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The sufficient conditions of existence and uniqueness of the solutions for nonlinear stochastic pantograph equations with Markovian
switching and jumps are given. It is proved that Euler-Maruyama scheme for nonlinear stochastic pantograph equations with
Markovian switching and Brownian motion is of convergence with strong order 1/2. For nonlinear stochastic pantograph equations
with Markovian switching and pure jumps, it is best to use the mean-square convergence, and the order of mean-square convergence

is close to 1/2.

1. Introduction

Stochastic modelling has been used with great success in a
variety of application areas, including control theory, biology,
epidemiology, mechanic, and neural networks, economics,
and finance [1-5]. In general, stochastic different equations do
not have explicit solutions. Therefore, approximate schemes
for stochastic differential equations with Markovian switch-
ing and Poisson jumps have been investigated by many
authors [3, 6, 7]. The convergence results of numerical
solutions of stochastic differential equations with Markovian
switching and Poisson jumps under the Lipschitz condition
and the linear growth condition are obtained by using Euler-
Maruyama scheme or semi-implicit Euler scheme. However,
recently, more and more convergence results have been
given under weaker conditions than the Lipschitz condition
and the linear growth condition. Gyéngy and Rasonyi [8]
revealed the convergence rate of Euler approximations for
stochastic differential equations whose diffusion coefficient
is not Lipschitz but only (1/2 + «)-Hoélder continuous for
some « > 0. Mao et al. [9] discussed L' and L? -convergence
of the Euler-Maruyama scheme for stochastic differential

equations with Markovian switching under non-Lipschitz
coeficients. Wu et al. [10] proved existence of the nonnegative
and the strong convergence of the Euler-Maruyama Scheme
for the Cox-Ingersoll-Ross model with delay whose diffusion
coefficient is nonlinear and non-Lipschitz continuous. Bao
and Yuan [11] studied the convergence rate for stochastic
differential delay equations whose coefficients may be highly
nonlinear with respect to the delay variable.

So far, the research of the numerical solutions for stochas-
tic pantograph equations has just begun [12-15]. Fan et al.
[12] gave the strong convergence for stochastic pantograph
equations under the Lipschitz condition and the linear
growth condition. Ronghua et al. [14] proved that the Euler
approximation solution converges to the analytic solution in
probability under weaker conditions, but the convergence
rate has not been given.

In this paper, we will study the convergence rate for
nonlinear stochastic pantograph equations with Markovian
switching and Poisson jump under weaker conditions than
the Lipschitz condition and the linear growth condition. The
rest of the paper is organized as follows. In Section 2, we will
give the existence and uniqueness of the analytic solutions



for Markovian switching and Brownian motion case and also
reveal that the convergence order of Euler-Maruyama scheme
is 1/2. In Section 3, we show that it is best to use the mean-
square convergence for Markovian switching and the pure
jump case and that the rate of mean-square convergence is
close to 1/2.

2. Convergence Rate for Markovian Switching
and Brownian Motion Case

Let (Q, #,P) be a complete probability space with a fil-
tration {#,},., satisfying the usual conditions. Let W(t)
be an m-dimensional Brownian motion defined on the
probability space adapted to the filtration. For integer n >
0, let (R", {-,-),| - |) be the Euclidean space and [A| :=
4/ trace (A*A) the Hilbert-Schmidt norm for a matrix A,
where A” is its transpose. Throughout this paper, C > 0
denotes a generic constant whose values may change from
lines to lines.

Let r(¢), t > 0 be a right-continuous Markov chain on
the probability space taking values in a finite state space S =
{1,2,..., N} with the generator I' = (y;;) v given by

%i;0 +0(8) it i+,
l+r;6+0(8) if i=j
@

where & > 0. Here y;; > 0 is the transition rate from i to j if
i# j while

P{r<t+a>=j|r<r>=i}={

Yii = _Z%j~ 2)
j#i
We assume that the Markov chain r(-) is independent of the
Brownian motion W(:). It is well known that almost every
sample path of 7(-) is a right continuous step function with
finite number of sample jumps in any finite subinterval of
R, := [0, +00).
For fixed T > 0, we consider the stochastic pantograph
equation with Markovian switching of the form

dX (t) =b(X(t),X(qt),r@))dt

+0(X(),X(qt),r@®))dW (t), te€ [ty T],

(3)

with initial data X(0) = &(0), r(0) = 1y, 0 € [qty ), 0 <
ty,0 < g < 1. r(t) is a Markov chain. On the time interval
[to, T, let g < € < min{l, ((T + 1)/T)q}, and we define the
partition

t t t
0<t0<—0€<—g€2<—g€3
g g g
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The integral version of (3) is given by the following:

t
X0 =£O)+ [ b(X©).X(a9).r()ds
o (5)
+ L o (X (s),X(gs),r(s)dW (s).

To guarantee the existence and uniqueness of the solu-
tions of (3) we introduce the following conditions:

(A) b: R"xR" xS — R" and there exists L, > 0 such
that

Ib (x1>)’17j)_b(x2’)’2’j)| ©)
<L |x1 _le +Vy (31> 2) |J’1 _)’2|

forx;, y;, e R",i=1,2,j€S;
(A2) 0: R"XR"xS — R™" and there exists L, > 0 such

that
lo (1> 315 ) = 0 (22, 35, )| -
< Ly |xy =, + Vo (71, 32) |31 =
forx;,y, e R",i=1,2,j€8§,
where V; : R" x R" — R, such that
Vi(ey) <K (1+1x% +|y["), i=12  (8)

for some K; > 0, g; > 1 and arbitrary x, y € R".

Remark 1. From (Al)-(A2), we know that the coefficients of
(3) are much weaker than those of the Lipschitz condition
and the linear growth condition. In many examples, b and
o do not satisfy the Lipschitz condition or the linear growth
condition but can be covered by (Al)-(A2).

Lemma 2. Assume that (Al) and (A2) hold. Then, for any
initial data & € Cbgo([qto,to]; R") andr(0) =1y € S, X(t) isa
unique global strong solution of (3). Moreover, for any p > 2
there exists C > 0 such that

[E( sup |X(t)|p> <C. 9)

ty<t<T

Proof. From (Al) and (A2), b and o are locally Lipschitzian.
So, (3) has a unique local solution [3]. In order to verify that
(3) has a unique global solution on time interval [t,, T], it is
sufficient to show that

[E( sup |X(t)|P) <C, p=2. (10)

tost<T

From (Al), (A2), and (8), we can obtain
by i) < C(1+1xl+ [y]+y"™),

lo Gy i) < € (1+1xl + [y] + |y 2,

x,y € R", (11)

x,y €R"
(12)
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Substituting (11) and (12) into (5) and by the Holder in-
equality and the Burkhold-Davis-Gundy inequality, we have
that for any p > 2 and t € [t,, T]

[E( sup |X(s)|P>
to<s<t

p
g3P‘1{ £(6)
s P
+ [E( sup J b(X(«), X (qa),r () de )
to<s<t|Jt,
s p
+E (sup J o (X (a), X (qa),r(a)) dW (@) >}>
to<s<t|Jt,

SC{H[EL (Ip(x ), X (g5),r )
o (X (), X (g5),7(9))[") ds}

t
SC{l +[EJ IX (s)[Pds
t

0

t
+E J <|X (qs)|P(q‘+l) +]X (qs)|p(q2+l)) ds} :
t

(13)
Let f:=(gq, + 1) V (g, + 1); then
E ( sup | X (s)|P>
to<s<t (14)

t t
SC{1+[EJ |X(s)|Pds+[Ej lX(qs)|pﬁds}.
to t

By virtue of the Gronwall inequality, we get

[E( sup |X(s)|P> SC{1+[EJt |X(qs)|P‘Bds}. (15)
to

to<s<t

Let

0
(16)

. T
l=1,2,..., IOge/qt— +1,
0

where [a] denotes the integer part of real number a; thus, for
B> 1and p > 2, we have

Pir1B < Po Piiog, ,(T/te)+1 = P>

| " (17)
i=12,..., loge/qt—
0

Together with & € C?;O([qto, t,]; R") and € < 1, we obtain
that

[E( sup |X(s)|p1)
to<s<(to/q)e

(to/q)
<C «[1 + [Ej
to

toy
<C {1 +F J |X(s)|P“’3ds}
qty

¢ np
ST .

<C.

In the similar way, combining (15) with the Hoélder
inequality further leads to

[E( sup |X(s)|P2>
to<s<(to/q*)e?

(to/q")" 5
<C 1+[EJ |X (gs)[*"ds
to (19)

(to/q)e
<C {1 + J T EIX @) ds}
)

<C.

Repeating the previous procedures we then get (9). So the
existence and uniqueness have been proved. O

In the following, we define the Euler-Maruyama based
computational method. The method makes use of the follow-
ing lemma.

Lemma 3. Given A > 0, then {r(kA),k = 0,1,2,...} isa
discrete Markov chain with the one-step transition probability
matrix

P(A) = (P;(8)) =€ (20)

Given a fixed step size A > 0 and the one-step transition
probability matrix P(A) in (20), the discrete Markov chain
{r(kA),k =0,1,2,...} can be simulated as follows: let r(0) = i,
and compute a pseudorandom number &, from the uniform
(0, 1) distribution.

Define

( i—1
i, ieS—{N} suchthat) P (A) <&,
j=1

i
r(A) = <D Py, (),
=

B

N, P, (8) <&,

-.
Il
—

(21)



where we set 23:1 Py(g),j(8) = 0 as usual. Having computed
r(0),7(A), ..., r(kA), we can compute r((k + 1)A) by drawing
a uniform (0, 1) pseudo-random number &, and setting

) i-1
i, ieS—{N} such that ZPr(kA),j(A)
=1
r((k+1)A) = 1 < &1 <Q P, (8),
=1
N-1 !
N, Z Pr(kA),j (D) < s
=1

(22)
The procedure can be carried out independently to obtain

more trajectories.
Define the Euler-Maruyama approximation for (3) by

dy (1)) =b (Y (1), Y (qt).7(t)) dt

+o(Y(®),Y (qt),7(0)dW (1), te€ [t,T],

(23)

where Y(¢) = Y(t,), 7(t) = r(t;) fort € [t;,t;,),i = 0,
1,..., [loge/q(T/to)], which

L t L _
th< 2e=t < S =ty << "=t
q q q
, (24)
< 2=t
and Y(0) = £(0), 7(0) = ry, 0 € [qto. t,]-
By using the method of Lemma 2, we obtain
[E( sup |Y (t)|f’> <C, (25)
tyst<T

Ey t)-Y 0] <ca??,  telt,T],  (26)

where A = max{A,A,,...
€ > q.

,ALYi=(e/q—-1)T,A — 0, when
Lemma 4. If (Al) and (A2) hold, then

T p— —
[EJ; b (Y (5),Y (g5),7(s))
~b(Y (), Y (gs) ,7(5)).pd5 < CA,
(27)
T g— —
E L “a (Y (s),Y(gs),r (s))

-0 (}_’ (s),Y (gs),7 (s))“pds < CA.
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Proof. Letn = [loge/q(T/to)] + 1, then
T — —
E Jt |b (Y (s),Y (gs),r (s))

(Y (9,7 (g5),7 (5))|"ds

n—-1 t
-3¢,

(28)

i+1

b (1_/ (s),Y (gs),r (s))

~b(Y (s),Y (gs),r (ti))'Pds.
By (11), we compute

E J-:M |b (i_’ (s),Y (gs),r (s))

-b (? (s),Y (gs),r (ti))lpds

ti+l
t;

<[ (p(T 0.7 @) )

Ho(79.7 (a5).r()]")

X Iy 4 1,y ds

<CE r” (1 +[¥ (s)|P
t

i

+'}_f (qs)|P(q1+1))

<C f E [[E [ (1 AT

i

Iiro) #rieyyds

- p(q,+1)
+|Y(q5)' ! >I{r(s)#r(ti)} |r (tz)]] ds
ti+1 — p
=cj E [[E[<1+|Y(s)|
t

AT @) @) |

X E [Ty pripy Ir () ] ] ds.

(29)
By the Markov property, we have
E [I{r(s)¢r(tk)} | f(tk)]
= ZI{r(tk)=i}P (r(s) #ilr(t) =1)
i€S
= D L= ). (v (s = t) +o (s~ 1)) (30)

= j#i

< (f?i’i (-y:)A+o (A)) Zl{r(tk):i}

i€S

< CA.
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Substituting the above inequality into (29) yields
781 _ _ _ _
E L b (Y (5),Y (g5),7 () = b (Y (5),Y (g5),7 (ti))'Pds

<CA jt [1 T+ [y (qti)lp(qlﬂ)] ds
g (31

< CA.

So, (28) becomes

T
E L) lb (17(5) LY (gs),r (s)) -b (17 (s),Y (gs) ,F(s))|Pds

< CA.
(32)

Similarly, we also obtain that

T
[EL lo (Y (5).Y (g5).7(9)) ~ 0 (Y (), (gs),7(9))["ds

< CA.
(33)

The proof is complete. O

Theorem 5. Under (Al) and (A2), for any p > 2 there exits
C > 0 such that

E ( sup |X () - Y(t)|P> < CAP?; (34)

ty<t<T

that is, the convergence order of Euler-Maruyama scheme (23)
is1/2.

Proof. Let§ > 1 and e > 0; thenfj/a(l/x)dx =In x|§/(s =1Ind,
and there is a continuous nonnegative function v, (x)(x >
0), which is zero outside [¢/8, €], such that

&

J Yse (x)dx =1, x>0. (35
/8

2
Vo= s

Define

x ry
e (x) = J j Yse (2)dzdy, x>0,
0 Jo (36)
Vse (%) := 5 (Ix]),  x e R".
Foranyt € [t,, T], let
Z({t)=X@t)-Y (@),
Z®):=Y®-Y 0, (37)

Z(@t)=(X(®,Y () eR™

5
Using the It6 formula, we have
V5e (Z (t))
= [ (030, Z6.0(x 9. X (a5).r )
-b(Y(9).Y (4s).7(9))) ds
+ % L: trace {(0 (X(5),X(gs),7(s))
-0 (Y (5).Y (45).7(9)))’

(38)

X (Voe)ux (2 (5))
x (a(X (), X (qs),7(s))

-0 (Y (5),Y (q5),7(s)))} ds
t
+ J; ((Vse), (Z(5)),0 (X (s), X (g5),7 ()

~0 (Y (s),Y (gs),7(s))) dW (s)

=L+ L)+ ().

By virtue of condition (Al), the Holder inequality, and
Lemma 4, we deduce that

E < sup |I1 (s)|P)
ty<s<t

< (6= [ (%0 (29, (X 9. X (09,7 9)
~b(Y (5),7 (g5),7(5)))["ds

< (-1 [ (X0 X (09,7 0)
~b(Y (5),7 (gs),7(s))["ds

< car! j E(p(x ). (@), )

p

-b(Y(5),Y (95).(5))|
+ 'b (7 (s),Y (gs),r (s))

-b (l_’ (s),Y (gs) ,7’(5))|‘D> ds

1/2

et [ {ezor (@ (z0)

X ([E|Z (qs)|2p)1/2 + [E|Z (s)|‘D



+(BVZ (Z(g9)))"”

x(E[Z (qs)lZP)l/z} ds + CAP.

(39)

By the Holder inequality and (A2), we have

[E( sup |I2 (s)|P)
to<s<t

< —(t—-t,)' 'E

1
2

¢
x J |trace { (cr (X (s),X(gs),r(s)

0

0 (Y (9),Y(35),7(9))"
X (V&)xx (Z(s))
x (0 (X (s),X (gs),7(s))

-0 (17 (s),Y (gs) ,F(s))) }|Pds
son [ E{I0a). 2@

X "a (X (s),X(gs),r(s)

o (V9.7 (a9),79) [} as

t
<CAP'E j !
t 1 Z ()P

X { ”a (X (s),X(gs),r(s)
o (F(9), ¥ (g5),r &))"
+o(Y (), Y (a5),7(5)

-0 (Y ()Y (gs), 7 (5))"2p}

t

< CAP! j

)

{[E|Z(s)|P

. sip([Ev;P (Z (@) (E|Z (@9)]"") "

+EZ O+ (B (Z(09)) "

X ([E|Z (q5)|4p)1/2} ds + Cs—ip.

(40)
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Making use of the Burkhold-Davis-Gundy inequality
yields

[E< sup |I3 (s)|P>
<™ [ o (x(9,X (9),7(9)
-0 (? (s),Y (gs),7 (5))"pd5

e [ (o x09. X091
0 (V9.7 (49,70’
o (X9, X (a5),7(9) )

-0 (? (s),Y (gs),7 (5)) ”P) ds

t 1/2

< CAP/*! J

to

{[E|Z I+ (EV,? (Z(gs)))

X ([ElZ (qs)|2‘o)1/2

vEZO) + (B (Z (a9)))"

x([E|2 (qs)|2P)l/2} ds + CAP,

(41)
Moreover, by (8), (9), and (25), we have

[EV?P (Z (qs)) v [EV;P (Z (qs)) <C,
(42)
E[Z )] <car”.

Thus, combing (39), and (40) with (41), for any ¢ € [t,, T
and p > 2, we get

[E( sup |Z (s)lp)

to<s<t

<2f! «[sp + [E( sup V2 (Z (s)))]>

to<s<t
APPTT AP

+ = + AP AP
b F54

<C {sp + AP AP 4
pr [ 1 P ' 2p\1/2
+A EIZ (s)/Pds+ | (E|Z(gs)]F) "ds
ty Lo

3 [z .

(43)
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Let e = A'/?, and using the Gronwall inequality, we have

[E( sup |Z(s)|‘D)

to<s<t

t
<cC {A"/z #2027 [ ez (g) "as @)
to

o (f ap\1/2
+A J([E|Z(qs)| ) ds}.
to
Let

T ;
b= <[loge/‘1 to ] v i) palotsa T T
(45)

) T
i=1,2,..., [loge/qg ] +1;
by p > 2, it is easy to see that p; > 2 such that

4pis1 < Pi> Puog, , (T/te)1+1 = P>

. T (46)
i=1,2,..., loge/qt—
0

Noting that Z(s) = 0 for s € [qt,,¢,] and substituting
€ < 1 into (44) yields that

[E< sup IZ(S)IP‘>
to<s<(to/q)e

(to/q)e
<C {Apl/z + AP/ J ’ ([E|Z (qs)lzP‘)l/zds
to

(to/q)e
+A7! j (E|z (qs)l“"l)l/zds}
tO

)

<C {Amﬂ 4 AP/ J
q

(47)

(E1Z (917)ds

to

+A7! I% ([E|Z(s)|4p1)1/2ds}
q

to

< CAP2,

Using (46) and the Holder inequality, further gives that

E( sup 12O
tOSss(tU/qz)ez

<C {APZ/Z + AP2/2_1 J
t

(to/q")é

([EIZ (qs)|2p2)1/2ds

0

(to/q")€
+A7 J ([E]Z (qs)|4p2)1/2ds}
t

7
(to/q)e
<C {AP2/2 + AP J (EI1Z (s)7)PP ds
to
(to/q)e
+A7! I ([E|Z(s)|"")21’2/p1 ds}
to
< CAP?,
(48)

Repeating the previous procedures, the desired result
follows. O

In this section, under general conditions, we reveal
that the convergence order of Euler-Maruyama scheme for
stochastic pantograph equations with Markovian switching
and Brownian motion is 1/2. In Section 3, we will discuss
the convergence rate for stochastic pantograph equation with
Markovian switching and pure jumps.

3. Convergence Rate for Markovian Switching
and Pure Jumps Case

Let B(R) be the Borel o-algebra on R, and A(dx) a o-
finite measure defined on B(R). Let p = (p(t)), t €
D,, be a stationary F-Poisson point process on R with
characteristic measure A(-). Denote by N(dt, du) the Poisson
counting measure associated with p, that is, N(t,U) =
ZSEDP,sst I;(p(s)) forU € B(R). Let N(dt, du) := N(dt, du)-
dtA(du) be the compensated Poisson measure associated
with N(dt,du). In what follows, we further assume that
jU [ul? A(u) < oo for any p > 2.

In this section, we consider the following stochastic
pantograph equation with Markovian switching and pure
jumps on R":

dX (1) =b(X (), X (qt),r (1)) dt

+Jh(X(t),X(qt),u)ﬁ(dt,du), e [ty T]
U
(49)

with initial data X(0) = £(0) and r(0) = r,, 0 € [qt,, t,]-
We assume that

(A) b: R"xR"xS — R" and there exists L, > 0 such
that

Ib (1, y15 ) = b(xz’}’z)j)l

(50)
<L, |x1 - x2| +Vi (51, 2) |J’1 - J’2|

forx,y, e R",i=1,2,j€S;
(A3) h: R"xR" xU — R and there exists L > 0 such
that

|h (xpyl’”) _h(xz’yz»”)|
(51)
< (L, |x1 - le + V3 (315 92) l)’1 - )/zl) [



for x;, ¥, € R",i = 1,2, and u € U, where V; : R" x
R" — R, such that

Vs (% y) < Ky (1+ [x]% + |y]*) (52)

for some K5 > 0, g3 > 1 and arbitrary x, y € R”.

From (A3), the jump coefficient may be also highly
nonlinear. We define the Euler-Maruyama scheme associated
with (49) by

dy (1) =b (Y (1), Y (qt),7 () dt

o (53
+J h(Y(0).7 (qt),u) N (dt, du),
U

where Y(t) = Y(t,), 7(t) = r(t;) fort € [t;t;,), i =

0,1,...,n—1,and Y(0) = £(0),7(0) = 1o, for 0 € [qt,, t,].
In order to state the main theorem, the following two
lemmas are useful.

Lemma 6 (see [16]). Let @ : R, xU — R" and assume that
t
J J E|D (s, u)|PA (du)ds < 00,  t, >0, p=2. (54
t, Ju

Then there exists D(p) > 0 such that

p
E ( sup )
to<s<t
pl2

<D(p) {[E(L: JU 1D (s,4) 2 (du) ds) (55)

J: JU @ (r,u) N (du, ds)

+E J; JU |D (s, u)|P A (du) ds]> .

Lemma 7. Let (A1) and (A3) hold. Then (49) has a unique
global solution (X(t))e(y, - Moreover, for any p > 2 there
exists C > 0 such that

E ( sup |X(t)|P> Vv E ( sup |Y (t)|P) <C, (56)

to<t<T ty<t<T
E[y 1) -Y )] < ca. (57)

Proof. The proof is very similar to that of Lemma 2 and (25).
O

Now we present the main theorem in this section.

Theorem 8. Let (Al) and (A3) hold. For any p > 2 and
arbitrary 0, € (0, 1), there exists C > 0, independent of A,
such that

1/[lo, T 1+a
[E( sup | X (¢) - Y(t)|p> < U0 o8 TN o

ty<t<T
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Proof. The proof is similar to that of Theorem 5. Set

Z@t) =Xt -Y ),
Z@M) =Y (@)=Y (1), (59)

ZM)=(XW®, Y1) eR™, telt,T].

Define

I (8) = b(X (1), X (qt),r () -b(Y (1), (qt), 7 (1)),

L, (tu) =h(X (), X (qt),u) - k(Y (t),Y (qt) u).
(60)

Using the Ité formula and the Taylor expansion we have that
fort € [t,, T]

t
Vse (Z (1)) = J ((Vse), (Z(s)),Ty (5)) ds

ty

t
+ LO J;; {Vse (Z(s) + T, (s, )
= Ve (Z(5))

- <(V8£)x (Z (S)) > 1_‘2 (S> u)>}
x A (du) ds

+ L: JU {Vse (Z(s) + T, (s,u))
~Vse (Z (5))} N (du, ds)

¢ (61)
= J’t <(V5£)x (Z (5)) > I‘1 (5)> ds

" Jt: JU {Ll ((Voe), (Z (5) + 6T, (s, w))

~(Voe), (Z(5)), T, (s,u)) d@}
x A (du)ds
t 1
+ L [ 4], ez + o),
L, (s,u)) d@]» N (du, ds).
By the property of Vy,(x), we deduce that
|Z ()] < e+ Vs, (Z (1))

t t
S8+J T, (s)|d5+2J J |T, (s, )| A (du) ds
ty ty JU
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+ Lt L “01 ((Vse), (Z (s) +6T, (s, 1)),

L, (s, u)) de} N (du, ds),

€ [ty T].
(62)

From (8), (52), and (56), we compute that for any p > 2

[E( sup V¥ (Z(qs))) VE ( sup V/ (Z(qs))) <C. (63)

to<t<T to<t<T

Applying Lemma 6, Lemma 4, (57), and the Holder
inequality, we obtain that

[E( sup |Z(s)|P>
to<s<t

<2F! {8P+[E(sup Véi (Z(s)))}

<C {ep +| E|r, (5)|Fds

Jj
|

J EIT, (s, 0)[PA (du) ds
U

(Lt J It (5,10) A (du) ds> P/z}
{ +J E[L, (5)[ds
L EIn (504 (dw) ds}
<clers j E(JX (-7 ()
+V, (Z(a9)) |X (as) - ¥ (qs)])"ds
+ j Eb(T (). 7 (g5),7(9)
b(Y(5),Y (g5),7()| ds
+ f E(X(9)-Y ()
WV, (Z(09) X (@) ¥ (@9)) 5]
<C {ef’ +A+ f {[ElZ(s)lp
+E(V!(Z(g9)) 12 @9))
+E(V (Z(@9)|Z @)

9
+E (V] (Z(a9)) 12 (a9)I)
+E <V3P (Z (g9)) 'Z (qs)|P) } ds}
<C {sp +A+ J: E|Z (s)|Pds + f E|Z (qs)|pds} .
(64)

Together with the Gronwall inequality and taking ¢ =
AYP e get

t
[E( sup |Z(s)|P> <C {A + J [E|Z(qs)|pds} . (65)

ty<s<t
For 6 € (0,1) and any « € (0, 1), let

pi 1= p (1 + 6) B (T/+1-D01+0)

. T (66)
i=12,..., [loge/qg] + 1.
It is easy to see that
(1 + 6) Piv1 < Pi p[loge/q (T/te)]+ =p
@
i=1,2,..., — 1.
i [ 08/ i ]
Noting that Z(t) = Z(t)=0fort € [gty» tol, from (65) we
obtain

to
E sup |Z(s)) | <C {A + J E|Z(s)|P1ds} < CA.
to<s<(to/q)e qto
(68)

Then, together with (67) and the Hoélder inequality, it
further gives that

E < sup |Z (5)|P2>
tOSSS(tO/qZ) €?

(to/q)e 9
< c{mj (B1Z (5) P+ )ds}
)

(to/q)
SC{A+J
t

< CAPZ/pl )

(69)
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Similarly,

E(  sup  1Z()I”

tOSSS(tO/q3)e3

(to/q))é 0
<CiA+ J (E|Z(S)|P3(1+9))l/(l+ )dS
to (70)

(to/q*)é*
< c{mj (E|Z (s)|P2)P'2 ds}
to

< CAPs/Pl_

Repeating the previous procedures, we have

1/[loge /. (T/tg)1(1+a)
[E( sup IZ(s)|p) < cAUHO T . (71)

to<s<T

The proof is complete. O
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