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Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability.
In the present paper, a model for discrete jointed network is established using contact-freemeasurement technique and geometrical
statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented
and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province,
China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of
the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the
mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was
numerically studied.The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on
the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the
failure mode of the surrounding rock mass around roadways.

1. Introduction

Underground mining has been considered a high-risk activ-
ity worldwide. Violent roof failure or rock burst induced
by mining has always been a serious threat to the safety
and efficiency of mines in China. Accurate and detailed
characterization for rockmasses can control stable excavation
spans, support requirements, cavability, and subsidence char-
acteristics, and thus influence the design of mining layouts
and safety of mines. Rock mass is a geologic body composing
of the discontinuities which have a critical influence on
deformational behavior of blocky rock systems [1]. The
mechanical behavior of this material depends principally on
the state of intact rock whose mechanical properties could
be determined by laboratory tests and existing discontinuities
containing bedding planes, faults, joints, and other structural
features. The distributions and strength of these discontinu-
ities are both the key influencing factors for characterizing the
discontinuous and anisotropic materials. Amadei [2] pointed
out the importance of anisotropy of jointed rock mass and
discussed the interaction existing between rock anisotropy

and rock stress. Because of computational complexity and the
difficulty of determining the necessary elastic constants, it
is usual for only the simplest form of anisotropy, transverse
isotropy, to be used in design analysis [3]. The key work is to
study the principal direction of elasticity or permeability and
then assume the jointed rock mass as transversely isotropic
geomaterial.

Extensive efforts have been made to investigate the
mechanical response of transversely anisotropic rock mate-
rial. Zhang and Sanderson [4] used the fractal dimension
to describe the connectivity and compactness of fracture
network and found that the deformability and the overall
permeability of fractured rock masses increase greatly with
increasing fracture density. By using the artificial transversely
isotropic rock blocks, the mechanical properties with differ-
ent dip angles were obtained by Tien and Tsao [5]. Brosch
et al. [6] evaluated the fabric-dependent anisotropy of a
particular gneiss by studying the strength values and elastic
parameters along different directions. Exadaktylos andKaklis
[7] presented the explicit representations of stresses and
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strains at any point of the anisotropic circular disc com-
pressed diametrically. The stress concentration in uniaxial
compression for a plane strain model was investigated, and a
formulation of failure criteria for elastic-damage and elastic-
plastic anisotropic geomaterials is formed by Exadaktylos [8].
Amethodology to determine the equivalent elastic properties
of fractured rockmasses was established by explicit represen-
tations of stochastic fracture systems [9], and the conditions
for the application of the equivalent continuum approach
for representing mechanical behavior of the fractured rock
masses were investigated. Such anisotropy has an effect on
the interpretation of stress distributions. Amadei’s results
indicate that an anisotropy ratio (damaged elastic modulus
to intact elastic modulus) of between 1.14 and 1.33 will have
a definite effect on the interpreted in situ state of stress
[10]. Hakala et al. [11] concluded that the anisotropy ratio of
Finland rock specimens is about 1.4 and suggested to be taken
into account in the interpretation of stress measurement
results.

Moreover, in rock engineering like mining and tunnel
engineering, interactions between in situ stress and seepage
pressure of groundwater have an important role. Groundwa-
ter under pressure in the joints defining rock blocks reduces
the normal effective stress between the rock surfaces and
therefore reduces the potential shear resistance which can be
mobilized by friction. Since rock behaviormay be determined
by its geohydrological environment, it may be essential
in some cases to maintain close control of groundwater
conditions in the mine area. Therefore, accurate description
of joints is an important topic for estimating and evaluating
the deformability and seepage properties of rock masses.

Many researchers have done a lot of studies on the
seepage and anisotropic mechanical behaviors of the jointed
rock mass. Using homogeneous samples like granite or
basalt, Witherspoon et al. [12] investigated and defined
the permeability by fracture aperture in a closed fracture.
Based on geometrical statistics, Oda [13] has studied and
determined the crack tensor of moderately jointed granite
by treating statistically the crack orientation data via a
stereographic projection. Using Oda’s method, Sun and Zhao
[14] determined the anisotropy in permeability using the
fracture orientation and the in situ stress information from
the field survey. For fractured rock system, attempts have
been made by Jing et al. [15–18] and Bao et al. [19] to
investigate the permeability. Using UDEC code, Jing et al.
studied the permeability of discrete fracture network, such
as the existence of REV in [15], relations between fracture
length and aperture in [16] or stress effect on permeability in
[17], or solute transport in [18]. Bao et al. [19] have discussed
the mesh effect on effective permeability for a fractured
system using the upscaled permeability field. It would help
the workers to spend less computational effort and memory
requirement to investigate effective permeability. The key for
determining deformationmodulus and hydraulic parameters
is to study representative elementary volume (REV) and
scale effects of fractured rock mass [9, 20–22]. However, the
difficulty of testing jointed rock specimens, at scales sufficient
to represent the equivalent continuum, indicated that it is
necessary to postulate and verify methods of synthesizing

rock mass properties from those of the constituent elements
like intact rock and fractures.

Although great progress has been made, it is difficult
to study the anisotropic deformation of large-scale rock
mass, ground water permeability change, and interaction
between stress and seepage due to the geological complexity
of discontinuities. Qiao et al. [23] have pointed out that the
rock mass which is not highly fractured and has only few sets
of joint system usually behaves anisotropically. However, the
mechanical properties directionality of highly jointed rock
mass is usually ignored. In particular, since the limitation
of mesh generation, the numerical method can hardly deal
with the highly jointed specimens.The discontinuity like fault
could be treated as specific boundary. An effective solution
should be found to characterize the influence of joints on the
rock mass.

In this paper, based on equivalent continuum theory and
theoretical analysis, a mathematical model for anisotropic
property of seepage and elasticity of jointed rock mass is
described. A permeability analysis code is developed to
evaluate the anisotropic permeability for DFN model based
on VC++ 6.0 in this paper. The DFN model could be
analyzed to evaluate the REV size and anisotropic property
of permeability, which would provide important evidence
for the finite element model. The outline is as follows. First,
3D images involving detailed geometrical properties of rock
mass, such as trace lengths, outcrop areas, joint orientations,
and joint spacing, were captured using ShapMetriX3D sys-
tem. According to the statistical parameters for each set of
discontinuities, fracture network is generated using Monte
Carlo method, and jointed rock samples in different sections
could be captured. Next, permeability tensors and elasticity
tensors of rock mass of the sample are calculated by discrete
medium seepage method and geometrical damage theory,
respectively. Finally, using the finite element method (FEM),
an anisotropic mechanical model for rock mass is built. An
engineering practice of roadway stability at theHeishanMetal
Mine, in Hebei Iron and Steel Group Mining Company, is
described. Then the stress and seepage fields surrounding
the roadway were numerically simulated. On the basis of
the modeled results, the influences of joint planes on stress,
seepage, and damage zone were analyzed. It is expected
throughout this study to gain an insight into the influences
of discontinuities on the mechanical behavior of rock mass
and offer some scientific evidence for the design of mining
layouts or support requirements.

2. Generation of a Fracture System Model by
ShapeMetriX3D

Traditional methods for rock mass structural parameters in
mining engineering applications include scanline surveying
[24] and drilling core method [25]. The process generally
requires physical contact with rock mass exposure and there-
fore is hazardous. Additionally, takingmanual measurements
is time consuming and prone to errors due to sampling diffi-
culties or instrument errors. ShapeMetriX3D is a tool for the
geological and geotechnical data collection and assessment
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Figure 1: Imaging principle of the 3D surface measurement.

for rock masses [26]. The equipment is used for the metric
acquisition of rock and terrain surfaces and for the contact-
free measurement of geological/geotechnical parameters by
metric 3D images. The images are captured using Nikon
D80 camera with 22.3 megapixel. As shown in Figure 1, two
images are acquired to reproduce the 3D rock mass face.
Details information related to the measurements is reported
in [27] by Gaich et al. The measurements could be taken at
any required number and extent, even in regions that are
not accessible. During measuring process, two digital images
taken by a calibrated camera serve for a 3D reconstruction
of the rock face geometry which is represented on the com-
puter by a photorealistic spatial characterization as shown
in Figure 1. From it, measurements are taken by marking
visible rock mass features, such as spatial orientations of joint
surfaces and traces, as well as areas, lengths, or positions.
Finally, the probability statistical models of discontinuities
are established. It is generally applied in the typical situations
such as long rock faces at small height and rock slopes
with complex geometries [28]. Almost any rock face can
be reconstructed at its optimum resolution by using this
equipment and its matching software. By using this system
we can increase working safety, reduce mapping time, and
improve data quality.

In order to accurately represent rock discontinuities,
ShapeMetriX3D (3GSM) in this paper is used for the metric
acquisition of rock mass exposure and for the contact-free
measurement of geological parameters by metric 3D images.
Stereoscopic photogrammetry deals with themeasurement of
three-dimensional information from two images showing the
same object or surface but taken from two different angles,
just as shown in Figure 1.

From the determined orientation between the two images
and a pair of corresponding image points 𝑃

1
(𝑢, V) and

𝑃
2
(𝑢, V), imaging rays (colored in red) are reconstructed

E
S

H
Profile I-I

Figure 2: Geological mapping and geometric measurements of
stereoscopic restructuring model.

whose intersection leads to a 3D surface point 𝑃 (𝑋, 𝑌, 𝑍).
By automatic identification of corresponding points within
the image pair, the result of the acquisition is a metric 3D
image that covers the geometry of the rock exposure. Once
the image of a rock wall is ready, geometric measurements
can be taken as shown in Figure 2. There are a total of three
groups of discontinuities in this bench face.

Figure 3 is facilitated to show the 3-dimensional distri-
bution of the trace along the section of Profile I-I from the
stereoscopic model shown in Figure 2. The height of this
rock face is approximately 5.0m with a distance of 2.0m
perpendicular to the trace. The measured orientation in a
hemispherical plot could also be captured as in Figure 4(a).
Figure 4(b) shows the results of the distribution of joints.

The generated 3D rock face is about 5m × 5mwith a high
resolution enough to distinguish the fractures. According to



4 Journal of Applied Mathematics

0.2−1.8

2

1

0

−1

−2

−3

−4

Distance (m)

H
ei

gh
t (

m
)

Figure 3: Length and sketch of Profile I-I by stereoscopic model.

the survey results, the geologic data like joint density, dip
angle, trace length, and spacing can be acquired. Baghbanan
and Jing [16] generated the DFN models whose orientations
of fracture sets followed the Fisher distribution. In this
paper, four different probability statistical models are used
to generate the DFN models. The dip angle, dip direction,
trace length, and spacing all follow one particular probability
statistical model. Table 1 shows the basic information about
the fracture system parameters. Type I of the probability
statistical model in Table 1 stands for negative exponential
distribution, Type II for normal distribution, Type III for
logarithmic normal distribution, and Type IV for uniform
distribution. Based on the probability models, the particular
fracture network could be generated using Monte Carlo
method [29, 30].

3. Constitutive Relation of
Anisotropic Rock Mass

Due to the existence of joints and cracks, the mechanical
properties (Young’s modulus, Poisson’s ratio, strength, etc.)
of rock masses are generally heterogeneous and anisotropic.
Three preconditions should be confirmed in this section:
(i) anisotropy of rock mass is mainly caused by IV or V-
class structure or rock masses containing a large number of
discontinuities; (ii) rock masses according to (i) could be
treated as homogeneous and anisotropic elastic material; (iii)
seepage tensor and damage tensor of rock mass with multiset
of joints could be captured by the scale of representative
elementary volume (REV).

3.1. Stress Analysis. Elasticity represents the most common
constitutive behavior of engineering materials, including
many rocks, and it forms a useful basis for the description of
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Figure 4: Stereographic plot and the distribution of total three sets
of joints.

more complex behavior.Themost general statement of linear
elastic constitutive behavior is a generalized form of Hooke’
Law, in which any strain component is a linear function of all
the stress components; that is,

𝜀
𝑖𝑗
= [S] 𝜎𝑖𝑗, (1)

where [S] is the flexibility matrix, 𝜀
𝑖𝑗
is the strain, and 𝜎

𝑖𝑗
is

the stress.
Many underground excavation design analyses involving

openings where the length to cross-section dimension ratio
is high are facilitated considerably by the relative simplicity
of the excavation geometry. In this section, the roadway is
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Table 1: Characteristics of 3 sets of discontinuities for the slope exposure.

Set Density
(m−1)

Fracture characteristics
Dip direction (∘) Dip angle (∘) Trace length (m) Spacing (m)

Type Mean
value

Standard
deviation Type Mean

value
Standard
deviation Type Mean

value
Standard
deviation Type Mean

value
Standard
deviation

1# 1.2 II 90.73 13.88 III 71.24 15.05 II 0.86 0.23 IV 0.83 0.75
2# 1.3 II 289.96 22.89 IV 59.85 8.4 II 0.89 0.28 IV 0.76 0.73
3# 3.3 III 189.05 14.55 III 55.29 13.35 II 0.85 0.25 IV 0.3 0.31

Z

X

Y

O

Figure 5: A diagrammatic sketch for underground excavation.

uniform cross section along the length and could be properly
analyzed by assuming that the stress distribution is the same
in all planes perpendicular to the long axis of the excavation
(Figure 5). Thus, this problem could be analyzed in terms of
plane geometry.

The state of stress at any point can be defined in terms
of the plane components of stress (𝜎

11
, 𝜎
22
, and 𝜎

12
) and

the components (𝜎
33
, 𝜎
23
, and 𝜎

31
). In this research, the 𝑍

direction is assumed to be a principal axis and the antiplane

shear stress components would vanish. The plane geometric
problem could then be analyzed in terms of the plane
components of stress since the 𝜎

33
component is frequently

neglected. Equation (1), in this case, may be recast in the form
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where [S] is the flexibility matrix of the material under plane
strain conditions. The inverse matrix [S]−1 (or [E]) could be
expressed in the form
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where Δ is expressed as follows:

Δ = −𝐸
1
𝐸
3
+ 𝐸
1
𝐸
3
V2
21

+ 𝐸
2

1
V2
31

+ 𝐸
2

1
V2
31

+ 2𝐸
2

1
V
21
V2
31
. (4)

The moduli 𝐸
1
and 𝐸

3
and Poisson’s ratios V

31
and

V
12

could be provided by uniaxial strength compression or
tension in 1 (or 2) and 3 directions.

The mechanical tests including laboratory and in situ
tests for rock masses in large scale can hardly capture

the elastic properties directly. Hoek-Brown criterion [31–
33] could calculate the mechanical properties of weak rocks
masses by introducing the Geological Strength Index (GSI).
Nevertheless, the anisotropic properties cannot be captured
using this criterion, and thus the method for analyzing
anisotropy of jointed rock mass needs a further study.

In this paper, the original joint damage in rock mass
is considered as macro damage field. In elastic damage
mechanics, the elastic modulus of the jointed material may
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Figure 6: Fracture network schematic diagram in seepage area.
MN andM󸀠N󸀠 are the constant head boundaries with the hydraulic
head of ℎ
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and ℎ

𝑏2
respectively; MM󸀠 and NN󸀠 are the impervious

boundaries with flow 𝑉 of zero.

degrade and the Young’s modulus of the damaged element is
defined as follows [34]:

𝐸 = 𝐸
0
(1 − 𝐷) , (5)

where D represents the damage variable and E and 𝐸
0
are

the elastic moduli of the damaged and intact rock samples,
respectively. In this equation, all parameters are scalar.

With the geometric information of the fracture sample,
the damage tensor [35] could be defined as

𝐷
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) , (𝑖, 𝑗 = 1, 2, 3) , (6)

where N is the number of joints, l is the minimum spacing
between joints, V is the volume of rock mass, n(𝑘) is the
normal vector of the kth joint, and a(𝑘) is the trace length of
the kth joint (for 2 dimensions).

According to the principal of energy equivalence [36], the
flexibility matrix for the jointed rock sample can be obtained
as
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where 𝑆
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is the flexibilitymatrix for intact rock;𝐷

𝑖
and𝐷

𝑗
are

the principal damage values in 𝑖 and 𝑗 directions, respectively.
For plane strain geometric problem, the constitutive relation,
where the coordinates and principal damage have the same
direction, could be expressed as follows:
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where 𝐸
0
is the Young’s modulus of intact rock and V

0
is

Poisson’s ratio for intact rock.
The parameters could be easily captured by laboratory

tests. Equation (7) gives the principal damage values 𝐷
1
and

𝐷
2
. Based on geometrical damage mechanics, all elements

in this matrix could be obtained by the method mentioned
previously, and the anisotropic constitutive relation of jointed
rock sample could finally be confirmed.

3.2. Seepage Analysis. The seepage parameters of rock mass
are quantized form of permeability and also are the basis
to solve seepage field of equivalent continuous medium.
Based on the attribute of fractured rock mass and by taking
engineering design into account, fractured rock mass is often
considered to be anisotropic continuous medium. In the
fracture network shown in Figure 6, a total number of𝑁 cross

points or water heads and 𝑀 line elements are contained.
Parameters can be obtained with the model such as water
head, the related line elements, equivalent mechanical fissure
width, seepage coefficient, and so on. The corresponding
coordinates of each point could be acquired. For a fluid flow
analysis based on the law of mass conservation, the fluid
equations on a certain water head take the form [37]

(

𝑁
󸀠

∑

𝑗=1

𝑞
𝑗
)

𝑖

+ 𝑄
𝑖
= 0, (𝑖 = 1, 2, . . . , 𝑁) , (9)

where 𝑞
𝑗
is the quantity of flow from line element 𝑗 to water

head 𝑖, 𝑁
󸀠 is the total number of line elements intersect at i,

and𝑄
𝑖
is the fluid source term. In the joint network, each line

element would be assigned a length 𝑙
𝑗
and fissure width 𝑏

𝑗
to

investigate the permeability.
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According to the hydraulic theory [38], for a single
joint seepage, the flow quantity 𝑞

𝑗
of line element 𝑗 can be

expressed as

𝑞
𝑗
=

𝜌𝑏
3

𝑗

12 𝜇
⋅
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𝑙
𝑗

, (10)

whereΔℎ
𝑗
is the hydraulic gradient, 𝜇 is the coefficient of flow

viscosity, 𝜌 is the density of water, and 𝑏
𝑗
is the fissure width

of joint. On the basis of (9) and (10), the governing equations
can be represented as (11) for seepage in fracture network
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Based on the discrete fracture network method [39], an
equivalent continuummodel for seepage has been established
[28, 40, 41].The hydraulic conductivity can be acquired based
on Darcy’s Law on the basis of water quantity in the network
(see (12)).

Boundary conditions in the model shown in Figure 6 are
as follows:

(a) MN andM󸀠N󸀠 as the constant head boundary;
(b) MM󸀠 and NN󸀠 as the impervious boundary with flow

𝑉 of 0.

Then the hydraulic conductivity can be defined as

𝐾 =
Δ𝑞 ⋅ 𝑀

󸀠
𝑀

Δ𝐻 ⋅ 𝑀𝑁
, (12)

where Δ𝑞 is the total quantity of water in the model region
(m2⋅s−1), Δ𝐻 is the water pressure difference between inflow
and outflow boundaries (m), K is the equivalent hydraulic
conductivity coefficient in the MM󸀠 direction (m⋅s−1), and
MN andM󸀠M are the side lengths of the region (m).

Based on Biot equations [42], the steady flow model is
given by

𝐾
𝑖𝑗
∇
2
𝑝 = 0, (13)

where𝐾
𝑖𝑗
is the hydraulic conductivity and p is the hydraulic

pressure. For plane problems, the dominating equation of
seepage flow is as follows in (14). The direction of joint
planes is considered to be the principal direction of hydraulic
conductivity

𝐾
𝑖𝑗
= [
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11
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21

𝐾
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] . (14)

3.3. Coupling Mechanism of Seepage and Stress

3.3.1. Seepage Inducted by Stress. The coupling action
between seepage and stress makes the failure mechanism
of rock complex. The investigations on this problem have
pervasive theoretical meaning and practical value. The
principal directions associated with the symmetric crack
tensor are coaxial with those of the permeability tensor.

Joint plane 
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K22
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Figure 7:The relationship between planes of joints and the principal
stress direction.

The first invariant of the crack tensor is proportional to the
mean permeability, while the deviatoric part is related to
the anisotropic permeability [13]. Generally, the change of
stress which is perpendicular to the joints plane is the main
factor leading to the increase or decrease of the ground water
permeability. In the numerical model, seepage is coupled
to stress describing the permeability change induced by
the change of the stress field. The coupling function can be
described as follows as given by Louis [43]:

𝐾
𝑓
= 𝐾
0
𝑒
−𝛽𝜎

, (15)

where𝐾
𝑓
is the current groundwater hydraulic conductivity,

𝐾
0
is the initial hydraulic conductivity, 𝜎 is the stress perpen-

dicular to the joints plane, and 𝛽 is the coupling parameter
(stress sensitive factor to be measured by experiment) that
reflects the influence of stress. The larger 𝛽 is, the greater the
range of stress induced the permeability [44].

3.3.2. Stress Inducted by Seepage. On the basis of generalized
Terzaghi’s effective stress principle [45], the stress equilibrium
equation could be expressed as follows for the water-bearing
jointed specimen:

𝜎
𝑖𝑗
= 𝐸
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
− 𝛼
𝑖𝑗
𝑃𝛿
𝑖𝑗
, (16)

where 𝜎
𝑖𝑗
is the total stress tensor, 𝐸

𝑖𝑗𝑘𝑙
is the elastic tensor of

the solid phase, 𝜀
𝑘𝑙
is the strain tensor,𝛼

𝑖𝑗
is a positive constant

which is equal to 1 when individual grains are much more
incompressible than the grain skeleton, P is the hydraulic
pressure, and 𝛿

𝑖𝑗
is the Kronecker delta function.

3.4. Coordinate Transformation. Generally, planes of joints
are inclined at an angle to the major principal stress direction
as shown in Figure 7. In establishing these equations, the X,
Y, and 1, 3 axes are taken to have the same Z (2) axis, and the
angel 𝜃 is measured from the 𝑥 to the 1 axis.
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Figure 8: The rock mass exposure of northern slope in Heishan open pit mine.

Considering the hydraulic pressure needs no coordinate
transformation, and (16) will be expressed as

[

[

𝜎
11

𝜎
22

𝜏
12

]

]

= [T
𝜎
]
−1

[E] [T𝜀] [
[

𝜀
11

𝜀
22

𝛾
12

]

]

− 𝛼
𝑖𝑗
[

[

𝑃

𝑃

0

]

]

𝛿
𝑖𝑗
, (17)

where [T
𝜎
]
−1 is the reverse matrix for stress coordinates

transformation and [T
𝜀
] is the strain coordinates transforma-

tion matrix, and they can be expressed as follows:

[T
𝜎
]
−1

= [

[

cos2𝜃 sin2𝜃 −2 cos 𝜃 sin 𝜃

sin2𝜃 cos2𝜃 2 sin 𝜃 cos 𝜃
sin 𝜃 cos 𝜃 − sin 𝜃 cos 𝜃 cos2𝜃 − sin2𝜃

]

]

,

[T
𝜀
] = [

[

cos2𝜃 sin2𝜃 cos 𝜃 sin 𝜃

sin2𝜃 cos2𝜃 − sin 𝜃 cos 𝜃
−2 sin 𝜃 cos 𝜃 2 sin 𝜃 cos 𝜃 cos2𝜃 − sin2𝜃

]

]

.

(18)

Similarly, the coordinate transformation form can be
expressed as

𝐾
11

=
𝐾
󸀠

11
+ 𝐾
󸀠

22

2
+

𝐾
󸀠

11
− 𝐾
󸀠

22

2
cos 2𝜃,

𝐾
12

= 𝐾
21

= −
𝐾
󸀠

11
− 𝐾
󸀠

22

2
sin 2𝜃,

𝐾
22

=
𝐾
󸀠

11
+ 𝐾
󸀠

22

2
−

𝐾
󸀠

11
− 𝐾
󸀠

22

2
cos 2𝜃,

(19)

where 𝐾
󸀠

11
is the hydraulic conductivity coefficient along the

distribution direction of joint planes, 𝐾󸀠
22

is perpendicular
to the distribution direction, and 𝜃 is measured from the
coordinate system 𝑥 to the optimal direction of permeability.

4. A Case Study

4.1. Description of the Area under Study. Themodel described
above is applied to evaluate the seepage field and stress field of
jointed rock roadway in the Heishan Metal Mine (Figure 8).
Themine is located inChengde city,Hebei province, in north-
ern China. HeishanMetalMine has transferred fromopen pit
mining to underground mining since 2009. The deformation
and stability of the roadways for mining the hanging-wall ore
become the key technique issue. The elevation of the crest of
the slope is 920m. The roadway in the research is in 674m
level of the high northern slope. The rock mass is mainly
composed of anorthosite and norite in the northern slope
area.The anisotropic properties of seepage and stress fieldwill
be discussed in detail.

4.2. Capture of Joint Network. Depending on the 3D contact-
free measuring system, discontinuities on the exposure could
be easily captured. The collection process for the geology
information of northern slope in Heishan Metal Mine has
been discussed previously. A 3D fracture network of rock
mass could be obtained using the Monte Carlo method by
analyzing the statistical parameters (Figure 9(a)). Finally, the
fracture network is generated and expanded to the roadway,
and the fracture network perpendicular to the center line of
roadway, could be easily captured (Figure 9(b)).

4.3. Permeability Investigation. According to the symmetry of
geometry, the method for solving the hydraulic conductivity
coefficient in different directions of fracture network is
presented to save computational time [41].

Rotated every 15∘ clockwise and exerted certain water
pressure on the boundary shown in Figure 10, the hydraulic
conductivity coefficient of verticaldirection 𝐾

[90]
, 75∘ direc-

tion 𝐾
[75]

, 60∘ direction 𝐾
[60]

, 45∘ direction 𝐾
[45]

, 30∘ direc-
tion 𝐾

[30]
, and 15∘ direction 𝐾

[15]
could be acquired, respec-

tively. Then the permeability tensors by fracture parameters
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(a) (b)

Figure 9: Joint network based on the statistical data usingMonte Carlo method. (a) 3D joint network in rock mass; (b) profile with 10m edge
length perpendicular to the roadway.
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Figure 10: Generated fracture network by Monte Carlo method (side length of internal squares is 1m, 4m, 7m, 8m, and 9m, resp.).

can be determined. By enlarging the geometric size of
the fracture network, the permeability scale effect can be
investigated finally.

Based on the algorithm in Section 3.2, the size effect of
rock mass in different sizes of statistics window is studied.
The region of fracture network is enlarged from 1m to 9m
with different step lengths until the equivalent parameters
in different directions achieve a stable value. With a fixed
center of this region, the equivalent permeability is calculated
rotating every 15∘ clockwise as shown in Figure 11.

The variation of hydraulic conductivity coefficients with
the increase of direction angles and sample size is depicted
in Figure 12. The main direction angle is approximated to
15∘. It can be seen that the anisotropy of seepage property
is apparent with the distribution of joints. Seven hydraulic
conductivity coefficients of different sizes (1m, 3m, 4m, 5m,
6m, 8m, and 9m) are chosen to be compared with those
of the sample whose size is 7m. The coefficient deviation
between one particular size and 7m would be found and

presented in Figure 13. Values of permeability decrease with
the increase of sample size and tend to stabilize when the
sample size comes to 7m.

The principal values of permeability in maximum and
minimum in a rock samplewith joint plane angle being 15∘ are
listed in Table 2. The principal permeability values decrease
from 4.23 (×10−6m/s) to 2.66 (×10−6m/s) as the sample
size increases from 1m to 9m along the main direction.
According to the results discussed previously, the REV is
7m × 7m for this fracture sample, and the related hydraulic
conductivity is 2.77 (×10−6m/s) for maximum and 0.87
(×10−6m/s) for minimum. The ratio for the maximum to
minimum hydraulic conductivity value is 3.18.

4.4. Damage Tensor. Similar to the algorithm in Section 3.1,
the size effect of sample damage in different sizes of statistics
window is studied.The region of fracture network is enlarged
from 3m to 12m with different step lengths until the damage
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Figure 11: Fracture network in the study area with edge length of 7m.

values in different directions stabilize. With a fixed center
of this region, the principal damage values are calculated
rotating every 15∘ clockwise. Figure 14 shows the sample dam-
age in different sizes and directions. Similar to the deviation
analysis of permeability, the damage values also fluctuatingly
tend to stability according to the deviation of the damage
tensor in different sizes and directions shown in Figure 15.
In this study, the size of representative elementary volume
is also 7m in length, and the initial damage tensor of REV
of jointed rock mass could also be obtained. The principal
damage values 𝐷

1
and 𝐷

2
for fracture sample are 0.17 for

minimumand 0.50 formaximum, and the principal direction
angle 𝜃 of damage tensor is approximately 105∘ which is
perpendicular to the direction of principal permeability.
The related rock parameters, including undamaged Young’s
modulus 𝐸

0
, Poisson’s ratio V

0
, and uniaxial tensile strength,

et al, are listed in Table 3. It should be noted that the elasticity
and strength of rock could be determined in the laboratory
tests. Finally, the constitutive relation can be found according
to (8). Equations (17) and (19) can be introduced into the FEM
simulations.

4.5. Geometry and Boundary Conditions. A numerical model
of Heishan Metal Mine is established in order to simulate
the mechanism of stress and seepage in jointed rock mass,

Table 2: Principal values 𝐾
[15]

of fracture hydraulic conductivity at
different sizes.

Sample size (m) 1 4 7 8 9
Principal value of
hydraulic conductivity
(×10−6 m/s)

Maximum 4.23 3.28 2.77 2.69 2.66
Minimum 0.80 0.97 0.87 0.88 0.85
Ratio 5.29 3.38 3.18 3.06 3.13

Table 3: Parameters used in the model to validate the model in
simulating the anisotropic properties of stress and seepage.

Material parameters Values
Undamaged Young’s modulus 𝐸

0
(GPa) 65

Undamaged Poisson’s ratio V
0

0.23
Density (kg/m−3) 2700
Principal direction angle of joint plane 𝜃 (∘) 15
Coupling parameter 𝛽 (Pa−1) 0.5

taking into account the anisotropic property, as shown in
Figure 16. Table 3 shows the basic mechanical properties.
Parameters listed in Table 4 are the hydraulic conductivity
coefficients 𝐾

𝑖𝑗
, damage tensor 𝐷

𝑖𝑖
and Young’s modulus 𝐸

𝑖𝑗
,

and shear modulus 𝐺
𝑖𝑗
of the fracture sample along joint
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Figure 12: Permeability tensor of the rock mass (unit: m/s).
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Figure 13: Deviation of the permeability values to that of 7m
sample under different directions of samples in different sizes.

Table 4: The hydraulic conductivity coefficients𝐾
𝑖𝑗
, damage tensor

𝐷
𝑖𝑖
and Young’s modulus 𝐸

𝑖𝑗
, and shear modulus 𝐺

𝑖𝑗
of the fracture

sample along joint plane direction.

Subscripts 𝑖𝑗 𝐾
𝑖𝑗
(×10−6m/s) 𝐷

𝑖𝑖
𝐸
𝑖𝑗
(GPa) 𝐺

𝑖𝑗
(GPa)

11 2.77 0.50 18.83 —
22 0.87 0.17 51.91 —
12 — — 9.34 10.97
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Figure 14: Damage tensor (×10−1).
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Figure 15: Deviation of the damage tensor to 7m sample under
different directions of samples in different sizes.

plane direction used in the finite element code. The model
contains two roadways with a 3.5m× 3m three-centered arch
section within a 50m × 50m domain. The bottom boundary
of the domain is fixed in all directions, and the left and
the right boundaries are fixed in the horizontal direction.
In this regard, a pressure (𝜎

𝑠
) of 5.97MPa is applied on

the top boundary of the model to represent the 221m deep
overburden strata. Under the steady-state groundwater flow
condition, a hydrostatic pressure, 𝑝

𝑤
, of 2.21MPa is applied
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Figure 16: Plane strain roadway model: (a) boundary conditions;
(b) the finite element mesh.

upon top boundary. No-flow conditions are imposed on the
three boundaries of the rectangular domain.The initial water
pressure on the roadways boundaries is 0MPa. All the gov-
erning equations described previously are implemented into
COMSOL Multiphysics, a powerful PDE-based multiphysics
modeling environment.Themodel is assumed to be in a state
of plane strain (with no change in elastic strain in the vertical
direction) and static mechanical equilibrium.

4.6. Results and Discussion

4.6.1. Stress Distribution. Adverse performance of the rock
mass in the postexcavation stress field may be caused by
either failure of the anisotropic medium or slip on the
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Figure 17: Contours of the first principal stress for 𝜃 = 15∘ case.
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decoupled model.

weakness planes [3]. The elastic stress distribution around
the roadways directly influences the deformation of rock and
thus determines the design process.

Figure 17 shows the contour of first principal stress cou-
pledwith the seepage process.The orientation andmagnitude
ofmaximumprincipal stress controlled the distribution of the
stress concentration in the heterogeneous media. The sim-
ulation result shows that the principal stress concentration
zones appearmainly in rock surrounding the roadways.There
existmaximumstress concentration areas in the arch foot and
floor. Measures should be taken to control the deformation
and assure the construction safety.

To characterize the response of the stress to the hydraulic
mechanics, a comparison of two scenarios is also presented
as shown in Figure 18. The first principal stress in the stress-
seepage coupled model along the horizontal section A-A󸀠
where 𝑦 = 27 is compared with a decoupled models.
The result shows that the first principal stress increases
when the seepage process is considered. Figure 19 shows
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Figure 19: Observed changes of normal stress in joint plane direction and hydraulic conductivity between coupled and decoupled models.
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a plot of normal stress in joint plane direction and hydraulic
conductivity along the horizontal section A-A󸀠 where 𝑦 = 27

as is shown in Figure 16. The coupled and decoupled model
could be analyzed using Comsol Multiphysics code. In the
coupled case, the governing equations for solid and fluid
phase are solved in weakly coupled sense. For the sake of
convenient contrast, the normal stress distribution as well as
hydraulic conductivity is plotted when no seepage-coupled
process is considered. The result shows that the normal
stress will be underestimated when no coupling of seepage
process is included. Moreover, the compressive stress leads to
the decrease of permeability, and the hydraulic conductivity
increases when seepage process is included.

4.6.2. Seepage Distribution. Flow velocity with the angle of
joint plane being 15∘ is shown in Figure 20. All the process
is not considered time dependent. Therefore, the velocity
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Figure 23: Contour of the fluid pressure and flow velocity vectors in different joint plane directions.
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change is induced by the permeability variation caused by the
compressive stress upon the joint plane. In this case study,
water flows along the principal direction of joint plane where
the permeability is largest in the model. An asymmetric
seepage field is observed, and maximum of flow velocity is
distributed on right top of the roadways roof. Moreover, the
seepage pressure is also asymmetrically distributed as shown
in Figure 21.

4.6.3. Damage Zone. For underground mining, two prin-
cipal engineering properties of the joint planes should be
considered. They are low tensile strength in the direction
perpendicular to the joint plane and the relatively low shear
strength of the surfaces. The anisotropic strength parameters
as tensile and compressive strength parameters for jointed
rock mass are discussed by Chen et al. [46], Claesson and
Bohloli [47], Nasseri et al. [48], Gonzaga et al. [49], and
Cho et al. [50]. As discussed previously, the fluid pressure
and velocity are sensitive to the joint plane angles 𝜃. In this
section, the Hoffman anisotropic strength criterion is used to
assess the damage zone in this numerical model as shown in
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(20)

The properties 𝑋
𝑡
and 𝑌

𝑡
represent the tensile strength

along joint plane direction and perpendicular to joint plane
direction, respectively. 𝑋

𝑐
and 𝑌

𝑐
represent the compressive

strength along joint plane direction and perpendicular to
joint plane direction, respectively. S is the shear strength
of the material along the joint direction. 𝜎

1
represents the

normal stress along the principle direction of elasticity and
𝜎
2
represents the normal stress perpendicular to the principle

direction of elasticity. 𝜏
12
represents the shear stress.

The shear strength of the joints can be described by the
simple Coulomb law

𝑆 = 𝑐 + 𝜎
2
tan𝜙, (21)

where 𝑐 is cohesive strength and 𝜙 is the effective angle of
friction of the joint surfaces.

Table 5:Mechanical properties of rockmass in the direction of joint
plane.

Tensile strength (MPa) 𝑋
𝑡

16.0
𝑌
𝑡

4.0

Compressive strength (MPa) 𝑋
𝑐

120
𝑌
𝑐

96

Shear strength (MPa) 𝑐 1.5
𝜙 50

It should be noted that the mechanical parameters be
acquired from laboratory or in situ tests. However, it is
difficult to directly employ the strength parameters for
jointed rock mass due to the inaccessibility of the tests for
huge rock mass. Based on the in situ and laboratory tests
of Heishan Metal Mine, the tensile, compressive, and shear
strength parameters are listed in Table 5.

The direction of joint plane is 15∘, and thus the tensile
strength in the direction perpendicular to joint plane is rel-
atively low, compared with that in other directions. Figure 22
shows the damage zone in this case study and the failure
area mainly distributes in the direction perpendicular to the
weakness plane, which gives an illustration of the roadway
failure mode in tabular orebodies. Moreover, the failure of
covered rock mass and the rock pillar in and between the two
roadways does not influence each other in this case study, and
thus the choice of roadway’s interval is proper from the aspect
of the mechanics analysis.

4.7. Further Discussion. These simulations were performed
to develop an understanding of the mechanics of joints and
influence on stress and seepage fields and to gauge the ability
of the proposed transversely anisotropic model to capture
the response of jointed rock mass. For this purpose, a total
of six scenarios with the joint plane angles 𝜃 ranging from
0∘ to 150∘ with an interval of 30∘ are simulated in order to
examine the effect of joint plane directions; see Figure 7 for
the definition of 𝜃. And the anisotropic properties of seepage
field and damage zones are examined in these simulations.

4.7.1. Seepage Field. Figure 23 presents the fluid pressure
distribution and flow field arrows with different joint plane
directions. It can be seen that the maximum pressure, which
is located on the top boundary, equals the initial fluid pressure
(2.21MPa). The fluid pressure distribution on top of the
roadways differs with the increase of directions.

When the joint plane is parallel or perpendicular to
the floors of roadways, the fluid pressure distributions and
flow arrows are all axially symmetric, which agrees with
expectations. The fluid pressure in the 30∘ or 60∘ case is
distributed unsymmetrically as shown in Figures 23(b) and
23(c).

The flow velocity in 𝑦 direction along the horizontal
section A-A󸀠 where 𝑦 = 27m as shown in Figure 16(a)
curves are plotted in Figure 24 for 𝜃 = 0∘, 30∘, 60∘, and
90∘, respectively. In all cases the absolute value of velocity
increases approximately exponentially above the roadways.
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Figure 25: The damaged zone under different principal elastic directions (red arrows represent the flow velocity vector).

As shown in Figure 24, the flow velocity in scenario where
𝜃 = 0∘ is in the lowest level. The reason is that the joint
plane in this scenario is horizontally distributed and the
compressive stress leads to the decrease of permeability.
When angle of joint plane increases to 30∘, flow velocities
above both roadways increase and Roadway I has a more
higher velocity than Roadway II. The scenario where 𝜃 = 60∘
has similar performance. However, when the joint plane is
vertically distributed, flow velocity above Roadway I is lower

than that where 𝜃 = 60∘. The flow velocity in the case where
joints are vertically or horizontally distributed is symmetric.

4.7.2. Damage Zone. The effect of joint plane angle on the
damage zone is illustrated by using the Hoffman anisotropic
strength criterion as shown in (23). The damage zones in
different angles of joint planes are shown in Figure 25 and
could be an index to visualize the potential failure mode of
the roadway.
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It is clear from Figures 25(a) to 25(f) that an increase of
the joint plane angle has significantly influenced the shape
and size of damage zone. When the joints are horizontally
distributed (𝜃 = 0∘), the tensile strength in the direction
perpendicular to joint planes is much lower and thus the
damage zone mainly concentrates within roof and bottom
of roadways. This failure mainly manifests as roof falling
and floor heave. Similarly, when the angle increases to 30∘,
the damage zones mainly concentrate in the rock mass of
left roof and right floor within the roadways which is also
in the direction perpendicular to joint planes. Compared
with the result in Figure 25(b), the direction of damage zone
with 𝜃 = 60∘ shown in Figure 25(c) rotated significantly
and the area also increases. When the joints are vertically
distributed (𝜃 = 90∘), the principal direction of damage
zone is nearly horizontal. Lateral rock mass surrounding the
roadways stabilizes with the increase of joint plane angle in
this study, and the pillar between two roadways is also stable.
The scenarios where 𝜃 = 120∘ or 𝜃 = 150∘ have the similar
response to the joint plane direction with that of 60∘ or 30∘.
Qualitatively, the simulation results are in good agreement
with the results by Jia et al. [51] and Huang et al. [52]. The
model in this study could to some extent be effectively used
to analyze the anisotropic property for jointed rock mass.

5. Conclusion

The main purpose is to introduce the anisotropic model of
seepage and stress and apply the model to the jointed rock
mass. The coupled finite element analysis was performed,
and the effects of joint planes direction on stress field, flow
velocity, and Darcy’s velocity were verified. A more reliable
model for the stability analysis of rock engineering and risk
evaluation of water inrush was provided. Based on the results
of a series of numerical simulations under different scenarios,
the following conclusions are drawn.

(1) A linkage of digital information of fractures and
mechanical analysis is realized. Relations between
digital images involving detailed geometrical proper-
ties of rock mass and the quantitative determination
of hydraulic parameters as well as elastic properties
were realized. The results show that the scale for both
damage tensor and permeability tensor of the rock
mass’s REV in northern slope of Heishan Metal Mine
is 7m × 7m.

(2) We examine the model for seepage-stress coupled
analysis on anisotropic properties. The numerical
simulations in this study have indicated that the
existence of joint planes greatly affects the seepage
properties and stress field. In anisotropic rock, water
flows mainly along the joint planes, and water pres-
sure is asymmetrically distributed where the angle of
joint plane is 15∘ in the northern slope of Heishan
Metal Mine.

(3) The influence of fractures cannot be neglected in
stability analysis of rock mass. The numerical results
visualized the damage zones in different directions of

joint planes.The direction of damage zoneswas found
perpendicular to that of joint planes which agrees well
with the field observations and theoretical analysis.

The work reported in this paper is an initial effort on the
influence of joint orientation on the anisotropic property of
seepage and stress in jointed rock masses. A model for more
complex jointed rock mass remains to be quantified.

Nomenclature

𝐷: Damage variable (dimensionless)
𝐸: Damaged Young’s modulus (Pa)
𝐸
0
: Undamaged Young’s modulus (Pa)

𝐺: Shear modulus (Pa)
𝐾
𝑖𝑗
: Hydraulic conductivity coefficient (m/s)

𝐾
󸀠

𝑖𝑖
: Hydraulic conductivity coefficient along

joint plane direction (m/s)
𝑝: Fluid pressure (Pa)
𝑆
𝑖𝑗
: Flexibility coefficient (Pa−1)

𝑁: The number of joints
𝑙: Minimum spacing between joints (m)
𝑉: Volume of rock mass (m3)
Δℎ
𝑗
: The hydraulic gradient;

𝑛
(𝑘): The normal vector of the kth joint

(dimensionless)
𝑎
(𝑘): The trace length of the kth joint (m)

𝑄
𝑖
: The fluid source term (m3)

[T
𝜎
]
−1: The reverse matrix for stress coordinates

transformation
[T
𝜀
]: The strain coordinates transformation

matrix
𝑋
𝑡
: The tensile strength in joint direction (Pa)

𝑌
𝑡
: The tensile strength perpendicular to

direction (Pa)
𝑋
𝑐
: The compressive strength in joint

direction (Pa)
𝑌
𝑐
: The compressive strength perpendicular

to direction (Pa)
𝑆: The shear strength of the material (Pa).

Greek Symbols

𝛼
𝑖𝑗
: Positive constant

𝛽: Coupling coefficient (Pa−1)
𝜎
𝑖𝑗
: Stress tensor (Pa)

𝜎
1
, 𝜎
2
, 𝜎
3
: The first, second, and third principal
stresses (Pa)

𝜀
𝑖𝑗
: Total strain tensor (dimensionless)

𝜃: Angle of joint plane (∘)
V: Damaged Poisson’s ratio (dimensionless)
V
0
: Undamaged Poisson’s ratio

(dimensionless)
𝜌: Density of water (kg/m3)
𝜇: Coefficient of flow viscosity (Pa⋅s)
𝜙: Effective angle of friction of the joint

surfaces.
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