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An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The
aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on
prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is
compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed method
is applied to the aircraft attitude tracking control system. The nonlinear simulation demonstrates that this method can guarantee
the stability and tracking performance in the transient and steady behavior.

1. Introduction

Flight control design for aircraft continues to be one of
the most important problems in the world of automatic
control.Theproblem is driven by the nonlinear and uncertain
nature of aircraft dynamics. Traditionally, the solution to this
problem is to design the linear controller using linearized
aircraft models at multiple trimmed conditions. And this
procedure is time consuming and expensive.

Control of aircraft by dynamic model inversion is well
known and has been applied to the control of high angle
of attack fighter aircraft [1, 2]. The primary drawback of
dynamic inversion for aircraft flight control is the need
for high-fidelity nonlinear model which must be inverted
in real time. However, it is difficult to obtain the exact
aircraft dynamic model in practice. The neural network
augmented model inversion in the attitude angular loop is
implemented to compensate themodel inversion error, and it
uses proportional-derivative desired dynamics to design the
attitude control system for the helicopter [3] and tilt-rotor
aircraft [4].

The asymptotic tracking can be achieved using this
method.However, the transient behavior of the output signals
could be oscillatory when the tracking error magnitude is

decreased by increasing the adaption rate. Several solutions
[5–8] have been proposed to overcome this problem. These
methods guarantee the convergence of tracking error, but
the required tracking error upper bounds can’t be accurately
computed. A new adaptive control method with prescribed
performance is presented in [9], and this method guarantees
the transient state tracking error in the prespecified per-
formance bound. And this method is used to improve the
performance of the planar two-link articulated manipulator
[10, 11] and the 6-DOF PUMA 560 arm [12].

It is very important for aircraft to track the attitude com-
mand with a desired transient and steady performance, when
the aircraft finishes the special flight tasks, such as automated
aerial refueling [13, 14] and transition flight control [15, 16].

In this paper, we will investigate the aircraft attitude
control problem of guaranteeing transient and steady per-
formance in the adaptive compensation control system. By
employing the prescribed performance bounds proposed in
[9], we propose a new adaptive neural network dynamic
inversion method. With certain transformation method, a
new transformed error system is obtained through consid-
ering the prescribed performance bound into the original
attitude control system. An adaptive dynamic inversion con-
troller is designed for the transformed system. It is ensured
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that the tracking error is guaranteed inside the prescribed
error bound as long as the transformed error system is stable.

The paper is organized as follows: the problem and the
control configuration are introduced in Section 2. Section 3
presents the adaptive neural network dynamic inversion
with prescribed performance design, stability analysis, model
error analysis, and neural network structure. And the simula-
tions are described in Section 4. Finally, this paper concludes
in Section 5.

2. Aircraft Nonlinear Attitude Angle Model

The aircraft nonlinear attitude dynamic model can be pre-
sented as

̇

𝜙 = 𝑝 + (𝑟 cos𝜙 + 𝑞 sin𝜙) tan 𝜃,

̇

𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙,

̇
𝜓 =

(𝑟 cos𝜙 + 𝑞 sin𝜙)
cos 𝜃

,
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(2)

where 𝜙, 𝜃, and 𝜓 are the roll, pitch, and yaw attitude angles.
𝑝, 𝑞, and 𝑟 are the roll, pitch, and yaw angular rates. 𝑐

1
, . . . , 𝑐

9

can be found in [17]. 𝐿,𝑀, and𝑁 are the roll, pitch, and yaw
moments, which can be described as
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(3)

where 𝜌
𝑎
is the air density, 𝑆 is the wing reference area, 𝑏 is

the wing span, 𝑉 is the flight velocity, and 𝑐 is the wing mean
geometric chord.𝐶

𝑙
,𝐶

𝑚
, and𝐶

𝑛
are the rolling, pitching, and

yawing moment coefficients described as
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where 𝐶

(∗)
is the aerodynamic derivatives. 𝛼 and 𝛽 are the

angles of attack and sideslip. 𝛿
𝑎
, 𝛿

𝑒
, and 𝛿

𝑟
are the aileron, ele-

vator, and rudder deflections, which are the control actuators
of the aircraft. 𝑝, 𝑞, 𝑟, and �̇� are defined by

𝑝 = 𝑝𝑏/ (2𝑉) , 𝑟 = 𝑟𝑏/ (2𝑉)

𝑞 = 𝑞𝑐/ (2𝑉) , �̇� = �̇�𝑐/ (2𝑉)

(5)

and �̇� is the derivative of the angle of attack.

Substituting (3)-(4) into (2), and (2) can be rewritten in
the affine nonlinear form as
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According to (1), we can derive the second derivatives of
attitude angles as follows:
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Substituting (6) into (10), we obtain
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3. Prescribed Performance-Based Adaptive
Neural Network Dynamic Inversion Design

The aircraft attitude model shown in (13) can be represented
in the following shorthand notation:

�̈� = 𝑓 (𝑥, �̇�) + 𝑔 (𝑥) 𝑢, (14)
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ẍd

ud

ud

x

x

x

Inversion
controller

uad

Figure 1: Adaptive neural network dynamic inversion with prescribed performance architecture.

where the controlled state 𝑥 = [𝜙, 𝜃, 𝜓]

𝑇 and the control vec-
tor 𝑢 = [𝛿

𝑎
, 𝛿

𝑒
, 𝛿

𝑟
]

𝑇.𝑓(𝑥, �̇�) and𝑔(𝑥) are nonlinear functions.
The state tracking error is defined as

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥

𝑑
(𝑡) , (15)

where 𝑥
𝑑
(𝑡) is the desired state vector.

The proposed control architecture of the aircraft attitude
control system is shown in Figure 1.

3.1. Dynamic Inversion. This section will show a brief intro-
duction of dynamic inversion. And the readers could derive
much more details from the reference [2].

We seek to linearize a nonlinear system through com-
puting dynamic inversion to cancel the nonlinearities in the
system.The aircraft dynamics are shown in (14). The number
of control inputs and controlled states must be the same; that
is to say, the nonlinear function 𝑔(𝑥) is invertible. Then, the
control input can be calculated by

𝑢

𝑐
= 𝑔

−1
(𝑥) (𝑢

𝑚
− 𝑓 (𝑥, �̇�)) , (16)

where 𝑢
𝑚
is the desired response of �̈�. Replacing the 𝑢 in the

right of (14) by the 𝑢
𝑐
from (16), we derive

�̈� = 𝑢

𝑚 (17)

and any nonlinearities in 𝑓(𝑥, �̇�) and 𝑔(𝑥) are cancelled.
The achieved system dynamics will match the chosen

desired dynamics when there are no errors between the
design model and real object. However, the model error is
inevitable. So a new method is proposed to compensate the
model error and guarantee the system performances in the
transient and steady behavior.

3.2. Performance Function and Error Transformation

Definition 1 (see [9]). A smooth function 𝜌 : R
+
→ R

+
can

be called a performance function if the following conditions
are satisfied:

𝜌 (𝑡) > 0, ̇𝜌 (𝑡) < 0,

lim
𝑡→∞

𝜌 (𝑡) = 𝜌

∞
> 0.

(18)

For example, a performance function is

𝜌 (𝑡) = (𝜌

0
− 𝜌

∞
) 𝑒

−𝑙𝑡
+ 𝜌

∞
,

(19)

where 𝜌

0
, 𝜌

∞
and 𝑙 are positive constants, 𝜌

0
is the initial

tracking error 𝑒(𝑡), and 𝜌

∞
is the maximum allowable track-

ing error 𝑒(𝑡) at the steady state. The decrement of tracking
error 𝑒(𝑡) will decrease when the parameter 𝑙 decreases. And
we can derive the first and second derivatives of 𝜌(𝑡) as
follows:

̇𝜌 (𝑡) = −𝑙 (𝜌

0
− 𝜌

∞
) 𝑒

−𝑙𝑡
,

̈𝜌 (𝑡) = 𝑙

2
(𝜌

0
− 𝜌

∞
) 𝑒

−𝑙𝑡
.

(20)

Then by satisfying the following condition:

−𝛿𝜌 (𝑡) < 𝑒 (𝑡) < 𝛿𝜌 (𝑡) , ∀𝑡 ≥ 0,
(21)

where 0 ≤ 𝛿, and 𝛿 ≤ 1 are prescribed scalars; the objective
of guaranteeing transient and steady performance can be
derived.

Remark 2. According to (21), −𝛿𝜌(0) and 𝛿𝜌(0) are the lower
bound of the negative overshoot and upper bound of the
positive overshoot of 𝑒(𝑡), respectively. And a lower bound of
the convergence speed of 𝑒(𝑡) is introduced by the decreasing
rate of 𝜌(𝑡).

Remark 3. By changing the parameters of performance func-
tion 𝜌(𝑡) and the positive prescribed scalars 𝛿, and 𝛿, the
maximum overshoot and convergence rate of 𝑒(𝑡) can be
modified.

To transform the original system with the constrained
tracking error performance (in (21)) into an equivalent
constrained one, an error transformation is introduced. And
the error transformation is defined as

𝑒 (𝑡) = 𝜌 (𝑡) 𝑆 (𝜀) , (22)
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where 𝜀 is the transformed error and a smooth and strictly
increasing function 𝑆 has the following properties:

−𝛿 < 𝑆 (𝜀) < 𝛿,
(23)

lim
𝜀→−∞

𝑆 (𝜀) = −𝛿, lim
𝜀→+∞

𝑆 (𝜀) = 𝛿, (24)

𝑆 (0) = 0. (25)

According to the first property in (23) and 𝜌(𝑡) > 0, we
have

−𝛿𝜌 (𝑡) < 𝜌 (𝑡) 𝑆 (𝜀) < 𝛿𝜌 (𝑡) .
(26)

According to (19), we obtain

−𝛿𝜌 (𝑡) < 𝑒 (𝑡) < 𝛿𝜌 (𝑡) .
(27)

In addition, from the third property in (25),
lim

𝑡→∞
𝑒(𝑡) = 0 can be achieved if lim

𝑡→∞
𝜀(𝑡) = 0 is sat-

isfied.
Then (22) can be described as

𝜀 (𝑡) = 𝑆

−1
(

𝑒 (𝑡)

𝜌 (𝑡)

) . (28)

Lemma 4 (see [9]). Consider system in (14), the transient
and steady state tracking error behavior bounds described by
the performance function 𝜌(𝑡) and the error transformation
equation (22). The following results hold.

(a) The system in (14) is invariant under the error transfor-
mation equation (22).

(b) Stabilization of the transformed system using (28) is
sufficient to guarantee the prescribed performance.

In what follows, an adaptive neural network dynamic
inversion method is proposed to stabilize the transformed
system using (28).

3.3. Controller Design and Stability Analysis

Assumption 5. The desired states 𝑥
𝑑
(𝑡) are known bounded

time functions, with known bounded derivatives.

Assumption 6. The states 𝑥(𝑡) of the nonlinear system in (14)
are available for measurement.

We define the following error function 𝐸

𝑖
(𝑡), which

describes the dynamics of the new error system using the
error transformation equation (28).
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𝑖
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Then we compute the time derivative of 𝐸
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And the pitch and yaw errors are derived by the similar
method.

Substituting (30)–(33) into (34), we obtain
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2 ̇𝑒

𝑝
(𝑡) ̇𝜌

2

𝑝
(𝑡)

𝜌

3

𝑝
(𝑡)

] .

(36)

Then we can derive

̇

𝐸 = 𝐸

𝑅
̈𝑒 (𝑡) + 𝐸

𝑀
, (37)

where ̇

𝐸 = [

̇

𝐸

𝑝
,

̇

𝐸

𝑞
,

̇

𝐸

𝑟
]

𝑇, ̈𝑒(𝑡) = [ ̈𝑒

𝑝
(𝑡), ̈𝑒

𝑞
(𝑡), ̈𝑒

𝑟
(𝑡)]

𝑇, 𝐸
𝑀

=

[𝐸

𝑀

𝑝
, 𝐸

𝑀

𝑞
, 𝐸

𝑀

𝑟
]

𝑇, and 𝐸

𝑅
is

𝐸

𝑅
=

[

[

[

𝐸

𝑅

𝑝

𝐸

𝑅

𝑞

𝐸

𝑅

𝑟

]

]

]

, (38)
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where 𝐸

𝑅

𝑝
= (𝜕𝑆

𝑝

−1
/𝜕𝜆

𝑝
)/𝜌

𝑝
(𝑡), 𝐸𝑅

𝑞
= (𝜕𝑆

𝑞

−1
/𝜕𝜆

𝑞
)/𝜌

𝑞
(𝑡),

𝐸

𝑅

𝑟
= (𝜕𝑆

𝑟

−1
/𝜕𝜆

𝑟
)/𝜌

𝑟
(𝑡), and ̈𝑒

𝑝
(𝑡), ̈𝑒

𝑞
(𝑡), ̈𝑒

𝑟
(𝑡), are

̈𝑒

𝑝
(𝑡) =

̈

𝜙 −

̈

𝜙

𝑑
,

̈𝑒

𝑞
(𝑡) =

̈

𝜃 −

̈

𝜃

𝑑
,

̈𝑒

𝑟
(𝑡) =

̈
𝜓 −

̈
𝜓

𝑑
.

(39)

To simplify the controller design progress, we linearize (2)
in an equilibrium point which is the steady wings-level flight
state.

[
̇

𝑝, ̇𝑞, ̇𝑟]

𝑇

= 𝐴

𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, 𝛽

0
+ Δ𝛽, 𝑝

0

+Δ𝑝, 𝑞

0
+ Δ𝑞, 𝑟

0
+ Δ𝑟]

𝑇

+ 𝐵

𝜔
[𝛿

𝑎0
+ Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, 𝛿

𝑟0
+ Δ𝛿

𝑟
]

𝑇

,

(40)

where the𝐴
𝜔
and 𝐵

𝜔
are the appropriate dimension constant

matrixes, 𝛽
0

= 𝑝

0
= 𝑞

0
= 𝑟

0
= 𝛿

𝑎0
= 𝛿

𝑟0
= 0. And

𝑉

0
, 𝛼

0
, and 𝛿

𝑒0
are the flight velocity, angle of attack and

elevator deflection in some equilibrium point, respectively.
The symbol Δ represents the small perturbation from the
equilibrium value.

According to (2), (13), (14), and (40), we can obtain

�̈� = 𝐹 (𝑥) + 𝐺 (𝑥) Δ𝑢 + 𝜒, (41)

where Δ𝑢 = [Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]

𝑇, and

𝐹 (𝑥) = [𝐹

𝑝
, 𝐹

𝑞
, 𝐹

𝑟
]

𝑇

= 𝑔 (𝜙, 𝜃, 𝜓,

̇

𝜙,

̇

𝜃,
̇

𝜓)

+ 𝐿 (𝜙, 𝜃) 𝐴

𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

,

𝐺 (𝑥) = [𝐺

𝑝
, 𝐺

𝑞
, 𝐺

𝑟
]

𝑇

= 𝐿 (𝜙, 𝜃) 𝐵

𝜔

𝜒 = [𝜒

𝑝
, 𝜒

𝑞
, 𝜒

𝑟
]

𝑇

,

(42)

where 𝜒 is the model error which will be analyzed in
Section 3.4.

The formula �̈� = 𝐹(𝑥) + 𝐺(𝑥)Δ𝑢 in (41) is named
as the design model in some equilibrium point, which is
different from the real nonlinear model in (14). And the
difference between the designmodel and the nonlinearmodel
is represented by the symbol 𝜒, which will be compensated by
the adaptive neural network.

Because there are three channels in the attitude control
and the form of each channel is the same, consider the
following Theorem 7 for the roll channel. And the pitch and
yaw channels are similar.

Theorem 7. Considering Assumption 5, Assumption 6, and
the nonlinear system in (14), all the signals are bounded, and
the tracking error 𝑒(𝑡) satisfies the performance described by
the performance function 𝜌(𝑡), if the control input of system
satisfies the following formula.

The control input of roll channel is

𝑢

𝑝
= 𝛿

𝑎
= 𝐺

−1

𝑝
[−𝐹

𝑝
− (𝐸

𝑅

𝑝
)

−1

(𝐸

𝑀

𝑝
+ 𝑘

𝑝
𝐸

𝑝
) +

̈

𝜙

𝑑
− 𝑢

𝑎𝑑

𝑝
] .

(43)

The adaptive signal of roll channel is

𝑢

𝑎𝑑

𝑝
= 𝑤

𝑇

𝑝
𝑔

𝑝
. (44)

The neural network weight update law of roll channel is

̇

�̃�

𝑝
= {

𝛾

𝑝
(𝑔

𝑝
(𝐸

𝑝
)

𝑇

𝐸

𝑅

𝑝
+ 𝜎

𝑝
𝑤

𝑝
) ,











𝐸

𝑝











> 𝜁

𝑝
,

0











𝐸

𝑝











≤ 𝜁

𝑝
,

𝜁

𝑝
=











𝐸

𝑅

𝑝











ℎ

𝑝
+

√

(











𝐸

𝑅

𝑝











ℎ

𝑝
)

2

+ 𝑘

𝑝
𝜎

𝑝
(𝑤

max
𝑝

)

2

2𝑘

𝑝

,

(45)

where the vector 𝑔
𝑝
is a set of basis functions to approximate

the uncertainty and the neural network weight vector 𝑤
𝑝
is

the set of coefficients of each basis function in the roll channel.
The adaptation gain 𝛾

𝑝
determines the learning rate of neural

network. The 𝜎
𝑝
is a modification term to limit the growth of

the neural network weights.The constant 𝑘
𝑝
is positive. And the

positive constant ℎ
𝑝
is the neural network approximate error

which is bounded. The neural network weight error is

𝑤

𝑝
= 𝑤

𝑝
− 𝑤

∗

𝑝
, (46)

where the 𝑤∗

𝑝
is the true value of the neural network weight in

the roll channel.

Proof. A suitable Lyapunov function of roll channel will be

𝑉

𝑝
=

{

{

{

{

{

{

{

1

2

(𝐸

𝑝
)

𝑇

𝐸

𝑝
+

1

2𝛾

𝑝

(𝑤

𝑝
)

𝑇

𝑤

𝑝
,











𝐸

𝑝











> 𝜁

𝑝
,

1

2

(𝐸

𝑝0
)

𝑇

𝐸

𝑝0
+

1

2𝛾

𝑝

(𝑤

𝑝
)

𝑇

𝑤

𝑝
,











𝐸

𝑝











≤ 𝜁

𝑝
,

(47)

where ‖𝐸
𝑝0
‖ = 𝜁

𝑝
and 𝜁

𝑝
is to be defined later.

Firstly, if ‖𝐸
𝑝
‖ > 𝜁

𝑝
is satisfied, then the time derivative of

(47) is given by

̇

𝑉

𝑝
= (𝐸

𝑝
)

𝑇
̇

𝐸

𝑝
+

1

𝛾

𝑝

(𝑤

𝑝
)

𝑇
̇

�̃�

𝑝
. (48)

Substituting (37) into (48), we derive

̇

𝑉

𝑝
= (𝐸

𝑝
)

𝑇

[𝐸

𝑀

𝑝
+ 𝐸

𝑅

𝑝
(

̈

𝜙 −

̈

𝜙

𝑑
)] +

1

𝛾

𝑝

(𝑤

𝑝
)

𝑇
̇

�̃�

𝑝
. (49)

Considering (41)-(42) and (49), we have

̇

𝑉

𝑝
= (𝐸

𝑝
)

𝑇

[𝐸

𝑀

𝑝
+ 𝐸

𝑅

𝑝
(𝐹

𝑝
+ 𝐺

𝑝
𝑢

𝑝
+ 𝜒

𝑝
−

̈

𝜙

𝑑
)]

+

1

𝛾

𝑝

(𝑤

𝑝
)

𝑇
̇

�̃�

𝑝
.

(50)
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Let the control input 𝑢
𝑝
satisfy (43), then (50) can be

described as

̇

𝑉

𝑝
= (𝐸

𝑝
)

𝑇

[−𝑘

𝑝
𝐸

𝑝
+ 𝐸

𝑅

𝑝
(𝜒

𝑝
− 𝑢

𝑎𝑑

𝑝
)] +

1

𝛾

𝑝

(𝑤

𝑝
)

𝑇
̇

�̃�

𝑝
. (51)

Substituting (44)–(46) into (51), we obtain

̇

𝑉

𝑝
= −𝑘

𝑝
(𝐸

𝑝
)

𝑇

𝐸

𝑝
+ (𝐸

𝑝
)

𝑇

𝐸

𝑅

𝑝

× (𝜒

𝑝
− (𝑤

∗

𝑝
)

𝑇

𝑔

𝑝
) + 𝜎

𝑝
(𝑤

𝑝
)

𝑇

𝑤

𝑝
.

(52)

By using the norms of the terms on the right side of (52),
we obtain the following inequality:

̇

𝑉

𝑝
≤ −𝑘

𝑝











𝐸

𝑝











2

+











𝐸

𝑝





















𝐸

𝑅

𝑝











×













𝜒

𝑝
− (𝑤

∗

𝑝
)

𝑇

𝑔

𝑝













+ 𝜎

𝑝











𝑤

𝑝





















𝑤

𝑝











.

(53)

In addition, the approximate error of neural network is
bounded, so the following equation is satisfied:













𝜒

𝑝
− (𝑤

∗

𝑝
)

𝑇

𝑔

𝑝













≤ ℎ

𝑝
. (54)

The maximum weight of ideal neural network in the roll
channel is 𝑤max

𝑝
, so we have











𝑤

∗

𝑝











≤ 𝑤

max
𝑝

. (55)

Substituting (46) and (54)-(55) into (53), we get

̇

𝑉

𝑝
≤ −𝑘

𝑝











𝐸

𝑝











2

+











𝐸

𝑝





















𝐸

𝑅

𝑝











ℎ

𝑝
+ 𝜎

𝑝
(𝑤

max
𝑝











𝑤

𝑝











−











𝑤

𝑝











2

) .

(56)

Considering (56), we obtain

̇

𝑉

𝑝
≤ −𝑘

𝑝











𝐸

𝑝











2

+











𝐸

𝑝





















𝐸

𝑅

𝑝











ℎ

𝑝

− 𝜎

𝑝
(











𝑤

𝑝











−

𝑤

max
𝑝

2

)

2

+ 𝜎

𝑝
(

𝑤

max
𝑝

2

)

2

.

(57)

If the system is stable, then ̇

𝑉

𝑝
< 0. And (57) can be

transformed to the following formula:

𝑘

𝑝











𝐸

𝑝











2

−











𝐸

𝑝





















𝐸

𝑅

𝑝











ℎ

𝑝
− 𝜎

𝑝
(

𝑤

max
𝑝

2

)

2

> 0.

(58)

Then we can derive











𝐸

𝑝











>











𝐸

𝑅

𝑝











ℎ

𝑝
+

√

(











𝐸

𝑅

𝑝











ℎ

𝑝
)

2

+ 𝑘

𝑝
𝜎

𝑝
(𝑤

max
𝑝

)

2

2𝑘

𝑝

= 𝜁

𝑝
.

(59)

Next, if ‖𝐸
𝑝
‖ ≤ 𝜁

𝑝
is satisfied, then the time derivative of

(47) is derived by

̇

𝑉

𝑝
=

1

𝛾

𝑝

(𝑤

𝑝
)

𝑇
̇

�̃�

𝑝
. (60)

Here the weight update law is �̇�

𝑝
=

̇

�̃�

𝑝
= 0, and

̇

𝑉

𝑝
= 0. Therefore, the system is stable, and all the signals

are bounded. Considering Lemma 4, the tracking error 𝑒(𝑡)
satisfied the performance described by the performance
function 𝜌(𝑡).

This completes the proof.

3.4. Analysis of the Model Error. According to (2)–(5), the
moment model is nonlinear, complicated, and must be
continuously varyingwith the flight condition. For simplicity,
the linear model of (40) in an equilibrium point is used to
replace the nonlinear model of (2).

We define the model error Λ = [Λ

𝑝
, Λ

𝑞
, Λ

𝑟
]

𝑇, which
is the error between the linear model Equation (40) and the
nonlinear model equation (6). And the Λ is

Λ = [𝑓

𝑝
, 𝑓

𝑞
, 𝑓

𝑟
]

𝑇

− 𝐴

𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

+ 𝐺

𝑢
[𝛿

𝑎
, 𝛿

𝑒
, 𝛿

𝑟
]

𝑇

− 𝐵

𝜔
[Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]

𝑇

.

(61)

Then (6) can be rewritten as

[
̇

𝑝, ̇𝑞, ̇𝑟]

𝑇

= 𝐴

𝜔
[𝑉

0
+ Δ𝑉, 𝛼

0
+ Δ𝛼, Δ𝛽, Δ𝑝, Δ𝑞, Δ𝑟]

𝑇

+ 𝐵

𝜔
[Δ𝛿

𝑎
, 𝛿

𝑒0
+ Δ𝛿

𝑒
, Δ𝛿

𝑟
]

𝑇

− Λ.

(62)

Substituting (62) into (10), we have

�̈� = 𝐹 (𝑥) + 𝐺 (𝑥) Δ𝑢 − 𝐿 (𝜙, 𝜃) Λ. (63)

Comparing (63) to (41), we obtain

𝜒 = −𝐿 (𝜙, 𝜃) Λ. (64)

Therefore, the model error mainly depends on the differ-
ent equilibrium points, attitude angles, actuator deflections,
and so on.

3.5. Neural Network Structure. The first step in determining
the appropriate network structure is identifying the network
inputs. Based on the analysis ofmodel error sources described
in Section 3.3, there are three main categories of inputs: the
attitude angles, attitude angle rates, and actuator deflections.

A Sigma-Pi neural network [18] is used to compensate the
model error 𝜒, and the basis function of the pitch channel 𝑔

𝑞

is

𝑔

𝑞
= kron (kron (𝐶

1𝑞
, 𝐶

2𝑞
) , 𝐶

3𝑞
) , (65)

where kron(⋅, ⋅) represents the Kronecker products and is
defined as follows:

𝐶

1𝑞
= [1, 𝜃, 𝜃

2

]

𝑇

, 𝐶

2𝑞
= [1, 𝑞]

𝑇

, 𝐶

3𝑞
= [1, 𝛿

𝑒
, 𝛿

2

𝑒
]

𝑇

,

(66)
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Figure 2: Neural network structure.

where 𝜃, 𝑞, 𝛿
𝑐
and 𝛿

𝑒
are normalized variables between −1 and

1. The normalization function is

𝑦 = 𝑓 (𝑥) =

2

1 + 𝑒

−0.1𝑥
− 1, (67)

where 𝑥 is the input parameter and 𝑦 is the output parameter.
And a general description of the neural network is shown

in Figure 2.
And the basis function of roll channel 𝑔

𝑝
and the basis

function of yaw channel𝑔
𝑟
can be derived similarly as follows:

𝑔

𝑘
= kron (kron (kron (kron (𝐶

1
, 𝐶

2
) , 𝐶

3
) , 𝐶

4
) , 𝐶

𝑘
) , (68)

where 𝑘 = 𝑝, 𝑟. Then 𝐶

𝑖
, 𝑖 = 1, 2, 3, 4, 𝑘 is

𝐶

1
= [1, 𝜙, 𝜙

2

]

𝑇

, 𝐶

2
= [1, 𝑝]

𝑇

, 𝐶

3
= [1, 𝑟]

𝑇
,

𝐶

4
= [1, 𝜓, 𝜓

2
]

𝑇

, 𝐶

𝑝
= [1, 𝛿

𝑎
, 𝛿

2

𝑎
]

𝑇

, 𝐶

𝑟
= [1, 𝛿

𝑟
, 𝛿

2

𝑟
]

𝑇

.

(69)

4. Simulation Results

In this section, we consider the attitude angles control
problem for a fixed-wing aircraft, and the initial flight state
is the wings-level flight. Then the attitude angles commands
in three channels will be tracked, respectively.

In the following simulation, the initial flight height and
velocity are 6000mand 190m/s, and the initial attitude angles
and angular rates including 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, and 𝑟 are zeros. In
addition, all the initial actuator deflections are zeros.

The error transformation function [19] in the simulation
is described as

𝑆 (𝜀) =

𝛿𝑒

(𝜀+𝑦)
− 𝛿𝑒

−(𝜀+𝑦)

𝑒

(𝜀+𝑦)
+ 𝑒

−(𝜀+𝑦)
,

(70)

where 𝑦 = ln(𝛿/𝛿)/2. It can be shown that 𝑆(𝜀) satisfies the
properties in (23)–(25).

The attitude angles commands of three channels are
transformed into the desired attitude angles commands

𝜙g
𝜔2
𝜙

− −
1/s

2𝜉𝜙𝜔𝜙

1/s

𝜔2
𝜙

̈𝜙d

̇𝜙d

𝜙d

Figure 3: Command filter.

Table 1: Performance parameters.

𝜌

𝜙

0
−12∘

𝜌

𝜓

0
−8∘

𝜌

𝜃

0
−10∘

𝜌

𝜙

∞
−0.3∘

𝜌

𝜓

∞
−0.2∘

𝜌

𝜃

∞
−0.2∘

𝑙

𝜙
0.7 𝑙

𝜓
0.7 𝑙

𝜃
0.7

𝛿

𝜙
0.6 𝛿

𝜓
0.5 𝛿

𝜃
0.6

𝛿

𝜙
1 𝛿

𝜓
1 𝛿

𝜃
1

Table 2: Controller parameters.

𝑘

𝑝
10 𝑘

𝑟
10 𝑘

𝑞
10

𝛾

𝑝
200 𝛾

𝑟
200 𝛾

𝑞
50

𝜎

𝑝
0.1 𝜎

𝑟
0.1 𝜎

𝑞
0.3

through the command filters. And the structure of command
filter for the roll channel is shown in Figure 3. In addition, the
desired attitude angles commands for yaw and pitch channels
can be obtained by the similar command filters.

The command filter parameters are set as 𝜉
𝑖
= 1, 𝜔

𝑖
= 2.5,

and 𝑖 = 𝜙, 𝜓, 𝜃.
Design the control inputs with prescribed performance

for three channels through the procedures in Section 3.2.The
performance and controller parameters are shown in Tables 1
and 2.

Remark 8. For the performance function 𝜌(𝑡), 𝜌
0
is derived

by subtracting the attitude command from the initial attitude
angle. 𝜌

∞
is the allowable attitude tracking error at the steady

state. And the decrement of tracking error 𝑒(𝑡) will decrease
when the parameter 𝑙 decreases.

Remark 9. For the controller parameters, the adaptation gain
𝛾 will improve the attitude tracking performance, especially,
when there are much larger model errors. The 𝜎

𝑝
is a

modification term to limit the growth of the neural network
weights; therefore, it is small. The transient performance
of attitude tracking error can be improved by increasing
the parameter 𝑘; however, the increase will increase the
magnitude of the control input. Then a compromise must be
reached.
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Figure 4: Responses of the attitude angles.
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Figure 5: Tracking errors of the attitude angles.

The design model I is derived at the trimmed flight
condition of 6000m and 190m/s, and the model error is
small.

The aircraft tracks the attitude angles commands from the
initial flight state. And the attitude angles tracking responses
and tracking errors are shown in Figures 4 and 5.

The two methods have achieved the attitude angles com-
mand tracking. Figure 4 shows the better attitude responses
are achieved by the proposed method compared to the

method in [20]. And the coupling among different channels
is smaller when the proposed method is used. For example,
the roll angle response has a less change when the aircraft
tracks the yaw command. In Figure 5, the attitude angles
tracking errors satisfy the prescribed performance bound
with the proposed method in the dynamic and steady state.
Themain reason is that the method in [20] does not consider
the performance bound defined by the performance function
𝜌(𝑡) in the design process.
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Figure 6: Responses of the Attitude angles with model error.
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Figure 7: Tracking errors of the attitude angles with model error.
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Figure 8: Deflections of the control actuators in two design models.
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Figure 9: The outputs of neural network in three channels.
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In the real flight control system, there must be the model
error. In order to verify that the similar tracking performance
is also achieved when there is the large model error, we have
conducted the following simulation study.

The flight condition is the same, and the initial flight
height and velocity are 6000m and 190m/s. However, the
design model II used to design the attitude angles controllers
is derived at the trimmed flight condition of 4000m and
150m/s. Apparently, the model error is large.

And the attitude angles tracking responses and tracking
errors are shown in Figures 6 and 7.

Figures 6 and 7 show the attitude angles tracking errors
still satisfy the prescribed performance bound, although the
model error is large in this situation. In addition, Figures
6 and 7 show the track performance is similar when the
different design models are used.

The control actuators deflections for three channels are
compared in Figure 8 when the two design models are used.

Figure 8 shows the deflections of the control actuators
using the design model II increase to derive the desired
attitude angles tracking performance. In addition, the outputs
of neural network in three channels are shown in Figure 9.

Figure 9 shows the outputs of neural network using the
design model II are larger than the one using the design
model I. The main reason is that the model error is larger
when the design model II is used, and the larger outputs of
neural network are used to compensate the largemodel error.

5. Conclusion

In this paper, an adaptive neural network dynamic inver-
sion with prescribed performance method is proposed for
aircraft attitude control. By incorporating the adaptive neural
network dynamic inversion with the prescribed performance
concept, the proposed method guarantees the system track-
ing error satisfies the prescribed performance bound in the
transient and steady behavior. The nonlinear simulation of
the aircraft also verifies the effectiveness of the proposed
approach.

Further investigation is needed for the situations in the
presence of the external wind disturbance and unmodeled
dynamics. And, these design parameters in this method
should be decreased and optimized to achieve a real appli-
cation.
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