
= 𝐼{type(𝑔), 𝑥 = 2},

and 𝐼
3
= 𝐼{type(ℎ), 𝑥 = 3} are given in (9)∼(11).

On the other hand, the error of the integral choosing
the outer sampling point as 𝑥 = 1, 2, or 3 increases explo-
sively. Therefore, a nonlinearity index, 𝑁, is used in a
quadratically interpolated integral, which is a function of the
absolute position of the outer sampling point 𝑧 = 𝑥

𝑁. Hence,
the quadratic polynomial of the integral, depending on the
position of the outer sampling point of the three-point Gauss
quadrature, can be represented as follows:

𝐼 (𝑧) = 𝑎
0
+ 𝑎
1
𝑧 + 𝑎
2
𝑧
2
, (13)

where 𝑧 = nonlinearly mapped variable of the absolute posi-
tion of the outer sampling point 𝑥, 𝐼[𝑧 = 1

𝑁
] = 𝐼
1
: end point

integration (𝜑 = 4), 𝐼[𝑧 = 2
𝑁
] = 𝐼
2
: 1st extended end point

integration (𝜑 = 22), 𝐼[𝑧 = 3
𝑁
] = 𝐼
3
: 2nd extended end point

integration (𝜑 = 52), and𝑁 = nonlinearity index.
After obtaining the coefficients, 𝑎

0
, 𝑎
1
, and 𝑎

2
, of the poly-

nomial, the best expected integral can be predicted with the
nonlinearly mapped extrapolated outer sampling point [𝑧 =

(𝑥 = (0.6)
1/2

)

𝑁

], where the point (𝑥 = (0.6)
1/2

) is the Lege-
ndre sampling point of the conventional three points of Gauss
quadrature, and that point originally could not be sampled
for this type of discrete data. This whole procedure can be
repeated for the linear interpolation of the integral 𝐼, where
we use only two data of points (1, 𝐼

1
) and (2, 𝐼

2
). 𝐼
1

=

𝐼{type(𝑓), 𝑥 = 1} and 𝐼
2

= 𝐼{type(𝑔), 𝑥 = 2} are given in
(9)∼(10).

We present four theorems regarding extrapolated Gauss
quadrature of extended end points.

Theorem 5. Integral 𝐼 from −1 to 1 of discrete data 𝑓
𝑖
is obtai-

ned numerically by formula I,

𝐼 = {𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
} , (14)

Table 4

𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

𝑎
2

−1/90 34/90 114/90 34/90 −1/90
−0.011111111 0.37777778 1.2666667 0.37777778 −0.011111111

which is exact for the polynomial of order up to 3 with the
nonlinearity index𝑁 = 1 (see Table 3).

Proof. As in the proof of Lemma 1, we only need to verify that
the integral of the integrand 𝑥

2 is 2/3.
Equation (14) for the integrand 𝑥

2 is

𝐼 = {𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
}

=

4 (−1 + √0.6)

12

+

(8 − 4√0.6)

12

+

(8 − 4√0.6)

12

+

4 (−1 + √0.6)

12

=

2

3

.

(15)

Theorem 6. Integral 𝐼 from −1 to 1 of discrete data 𝑓
𝑖
is obtai-

ned numerically by formula II,

𝐼 = {𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
} , (16)

which is exact for the polynomial of order up to 5 with the
nonlinearity index𝑁 = 2 (see Table 4).

Proof. As in the proof of Theorem 5, we need to verify that
the integral of the integrand 𝑥

2 is 2/3 and integral of 𝑥4 is 2/5.
Equation (16) for the integrand 𝑥

2 is

𝐼 = {𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
}

=

−4

90

+

34

90

+

34

90

+

−4

90

=

2

3

.

(17)

Equation (16) for the integrand 𝑥
4 is

𝐼 = {𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
}

=

−16

90

+

34

90

+

34

90

+

−16

90

=

2

5

.

(18)

Theorem 7. Integral 𝐼 from −1 to 1 of discrete data 𝑓
𝑖
is obtai-

ned numerically by formula III,

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+ 𝑎
3
𝑓
3
} ,

(19)

which is exact for the polynomial of order up to 5 with the
nonlinearity index𝑁 = 1 (see Table 5).
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Table 5

𝑎
−3

𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

𝑎
2

𝑎
3

(1.3 − 1.5√0.6)/27 (−3.6 + 4√0.6)/12 (3.3 − 2.5√0.6)/3 41/135 + 10√0.6/9 (3.3 − 2.5√0.6)/3 (−3.6 + 4√0.6)/12 (1.3 − 1.5√0.6)/27
0.0051149999 −0.041801110 0.45450278 1.1643667 0.45450278 −0.041801110 0.0051149999

Table 6

𝑎
−3

𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

𝑎
2

𝑎
3

16.32/12960 −241.92/12960 5140.80/12960 16089.60/12960 5140.80/12960 −241.92/12960 16.32/12960
0.0012592593 −0.018666667 0.39666667 1.2414815 0.39666667 −0.018666667 0.0012592593

Proof. As in the proof of Theorem 6, we need to verify that
the integral of the integrand 𝑥

2 is 2/3 and integral of 𝑥4 is 2/5.
Equation (19) for the integrand 𝑥

2 is

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0

+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+ 𝑎
3
𝑓
3
} =

9 (1.3 − 1.5√0.6)

27

+

4 (−3.6 + 4√0.6)

12

+

(3.3 − 2.5√0.6)

3

+

(3.3 − 2.5√0.6)

3

+

4 (−3.6 + 4√0.6)

12

+

9 (1.3 − 1.5√0.6)

27

=

2

3

.

(20)

Equation (19) for the integrand 𝑥
4 is

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0

+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+ 𝑎
3
𝑓
3
} =

81 (1.3 − 1.5√0.6)

27

+

16 (−3.6 + 4√0.6)

12

+

1 (3.3 − 2.5√0.6)

3

+

1 (3.3 − 2.5√0.6)

3

+

16 (−3.6 + 4√0.6)

12

+

81 (1.3 − 1.5√0.6)

27

=

2

5

.

(21)

Theorem 8. Integral 𝐼 from −1 to 1 of discrete data 𝑓
𝑖
is obtai-

ned numerically by formula IV,

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0
+ 𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+𝑎
3
𝑓
3
} ,

(22)

which is exact for the polynomial of order up to 5 with the
nonlinearity index𝑁 = 2 (see Table 6).

As in the proof of Theorem 7, we need to verify that the
integral of the integrand 𝑥

2 is 2/3 and integral of 𝑥4 is 2/5.

Equation (22) for the integrand 𝑥
2 is

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0

+𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+ 𝑎
3
𝑓
3
} =

9 ∗ 16.32

12960

−

4 ∗ 241.92

12960

+

5140.80

12960

+

5140.80

12960

−

4 ∗ 241.92

12960

+

9 ∗ 16.32

12960

=

2

3

.

(23)

Equation (22) for the integrand 𝑥
4 is

𝐼 = {𝑎
−3
𝑓
−3

+ 𝑎
−2
𝑓
−2

+ 𝑎
−1
𝑓
−1

+ 𝑎
0
𝑓
0

+𝑎
1
𝑓
1
+ 𝑎
2
𝑓
2
+ 𝑎
3
𝑓
3
} =

81 ∗ 16.32

12960

−

16 ∗ 241.92

12960

+

5140.80

12960

+

5140.80

12960

−

16 ∗ 241.92

12960

+

81 ∗ 16.32

12960

=

2

5

.

(24)

Through this extrapolation to obtain the integral 𝐼GL{𝜉3 =
((0.6)
1/2

)

𝑁=2

= 0.6}, we can integrate polynomial up to the
order of 5 exactly andup to the order of 7 approximately, with-
out any fluctuating phenomenon of Runge [10].

We compared the four formulae with Simpson’s 1/3 rule
for integration of the discrete data from 1 to 3. The discrete
data are given at integer point of 𝑥 from the monomials 𝑥3,
𝑥
7, and exp(𝑥), respectively, as shown in Table 7.
Table 8 compares the four formulae with Boole’s rule for

integration of the discrete data from 1 to 5. The discrete data
are given at integer points of 𝑥 from the monomials 𝑥5, 𝑥7,
and exp(𝑥), respectively. Formula I results in some error for
the integrand of 𝑥5, because it is for the polynomial of order
up to 3. Formula II and formula IV still give better result
compared with Boole’s.
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Table 7: Comparison of the integrals using four formulae of extrapolation methods (end-point Gauss quadrature) with Simpson’s 1/3 rule.

Integrand Error Exact Simpson Formula I Formula II Formula III Formula IV

𝑥
3

Value 0.200000𝐸 + 2 0.200000𝐸 + 2 0.200000𝐸 + 2 0.200000𝐸 + 2 0.200000𝐸 + 2 0.200000𝐸 + 2

% 0.0 0.0 0.0 0.0 0.0 0.0
Ratio — — — — — —

𝑥
7

Value 0.820000𝐸 + 3 0.900000𝐸 + 3 0.742218𝐸 + 3 0.806667𝐸 + 3 0.858226𝐸 + 3 0.819360𝐸 + 3

% 0 0.975610𝐸 + 1 0.948565𝐸 + 1 0.162602𝐸 + 1 0.466169𝐸 + 1 0.780488𝐸 − 1

Ratio — 1.0 0.97 0.17 0.48 0.0080

Exp(𝑥)
Value 0.173673𝐸 + 2 0.174533𝐸 + 2 0.172896𝐸 + 2 0.173665𝐸 + 2 0.174049𝐸 + 2 0.173684𝐸 + 2

% 0.495718𝐸 + 0 0.447095𝐸 + 0 0.619861𝐸 − 1 0.216874𝐸 + 0 0.666631𝐸 − 2

Ratio — 1.0 0.90 0.13 0.44 0.013

Table 8: Comparison of the integrals using four formulae of extrapolation methods (end-point Gauss quadrature) with Boole’s rule.

Integrand Error Exact Boole Formula I Formula II Formula III Formula IV

𝑥
5

Value 0.260400𝐸 + 4 0.260400𝐸 + 4 0.259848𝐸 + 4 0.260400𝐸 + 4 0.260400𝐸 + 4 0.260400𝐸 + 4

% 0.0 0.0 0.212143𝐸 + 0 0.0 0.0 0.0
Ratio — — ∞ — —

𝑥
7

Value 0.488280𝐸 + 5 0.489560𝐸 + 5 0.482853𝐸 + 5 0.487880𝐸 + 5 0.489427𝐸 + 5 0.488261𝐸 + 5

% 0 0.262145𝐸 + 0 0.111146𝐸 + 1 0.819202𝐸 − 1 0.234860𝐸 + 0 0.393217𝐸 − 2

Ratio — 1.0 4.2 0.31 0.90 0.015

Exp(𝑥)
Value 0.145695𝐸 + 3 0.145891𝐸 + 3 0.145043𝐸 + 3 0.145605𝐸 + 3 0.146011𝐸 + 3 0.145705𝐸 + 3

% 0.134295𝐸 + 0 0.447095𝐸 + 0 0.619861𝐸 − 1 0.216874𝐸 + 0 0.666631𝐸 − 2

Ratio — 1.0 3.3 0.46 1.6 0.050

5. Conclusion

(1)A lemma for the variable three-pointGauss quadrature has
been presented. Based on that, comprehensive sets of weight-
ing factors and corresponding optimal sampling points were
presented.

(2)Three corollaries are presented to show that one-point
and two-point Gauss-Legendre quadrature and Simpson’s
1/3 rule are special cases of the variable three-point Gauss
quadrature.

(3) The variable three-point Gauss quadrature can be
applied to end point integration of discrete data, such as
Simpson’s rule, and even to the 1st and 2nd extended end
point integrations that use out of region discrete data.

(4) Four theorems of extrapolation method with nonlin-
earity index (𝑁 = 1 or 2) are presented. The integrals of
variable three-point Gauss integrations of the end point inte-
gration and extended end point integration are extrapolated
to predict the value at dimensionless√0.6

𝑁 point.
(5) Formula II and formula IV given in the theorems

exhibit excellent accuracies compared with Simpson’s rule or
Boole’s rule.The formulae can be applied effectively to evenly
acquired data, which is the case in modern sophisticated
digital data acquisition systems, without using higher-order
extrapolation polynomials which might result in numerical
instability.
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