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We consider a vector variational inequality in a finite-dimensional space. A new gap function is proposed, and an equivalent
optimization problem for the vector variational inequality is also provided. Under some suitable conditions, we prove that the
gap function is directionally differentiable and that any point satisfying the first-order necessary optimality condition for the
equivalent optimization problem solves the vector variational inequality. As an application, we use the new gap function to
reformulate a stochastic vector variational inequality as a deterministic optimization problem. We solve this optimization problem
by employing the sample average approximation method. The convergence of optimal solutions of the approximation problems is
also investigated.

1. Introduction

The vector variational inequality (VVI for short), which was
first proposed by Giannessi [1], has been widely investigated
by many authors (see [2–9] and the references therein). VVI
can be used to model a range of vector equilibrium problems
in economics, traffic networks, and migration equilibrium
problems (see [1]).

One approach for solving a VVI is to transform it into
an equivalent optimization problem by using a gap function.
A gap function was first introduced to study optimization
problems and has become a powerful tool in the study
of convex optimization problems. Also a gap function was
introduced in the study of scalar variational inequalities. It
can reformulate a scalar variational inequality as an equiv-
alent optimization problem, and so some effective solution
methods and algorithms for optimization problems can be
used to find solutions of variational inequalities. Recently,
many authors extended the theory of gap functions to VVI
and vector equilibrium problems (see [2, 4, 6–9]). In this
paper, we present a new gap function forVVI and reformulate

it as an equivalent optimization problem. We also prove that
the gap function is directionally differentiable and that any
point satisfying the first-order necessary optimality condition
for the equivalent optimization problem solves the VVI.

In many practical problems, problem data will involve
some uncertain factors. In order to reflect the uncertain-
ties, stochastic vector variational inequalities are needed.
Recently, stochastic scalar variational inequalities have
received a lot of attention in the literature (see [10–20]).
The ERM (expected residual minimization) method was
proposed by Chen and Fukushima [11] in the study of
stochastic complementarity problems. They formulated a
stochastic linear complementarity problem (SLCP) as a min-
imization problem which minimizes the expectation of a
NCP function (also called a residual function) of SLCP and
regarded a solution of theminimization problem as a solution
of SLCP. This method is the so-called expected residual
minimization method. Following the ideas of Chen and
Fukushima [11], Zhang and Chen [20] considered stochastic
nonlinear complementary problems. Luo and Lin [18, 19]
generalized the expected residual minimization method to
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solve a stochastic linear and/or nonlinear variational inequal-
ity problem. However, in comparison to stochastic scalar
variational inequalities, there are very few results in the
literature on stochastic vector variational inequalities. In this
paper, we consider a deterministic reformulation for the
stochastic vector variational inequality (SVVI). Our focus is
on the expected residualminimization (ERM)method for the
stochastic vector variational inequality. It is well known that
VVI is more complicated than a variational inequality, and
they model many practical problems. Therefore, it is mean-
ingful and interesting to study stochastic vector variational
inequalities.

The rest of this paper is organized as follows. In Section 2,
somepreliminaries are given. In Section 3, a newgap function
for VVI is constructed and some suitable conditions are
given to ensure that the new gap function is directionally
differentiable and that any point satisfying the first-order
necessary condition of optimality for the new optimization
problem solves the vector variational inequality. In Section 4,
the stochastic VVI is presented and the new gap function
is used to reformulate SVVI as a deterministic optimization
problem.

2. Preliminaries

In this section, we will introduce some basic notations and
preliminary results.

Throughout this paper, denote by 𝑥𝑇 the transpose of a
vector or matrix 𝑥, by | ⋅ | the Euclidean norm of a vector
or matrix, and by ⟨⋅, ⋅⟩ the inner product in R𝑛. Let 𝐾 be
a nonempty, closed, and convex set of R𝑛, 𝐹

𝑖
: R𝑛 → R𝑛

(𝑖 = 1, . . . , 𝑝) mappings, and 𝐹 := (𝐹
1
, . . . , 𝐹

𝑝
)
𝑇. The vector

variational inequality is to find a vector 𝑥∗ ∈ 𝐾 such that

(⟨𝐹
1
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩)

𝑇

∉ − int R𝑝
+
,

∀𝑦 ∈ 𝐾,

(1)

where R
𝑝

+ is the nonnegative orthant of R𝑝 and int R𝑝+
denotes the interior ofR𝑝+. Denote by 𝑆 the solution set of VVI
(1) and by 𝑆

𝜉
the solution set of the following scalar variational

inequality (VI
𝜉
): find a vector 𝑥∗ ∈ 𝐾, such that

⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (2)

where 𝜉 ∈ 𝐵 := {𝜉 ∈ R
𝑝

+ : ∑
𝑝

𝑗=1
𝜉
𝑗
= 1}.

Definition 1. A function 𝜑
𝜉
: 𝐾 → R is said to be a gap

function for VI
𝜉
(2) if it satisfies the following properties:

(i) 𝜑
𝜉
(𝑥) ≥ 0, for all 𝑥 ∈ 𝐾;

(ii) 𝜑
𝜉
(𝑥
∗
) = 0 iff 𝑥∗ solves VI

𝜉
(2).

Definition 2. A function 𝜓 : 𝐾 → R is said to be a gap
function for VVI (1) if it satisfies the following properties:

(i) 𝜓(𝑥) ≥ 0, for all 𝑥 ∈ 𝐾;
(ii) 𝜓(𝑥∗) = 0 iff 𝑥∗ solves VVI (1).

Suppose that 𝐺 is an 𝑛 × 𝑛 symmetric positive definite
matrix. Let

𝜑
𝜉 (
𝑥) := max

𝑦∈𝐾

{

{

{

⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥) , 𝑥 − 𝑦⟩ −

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

𝐺

}

}

}

, (3)

where |𝑥|2
𝐺
:= ⟨𝑥, 𝐺𝑥⟩. Note that

√𝜆min |𝑥| ≤ |𝑥|𝐺 ≤ √𝜆max |𝑥| , (4)

where 𝜆min and 𝜆max are the smallest and largest eigenvalues
of 𝐺, respectively. It was shown in [21] that the maximum in
(3) is attained at

𝐻
𝜉 (
𝑥) := Proj

𝐾,𝐺
(𝑥 − 𝐺

−1

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥)) , (5)

where Proj
𝐾,𝐺
(𝑥) is the projection of the point 𝑥 onto the

closed convex set 𝐾 with respect to the norm | ⋅ |
𝐺
. Thus,

𝜑
𝜉 (
𝑥) = ⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥) , 𝑥 − 𝐻𝜉 (

𝑥)⟩ −

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐺
. (6)

Lemma 3. The projection operator Proj
𝐾,𝐺
(⋅) is nonexpansive;

that is,
󵄨
󵄨
󵄨
󵄨
󵄨
Proj
𝐾,𝐺
(𝑥) − Proj

𝐾,𝐺
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨𝐺
≤
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨𝐺
, ∀𝑥, 𝑦 ∈ R

𝑛
. (7)

Lemma 4. The function 𝜑
𝜉
is a gap function for VI

𝜉
(2) and

𝑥
∗
∈ 𝐾 solves VI

𝜉
(2) iff it solves the following optimization

problem:

min
𝑥∈𝐾

𝜑
𝜉 (
𝑥) . (8)

The gap function 𝜑
𝜉
is also called the regularized gap

function for VI
𝜉
. When 𝐹

𝑗
(𝑗 = 1, . . . , 𝑝) are continuously

differentiable, we have the following results.

Lemma 5. If 𝐹
𝑗
(𝑗 = 1, . . . , 𝑝) are continuously differentiable,

then 𝜑
𝜉
is also continuously differentiable in 𝑥, and its gradient

is given by

∇
𝑥
𝜑
𝜉 (
𝑥) =

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥) − (

𝑝

∑

𝑗=1

𝜉
𝑗
∇
𝑥
𝐹
𝑗 (
𝑥) − 𝐺)(𝐻𝜉 (

𝑥) − 𝑥) .

(9)

Lemma 6. Assume that 𝐹
𝑗
are continuously differentiable and

that the Jacobian matrixes ∇
𝑥
𝐹
𝑗
(𝑥) are positive definite for all

𝑥 ∈ 𝐾 (𝑗 = 1, . . . , 𝑝). If 𝑥 is a stationary point of problem (8),
that is,

⟨∇
𝑥
𝜑
𝜉 (
𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (10)

then it solves VI
𝜉
(2).
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3. A New Gap Function for VVI and
Its Properties

In this section, based on the regularized gap function 𝜑
𝜉
for

VI
𝜉
(2), we construct a new gap function for VVI (1) and

establish some properties under some mild conditions.
Let

𝜓 (𝑥) := min
𝜉∈𝐵

𝜑
𝜉 (
𝑥) . (11)

Before showing that 𝜓 is a gap function for VVI, we first
present a useful result.

Lemma 7. The following assertion is true:

𝑆 = ∪
𝜉∈𝐵
𝑆
𝜉
. (12)

Proof. Suppose that 𝑥∗ ∈ ∪
𝜉∈𝐵
𝑆
𝜉
. Then, there exists a 𝜉 ∈ 𝐵

such that 𝑥∗ ∈ 𝑆
𝜉
and

𝑝

∑

𝑗=1

𝜉
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ = ⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐾.

(13)

For any fixed 𝑦 ∈ 𝐾, since 𝜉 ∈ 𝐵, there exists a 𝑗 ∈ {1, . . . , 𝑝}
such that

⟨𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ ≥ 0, (14)

and so

(⟨𝐹
1
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩)

𝑇

∉ − int R𝑝
+
.

(15)

Thus, we have

(⟨𝐹
1
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩)

𝑇

∉ − int R𝑝
+
,

∀𝑦 ∈ 𝐾.

(16)

This implies that 𝑥∗ ∈ 𝑆 and ∪
𝜉∈𝐵
𝑆
𝜉
⊂ 𝑆.

Conversely, suppose that 𝑥∗ ∈ 𝑆. Then, we have

(⟨𝐹
1
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩)

𝑇

∉ − int R𝑝
+
,

∀𝑦 ∈ 𝐾,

(17)

and so

{(⟨𝐹
1
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩)

𝑇

: ∀𝑦 ∈ 𝐾}

∩ (− int R𝑝
+
) = 0.

(18)

Since 𝐾 is convex, from Theorems 11.1 and 11.3 of [22], it
follows that

inf
𝑦∈𝐾

{

{

{

𝑝

∑

𝑗=1

𝑏
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩

}

}

}

≥ sup
𝑦∈(− int R𝑝+)

⟨𝑏, 𝑦⟩ , (19)

where 𝑏 = (𝑏
1
, . . . , 𝑏

𝑝
) ̸= 0. Moreover, we have 𝑏 > 0. In fact, if

𝑏
𝑗
< 0 for some 𝑗 ∈ {1, . . . , 𝑝}, then we have

sup
𝑦∈(− int R𝑝+)

⟨𝑏, 𝑦⟩ = +∞. (20)

On the other hand,

inf
𝑦∈𝐾

{

{

{

𝑝

∑

𝑗=1

𝑏
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩

}

}

}

≤

{

{

{

𝑝

∑

𝑗=1

𝑏
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑥
∗
− 𝑥
∗
⟩

}

}

}

= 0

< sup
𝑦∈(− int R𝑝+)

⟨𝑏, 𝑦⟩,

(21)

which is a contradiction. Thus, 𝑏 > 0. This implies that, for
any 𝑧 ∈ 𝐾,

𝑝

∑

𝑗=1

𝑏
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑧 − 𝑥

∗
⟩

≥ inf
𝑦∈𝐾

{

{

{

𝑝

∑

𝑗=1

𝑏
𝑗
⟨𝐹
𝑗
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩

}

}

}

≥ sup
𝑦∈(− int R𝑝+)

⟨𝑏, 𝑦⟩ = 0.

(22)

Taking 𝜉 = 𝑏/(∑𝑝
𝑗=1
𝑏
𝑗
), then 𝜉 ∈ 𝐵 and

⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗
(𝑥
∗
) , 𝑧 − 𝑥

∗
⟩ ≥ 0, ∀𝑧 ∈ 𝐾, (23)

which implies that 𝑥∗ ∈ 𝑆
𝜉
and 𝑆 ⊂ ∪

𝜉∈𝐵
𝑆
𝜉
.

This completes the proof.

Now, we can prove that 𝜓 is a gap function for VVI (1).

Theorem 8. The function 𝜓 given by (11) is a gap function for
VVI (1). Hence, 𝑥∗ ∈ 𝐾 solves VVI (1) iff it solves the following
optimization problem:

min
𝑥∈𝐾

𝜓 (𝑥) . (24)

Proof. Note that for any 𝜉 ∈ 𝐵, 𝜑
𝜉
(𝑥) given by (3) is a gap

function for VI
𝜉
(2). It follows from Definition 1 that 𝜑

𝜉
(𝑥) ≥

0 for all 𝑥 ∈ 𝐾 and hence 𝜓(𝑥) = min
𝜉∈𝐵

𝜑
𝜉
(𝑥) ≥ 0 for all

𝑥 ∈ 𝐾.
Assume that 𝜓(𝑥∗) = 0 for some 𝑥∗ ∈ 𝐾. From (6), it is

easy to see that 𝜑
𝜉
(𝑥
∗
) is continuous in 𝜉. Since 𝐵 is a closed
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and bounded set, there exists a vector 𝜉 ∈ 𝐵 such that𝜓(𝑥∗) =
𝜑
𝜉
(𝑥
∗
), which implies that 𝜑

𝜉
(𝑥
∗
) = 0 and 𝑥∗ ∈ 𝑆

𝜉
. It follows

from Lemma 7 that 𝑥∗ solves VVI (1).
Suppose that 𝑥∗ solves VVI (1). From Lemma 7, it follows

that there exists a vector 𝜉 ∈ 𝐵 such that 𝑥∗ ∈ 𝑆
𝜉
and so

𝜑
𝜉
(𝑥
∗
) = 0. Since, for all 𝜉 ∈ 𝐵, 𝜑

𝜉
(𝑥
∗
) ≥ 0, we have 𝜓(𝑥∗) =

min
𝜉∈𝐵

𝜑
𝜉
(𝑥
∗
) = 0.

Thus, (11) is a gap function for VVI (1). The last assertion
is obvious from the definition of gap function.

This completes the proof.

Since 𝜓 is constructed based on the regularized gap
function for VI

𝜉
, we wish to call it a regularized gap function

forVVI (1).Theorem 8 indicates that in order to get a solution
of VVI (1), we only need to solve problem (24). In what
follows, wewill discuss some properties of the regularized gap
function 𝜓.

Theorem 9. If 𝐹
𝑗
(𝑗 = 1, . . . , 𝑝) are continuously differen-

tiable, then the regularized gap function 𝜓 is directionally
differentiable in any direction 𝑑 ∈ R𝑛, and its directional
derivative 𝜓󸀠(𝑥; 𝑑) is given by

𝜓
󸀠
(𝑥; 𝑑) = inf

𝜉∈𝐵(𝑥)

⟨∇
𝑥
𝜑
𝜉 (
𝑥) , 𝑑⟩ , (25)

where 𝐵(𝑥) := {𝜉 ∈ 𝐵 : 𝜑
𝜉
(𝑥) = min

𝜉∈𝐵
𝜑
𝜉
(𝑥)}.

Proof. It follows since the projection operator is nonexpan-
sive that 𝜑

𝜉
(𝑥) is continuous in (𝜉, 𝑥).Thus, 𝐵(𝑥) is nonempty

for any 𝑥 ∈ 𝐾. From Lemma 5, it follows that 𝜑
𝜉
(𝑥) is

continuously differentiable in 𝑥 and that

∇
𝑥
𝜑
𝜉 (
𝑥) =

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥) − (

𝑝

∑

𝑗=1

𝜉
𝑗
∇
𝑥
𝐹
𝑗 (
𝑥) − 𝐺)(𝐻𝜉 (

𝑥) − 𝑥)

(26)

is continuous in (𝜉, 𝑥). It follows fromTheorem 1 of [23] that
𝜓 is directionally differentiable in any direction 𝑑 ∈ R𝑛, and
its directional derivative 𝜓󸀠(𝑥; 𝑑) is given by

𝜓
󸀠
(𝑥; 𝑑) = inf

𝜉∈𝐵(𝑥)

⟨∇
𝑥
𝜑
𝜉 (
𝑥) , 𝑑⟩ . (27)

This completes the proof.

By the directional differentiability of 𝜓 shown in
Theorem 9, the first-order necessary condition of optimality
for problem (24) can be stated as

𝜓
󸀠
(𝑥; 𝑦 − 𝑥) ≥ 0, ∀𝑦 ∈ 𝐾. (28)

If one wishes to solve VVI (1) via the optimization problem
(24), we need to obtain its global optimal solution. However,
since the function 𝜓 is in general nonconvex, it is difficult to
find a global optimal solution. Fortunately, we can prove that
any point satisfying the first-order condition of optimality
becomes a solution of VVI (1). Thus, existing optimization
algorithms can be used to find a solution of VVI (1).

Theorem 10. Assume that 𝐹
𝑗
are continuously differentiable

and that the Jacobian matrixes ∇
𝑥
𝐹
𝑗
(𝑥) are positive definite for

all 𝑥 ∈ 𝐾 (𝑗 = 1, . . . , 𝑝). If 𝑥∗ ∈ 𝐾 satisfies the first-order
condition of optimality (28), then 𝑥∗ solves VVI (1).

Proof. It follows fromTheorem 9 and (28) that, for some 𝜉 ∈
𝐵(𝑥
∗
),

⟨∇
∗

𝑥
𝜑
𝜉
(𝑥
∗
) , 𝑦 − 𝑥

∗
⟩ ≥ 0 (29)

holds for any 𝑦 ∈ 𝐾. This implies that 𝑥∗ is a stationary point
of problem (8). It follows from Lemma 6 that 𝑥∗ solves VI

𝜉
.

FromLemma 7, we see that𝑥∗ solves VVI.This completes the
proof.

From Theorems 8 and 10, it is easy to get the following
corollary.

Corollary 11. Assume that the conditions in Theorem 10 are
all satisfied. If 𝑥∗ ∈ 𝐾 satisfies the first-order condition of
optimality (28), then 𝑥∗ is a global optimal solution of problem
(24).

4. Stochastic Vector Variational Inequality

In this section, we consider the stochastic vector variational
inequality (SVVI). First, we present a deterministic refor-
mulation for SVVI by employing the ERM method and the
regularized gap function. Second, we solve this reformulation
by the SAA method.

In most important practical applications, the functions
𝐹
𝑗
(𝑗 = 1, . . . , 𝑝) always involve some random factors or

uncertainties. Let (Ω,F, 𝑃) be a probability space. Taking
the randomness into account, we get a stochastic vector
variational inequality problem (SVVI): find a vector 𝑥∗ ∈ 𝐾
such that

(⟨𝐹
1
(𝑥
∗
, 𝜔) , 𝑦 − 𝑥

∗
⟩ , . . . , ⟨𝐹

𝑝
(𝑥
∗
, 𝜔) , 𝑦 − 𝑥

∗
⟩)

𝑇

∉ − int R𝑝
+
, ∀𝑦 ∈ 𝐾, a.s.,

(30)

where 𝐹
𝑗
: R𝑛 × Ω → R𝑛 are mappings and a.s. is the

abbreviation for “almost surely” under the given probability
measure 𝑃.

Because of the random element 𝜔, we cannot generally
find a vector 𝑥∗ ∈ 𝐾 such that (30) holds almost surely.
That is, (30) is not well defined if we think of solving
(30) before knowing the realization 𝜔. Therefore, in order
to get a reasonable resolution, an appropriate deterministic
reformulation for SVVI becomes an important issue in the
study of the considered problem. In this section, we will
employ the ERMmethod to solve (30).

Define
𝜓 (𝑥, 𝜔) := min

𝜉∈𝐵

𝜑
𝜉 (
𝑥, 𝜔) , (31)

where

𝜑
𝜉 (
𝑥, 𝜔) := max

𝑦∈𝐾

{

{

{

⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔) , 𝑥 − 𝑦⟩ −

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

𝐺

}

}

}

.

(32)
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The maximum in (32) is attained at

𝐻
𝜉 (
𝑥, 𝜔) := Proj

𝐾,𝐺
(𝑥 − 𝐺

−1

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔)) , (33)

𝜑
𝜉 (
𝑥, 𝜔) = ⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔) , 𝑥 − 𝐻𝜉 (

𝑥, 𝜔)⟩

−

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐺
.

(34)

The ERM reformulation is given as follows:

min
𝑥∈𝐾

Θ (𝑥) := E [𝜓 (𝑥, 𝜔)] , (35)

where E is the expectation operator.
Note that the objective functionΘ(𝑥) contains the math-

ematical expectation. In practical applications, it is in general
very difficult to calculate E[𝜓(𝑥, 𝜔)] in a closed form. Thus,
we will have to approximate it through discretization. One
of the most popular discretization approaches is the sample
average approximation method. In general, for an integrable
function 𝜙 : Ω → R, we approximate the expected value
E[𝜙(𝜔)] with the sample average (1/𝑁

𝑘
) ∑
𝜔𝑖∈Ω𝑘

𝜙(𝜔
𝑖
), where

𝜔
1
, . . . , 𝜔

𝑁𝑘
are independently and identically distributed

random samples of 𝜔 and Ω
𝑘
:= {𝜔
1
, . . . , 𝜔

𝑁𝑘
}. By the strong

law of large numbers, we get the following lemma.

Lemma 12. If 𝜙(𝜔) is integrable, then

lim
𝑘→∞

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜙 (𝜔
𝑖
) = E [𝜙 (𝜔)] (36)

holds with probability one.

Let Θ
𝑘
(𝑥) := (1/𝑁

𝑘
) ∑
𝜔𝑖∈Ω𝑘

𝜓(𝑥, 𝜔
𝑖
). Applying the above

technique, we get the following approximation of (35):

min
𝑥∈𝐾

Θ
𝑘 (
𝑥) . (37)

In the rest of this section, we focus on the case

𝐹
𝑗 (
𝑥, 𝜔) := 𝑀𝑗 (

𝜔) 𝑥 + 𝑄𝑗 (
𝜔) (38)

(𝑗 = 1, . . . , 𝑝), where𝑀
𝑗
: Ω → R𝑛×𝑛 and 𝑄

𝑗
: Ω → R𝑛 are

measurable functions such that

E [
󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗 (
𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

] < +∞, E [
󵄨
󵄨
󵄨
󵄨
󵄨
𝑄(𝜔)𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

] < +∞,

𝑗 = 1, . . . , 𝑝.

(39)

This condition implies that

E[

[

𝑝

∑

𝑗=1

𝑀
𝑗 (
𝜔)
]

]

2

< +∞,

E[

[

(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗 (
𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
)(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗 (
𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
)
]

]

< +∞,

(40)

and, for any scalar 𝑐,

E[

[

𝑝

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗 (
𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗 (
𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
)
]

]

< +∞. (41)

The following results will be useful in the proof of the
convergence result.

Lemma 13. Let 𝑓, 𝑔 : R𝑝 → R
+

be continuous. If
min
𝜉∈𝐵

𝑓(𝜉) < +∞ andmin
𝜉∈𝐵

𝑔(𝜉) < +∞, then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

min
𝜉∈𝐵

𝑓 (𝜉) −min
𝜉∈𝐵

𝑔 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
𝜉∈𝐵

󵄨
󵄨
󵄨
󵄨
𝑓 (𝜉) − 𝑔 (𝜉)

󵄨
󵄨
󵄨
󵄨
. (42)

Proof. Without loss of generality, we assume that
min
𝜉∈𝐵
𝑓(𝜉) ≤ min

𝜉∈𝐵
𝑔(𝜉). Let 𝜉minimize 𝑓 and ̂𝜉minimize

𝑔, respectively. Hence, 𝑓(𝜉) ≤ 𝑔(̂𝜉) and 𝑔(̂𝜉) ≤ 𝑔(𝜉). Thus

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

min
𝜉∈𝐵

𝑓 (𝜉) −min
𝜉∈𝐵

𝑔 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑔 (
̂
𝜉) − 𝑓 (𝜉)

≤ 𝑔 (𝜉) − 𝑓 (𝜉)

≤ max
𝜉∈𝐵

󵄨
󵄨
󵄨
󵄨
𝑓 (𝜉) − 𝑔 (𝜉)

󵄨
󵄨
󵄨
󵄨
.

(43)

This completes the proof.

Lemma 14. When 𝐹
𝑗
(𝑥, 𝜔) = 𝑀

𝑗
(𝜔)𝑥 +𝑄

𝑗
(𝜔) (𝑗 = 1, . . . , 𝑝),

the function 𝜑
𝜉
(𝑥, 𝜔) is continuously differentiable in 𝑥 almost

surely, and its gradient is given by

∇
𝑥
𝜑
𝜉 (
𝑥, 𝜔) =

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔)

− (

𝑝

∑

𝑗=1

𝜉
𝑗
𝑀
𝑗 (
𝜔) − 𝐺)(𝐻𝜉 (

𝑥, 𝜔) − 𝑥) .

(44)

Proof. Theproof is the same as that ofTheorem 3.2 in [21], so
we omit it here.

Lemma 15. For any 𝑥 ∈ 𝐾, one has

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

2

𝜆min

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
. (45)

Proof. For any fixed𝜔 ∈ Ω, 𝜑
𝜉
(𝑥, 𝜔) is the gap function of the

following scalar variational inequality: find a vector 𝑥∗ ∈ 𝐾,
such that

⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗
(𝑥
∗
, 𝜔) , 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (46)
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Hence, 𝜑
𝜉
(𝑥, 𝜔) ≥ 0 for all 𝑥 ∈ 𝐾. From (4) and (34), we have

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐺

≤ ⟨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔) , 𝑥 − 𝐻𝜉 (

𝑥, 𝜔)⟩

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

√𝜆min

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨𝐺
,

(47)

and so

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨𝐺
≤

2

√𝜆min

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
. (48)

It follows from (4) that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

√𝜆min

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝐻

𝜉 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨𝐺

≤

2

𝜆min

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗 (
𝑥, 𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨
.

(49)

This completes the proof.

Now, we obtain the convergence of optimal solutions of
problem (37) in the following theorem.

Theorem 16. Let {𝑥𝑘} be a sequence of optimal solutions of
problem (37). Then, any accumulation point of {𝑥𝑘} is an
optimal solution of problem (35).

Proof. Let 𝑥∗ be an accumulation point of {𝑥𝑘}. Without loss
of generality, we assume that 𝑥𝑘 itself converges to 𝑥∗ as 𝑘
tends to infinity. It is obvious that 𝑥∗ ∈ 𝐾. At first, we will
show that

lim
𝑘→∞

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) = E [𝜓 (𝑥

∗
, 𝜔)] . (50)

From Lemma 12, it suffices to show that

lim
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) −

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0. (51)

It follows from Lemma 13 and the mean-value theorem that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) −

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥
𝑘
, 𝜔
𝑖
) − 𝜓 (𝑥

∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

min
𝜉∈𝐵

𝜑
𝜉
(𝑥
𝑘
, 𝜔
𝑖
) −min
𝜉∈𝐵

𝜑
𝜉
(𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

max
𝜉∈𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝜉
(𝑥
𝑘
, 𝜔
𝑖
) − 𝜑
𝜉
(𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

max
𝜉∈𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑥
𝜑
𝜉
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑥
∗󵄨󵄨
󵄨
󵄨
󵄨
,

(52)

where 𝑦𝑘,𝑖 = 𝜆
𝑘,𝑖
𝑥
𝑘
+ (1 − 𝜆

𝑘,𝑖
)𝑥
∗ with 𝜆

𝑘,𝑖
∈ [0, 1]. Because

lim
𝑘→+∞

𝑥
𝑘
= 𝑥
∗, there exists a constant𝐶 such that |𝑥𝑘| ≤ 𝐶

for each 𝑘. By the definition of 𝑦𝑘,𝑖, we have |𝑦𝑘,𝑖| ≤ 𝐶. Hence,
for any 𝜉 ∈ 𝐵 and 𝜔

𝑖
∈ Ω
𝑘
,

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑥
𝜑
𝜉
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

∑

𝑗=1

𝜉
𝑗
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

− (

𝑝

∑

𝑗=1

𝜉
𝑗
∇
𝑥
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
) − 𝐺)

× (𝐻
𝜉
(𝑦
𝑘,𝑖
, 𝜔
𝑖
) − 𝑦
𝑘,𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝜉
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

+ (

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝜉
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑥
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ |𝐺|)

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝐻
𝜉
(𝑦
𝑘,𝑖
, 𝜔
𝑖
) − 𝑦
𝑘,𝑖󵄨󵄨
󵄨
󵄨
󵄨

≤

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

+

2

𝜆min
(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑥
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ |𝐺|)

×

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨



Journal of Applied Mathematics 7

≤ (

2

𝜆min

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
+

2

𝜆min
|𝐺| + 1)

×

𝑝

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

=

2𝐶

𝜆min
(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

+

𝑝

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
) (

2

𝜆min
|𝐺| + 1)

+

2

𝜆min
(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

(53)

where the second inequality is from Lemma 15. Thus,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) −

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

max
𝜉∈𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑥
𝜑
𝜉
(𝑦
𝑘,𝑖
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑥
∗󵄨󵄨
󵄨
󵄨
󵄨

≤

2𝐶

𝜆min

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑥
∗󵄨󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑥
∗󵄨󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝑝

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

× (

2

𝜆min
|𝐺| + 1)

+

2

𝜆min

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝑥
∗󵄨󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

(

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

× (

𝑝

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
𝑗
(𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
) .

(54)

From (40) and (41), each term in the last inequality above
converges to zero, and so

lim
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) −

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
∗
, 𝜔
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0. (55)

Since

lim
𝑘→∞

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
∗
, 𝜔
𝑖
) = E [𝜓 (𝑥

∗
, 𝜔)] , (56)

(50) is true.
Now, we are in the position to show that 𝑥∗ is a solution

of problem (35).

Since 𝑥𝑘 solves problem (37) for each 𝑘, we have that, for
any 𝑥 ∈ 𝐾,

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥
𝑘
, 𝜔
𝑖
) ≤

1

𝑁
𝑘

∑

𝜔𝑖∈Ω𝑘

𝜓 (𝑥, 𝜔
𝑖
) . (57)

Letting 𝑘 → ∞ above, we get from Lemma 12 and (50) that

E [𝜓 (𝑥
∗
, 𝜔)] ≤ E [𝜓 (𝑥, 𝜔)] , (58)

which means that 𝑥∗ is an optimal solution of problem (35).
This completes the proof.
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