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In this paper, an HIV infection model including an eclipse stage of infected cells is considered. Some quicker cells in this stage
become productively infected cells, a portion of these cells are reverted to the uninfected class, and others will be latent down in
the body. We consider CTL-response delay in this model and analyze the effect of time delay on stability of equilibrium. It is shown
that the uninfected equilibrium and CTL-absent infection equilibrium are globally asymptotically stable for both ODE and DDE
model. And we get the global stability of the CTL-present equilibrium for ODE model. For DDE model, we have proved that the
CTL-present equilibrium is locally asymptotically stable in a range of delays and also have studied the existence of Hopf bifurcations
at the CTL-present equilibrium. Numerical simulations are carried out to support our main results.

1. Introduction

In recent years, mathematical models have been done on the
viral dynamics of HIV. In the basicmathematical modeling of
viral dynamics, the description of the virus infection process
has three populations: uninfected target cells, productively
infected cells, and free viral particles [1–7]. In this model,
infected cells are assumed to produce new virions immedi-
ately after target cells are infected by a free virus.

However, there are many biological steps between viral
infection of target cells and the production of HIV-1 virions.
In 2007, Rong and coworkers [8] studied an extension of the
basic model of HIV-1 infection. The main feature of their
model is that an eclipse stage for the infected cells is included
and a portion of these cells are reverted to the uninfected
class. Perelson et al. [9] presented this kind of cell early in
1993. Buonomo andVergas-De-León [10] have performed the
global stability analysis of this model. Perelson et al. [1] put
forward another model in 1997. He divided infected cells into
two kinds: long-lived productively infected cells and latently
infected cells. Latently infected cells are also activated into
productively infected cells [11]. Motivated by their work and
now we concern the progression of infected cells from this
eclipse phase to the productive, and a portion of these cells are
reverted to the uninfected class or are latent down in the body.

In most virus infections, cytotoxic T lymphocytes (CTLs)
play a critical role in antiviral defense by attacking virus-
infected cells. Therefore, the dynamics of HIV infection
with CTL response has received much attention in the
past decades, some include the immune response without
immune delay [12–15], and others contain immune delay
[16–19]. Some HIV infection models with CTL-response
describe only the interaction among uninfected target cells,
productively infected cells, CTLs [12, 14, 20]. The most basic
model can be written as

𝑑𝑥

𝑑𝑡
= 𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑦 − 𝛼𝑦 − 𝑝𝑦𝑧,

𝑑𝑧

𝑑𝑡
= 𝑓 (𝑥, 𝑦, 𝑧) − 𝑟𝑧,

(1)

where 𝑥, 𝑦, and 𝑧 represent the concentration of uninfected
target cells, productively infected cells, CTLs at time 𝑡,
respectively. Parameters 𝑠 and 𝑑 are the birth rate and death
rate of uninfected cells, respectively. The uninfected cells
become infected at rate of 𝛽𝑥𝑦. Productively infected cells
are produced at rate 𝛽𝑥𝑦, 𝛼 is the death rate of productively
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infected cells,𝑝 is the strength of the lytic component, and 𝑟 is
the death rate of CTLs. Function 𝑓(𝑥, 𝑦, 𝑧) describes the rate
of immune response activated by the infected cells. Wang et
al. [14] assumed that the production of CTLs depends only on
the population of infected cells and gave 𝑓(𝑥, 𝑦, 𝑧) = 𝑐𝑦. Ji et
al. [12] assumed that the production of CTLs also depends on
the population of CTL cells and chose the former𝑓(𝑥, 𝑦, 𝑧) =
𝑐𝑦𝑧.

In this paper, we also consider the dynamics of HIV
infection with CTL response and give 𝑓(𝑥, 𝑦, 𝑧) = 𝑐𝑦𝑧.
Meanwhile, our model also concludes an eclipse stage of
infected cells. After the eclipse stage, some quicker infected
cells which become productively infected cells are obviously
attacked by CTLs. Other infected cells which will be reverted
to the uninfected class or be latent down in the body do
not have the ability to express HIV and will not cause
CTL immune response. Therefore, we only take the immune
response to productively infected cells into account and
ignore the attack to latently infected cells by CTLs. So we get
the following ODE:

𝑑𝑥

𝑑𝑡
= 𝑠 − 𝛽𝑥𝑦 − 𝑑𝑥 + 𝛿𝑤,

𝑑𝑤

𝑑𝑡
= 𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤,

𝑑𝑦

𝑑𝑡
= 𝑞𝑤 − 𝑝𝑦𝑧 − 𝛼𝑦,

𝑑𝑧

𝑑𝑡
= 𝑐𝑦𝑧 − 𝑟𝑧,

(2)

where 𝑤 represents the concentration of infected cells in the
eclipse stage at time 𝑡. Infected cells in the eclipse phase revert
to the uninfected class at a constant rate 𝛿. In addition, they
may alternatively progress to the productively infected class
at the rate 𝑞 or die at the rate 𝜂. But some authors believe that
time delay cannot be ignored inmodels for immune response
[16–19]. In this paper, 𝜏 represents CTL-response delay, that
is, the time between antigenic stimulation and generating
CTLs. We investigated the effect of a time delay on system
(2) to obtain the following DDE model:

𝑑𝑥

𝑑𝑡
= 𝑠 − 𝛽𝑥𝑦 − 𝑑𝑥 + 𝛿𝑤,

𝑑𝑤

𝑑𝑡
= 𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤,

𝑑𝑦

𝑑𝑡
= 𝑞𝑤 − 𝑝𝑦𝑧 − 𝛼𝑦,

𝑑𝑧

𝑑𝑡
= 𝑐𝑦 (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜏) − 𝑟𝑧.

(3)

Our paper is organized as follows: the three equilibriums
on system (2) and (3) are given in the next section. In
Section 3, the global stability of the ODE model is discussed.
The analysis of the stability for this DDEmodel is carried out
in Section 4. Finally, some numerical simulations are carried
out to support our analytical results, and some conclusions
are presented.

2. The Existence of the Equilibrium of System

In system (2) and (3), the basic reproduction numbers for
viral infection and for CTL response are given as follows:

𝑅
0
=

𝑞𝑠𝛽

𝑑𝛼 (𝛿 + 𝜂 + 𝑞)
,

𝑅
1
=

𝑐𝑞𝑠𝛽

𝑐𝑑𝛼 (𝛿 + 𝜂 + 𝑞) + 𝛼𝛽𝑟 (𝜂 + 𝑞)
.

(4)

It is clear that 𝑅
0
> 𝑅
1
always holds. For system (2) and

(3), there exists three equilibriums.

Theorem 1. For system (2) and (3), the uninfected equilibrium
𝐸
0
(𝑠/𝑑, 0, 0, 0) always exists;

(1) if 𝑅
0

> 1, a CTL-absent infection equilibrium
𝐸
1
(𝑥
1
, 𝑤
1
, 𝑦
1
, 𝑧
1
) exists, where

𝑥
1
=
𝛼 (𝛿 + 𝜂 + 𝑞)

𝛽𝑞
,

𝑤
1
=

𝑠

𝑛 + 𝑞
(1 −

1

𝑅
0

) ,

𝑦
1
=
𝑞

𝛼
𝑤
1
, 𝑧

1
= 0;

(5)

(2) if 𝑅
1

> 1, there exists a CTL-present infection
equilibrium 𝐸

2
(𝑥
2
, 𝑤
2
, 𝑦
2
, 𝑧
2
), where

𝑥
2
=
𝑐 (𝛿 + 𝜂 + 𝑞)

𝛽𝑟
𝑤
2
,

𝑤
2
=

𝑠𝛽𝑟

𝑐𝑑 (𝛿 + 𝜂 + 𝑞) + 𝛽𝑟 (𝜂 + 𝑞)
,

𝑦
2
=
𝑟

𝑐
, 𝑧

2
=
𝛼

𝑝
(𝑅
1
− 1) .

(6)

3. The Global Stability of the ODE Model

The initial conditions for system (2) are given as follows:

𝑥 (0) > 0, 𝑤 (0) > 0, 𝑦 (0) > 0, 𝑧 (0) > 0. (7)

It is clear that all solutions of system (2) are positive for 𝑡 > 0.
Before analyzing the stability of system (2), we now show that
the solutions of system (2) are bounded.

Theorem 2. Let (𝑥(𝑡), 𝑤(𝑡), 𝑦(𝑡), and 𝑧(𝑡)) be the solution of
system (2) satisfying initial conditions (7), then there exists
𝑀 > 0 such that 𝑥(𝑡) < 𝑀, 𝑤(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀, and
𝑧(𝑡) < 𝑀 hold after sufficiently large time 𝑡.

Proof. Let

𝐿 (𝑡) = 𝑥 (𝑡) + 𝑤 (𝑡) + 𝑦 (𝑡) +
𝑝

𝑐
𝑧 (𝑡) , (8)
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where 𝑘 = min{𝑑, 𝜂, 𝛼, 𝑟}. It follows from (2) that

𝑑𝐿 (𝑡)

𝑑𝑡
= 𝑠 − 𝑑𝑥 (𝑡) − 𝜂𝑤 (𝑡) − 𝛼𝑦 (𝑡) −

𝑝𝑟

𝑐
𝑧 (𝑡)

< 𝑠 − 𝑘 (𝑥 (𝑡) + 𝑤 (𝑡) + 𝑦 (𝑡) +
𝑝

𝑐
𝑧 (𝑡))

= 𝑠 − 𝑘𝐿 (𝑡) .

(9)

Therefore, 𝐿(𝑡) < 𝑠/𝑘+𝜀 for all large 𝑡, where 𝜀 is an arbitrarily
small positive constant.Thus, 𝑥(𝑡) < 𝑀, 𝑤(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀
and 𝑧(𝑡) < 𝑀 for some positive constant𝑀.

Theorem 3. If 𝑅
0
< 1, the uninfected equilibrium 𝐸

0
of system

(2) is globally asymptotically stable.

Proof. Construct a Lyapunov function

𝑉
1
(𝑥, 𝑤, 𝑦, 𝑧) = 𝑥 − 𝑥

0
− 𝑥
0
ln 𝑥

𝑥
0

+
𝛿

2 (𝑑 + 𝜂 + 𝑞) 𝑥
0

[(𝑥 − 𝑥
0
) + 𝑤]

2

+ 𝑤 +
(𝛿 + 𝜂 + 𝑞)

𝑞
𝑦 +

𝑝 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧,

(10)

where 𝑥
0
= 𝑠/𝑑. The derivative of 𝑉

1
along positive solutions

of system (2) is given as follows:

𝑑𝑉
1

𝑑𝑡
=
(𝑥 − 𝑥

0
)

𝑥
(𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦 + 𝛿𝑤)

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
0

(𝑥 − 𝑥
0
+ 𝑤)

× [𝑠 − 𝑑𝑥 − (𝜂 + 𝑞)𝑤]

+
(𝛿 + 𝜂 + 𝑞)

𝑞
(𝑞𝑤 − 𝛼𝑦 − 𝑝𝑦𝑧)

+ 𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤

+
𝑝 (𝛿 + 𝜂 + 𝑞)

𝑞
𝑦𝑧 −

𝑝𝑟 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧.

(11)

On substituting 𝑠 = 𝑑𝑥
0

and 𝛿𝑤(𝑥 − 𝑥
0
)/𝑥 =

−𝛿𝑤((𝑥 − 𝑥
0
)
2
/𝑥𝑥
0
) + 𝛿𝑤((𝑥 − 𝑥

0
)/𝑥
0
) into (11), we derive

that

𝑑𝑉
1

𝑑𝑡
= − (𝑑𝑥

0
+ 𝛿𝑤 +

𝑑𝛿𝑥

𝑑 + 𝜂 + 𝑞
)
(𝑥 − 𝑥

0
)
2

𝑥𝑥
0

−
𝛿 (𝜂 + 𝑞)

(𝑑 + 𝜂 + 𝑞) 𝑥
0

𝑤
2

+
𝛼 (𝛿 + 𝜂 + 𝑞)

𝑞
(𝑅
0
− 1) 𝑦

−
𝑝𝑟 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧.

(12)

If 𝑅
0
< 1, then 𝑑𝑉

1
/𝑑𝑡 ≤ 0 for all 𝑥 > 0, 𝑤 > 0, 𝑦 > 0 and 𝑧 >

0. So the uninfected equilibrium𝐸
0
is stable. Clearly, it follows

from (12) that 𝑑𝑉
1
/𝑑𝑡 = 0 if and only if 𝑥 = 𝑥

0
= 𝑠/𝑑, 𝑤 =

0, 𝑦 = 0, and 𝑧 = 0. Therefore, the largest invariant set in the
set {(𝑥, 𝑤, 𝑦, 𝑧) ∈ 𝑅4

+
| 𝑑𝑉
1
/𝑑𝑡 = 0} is the singleton {𝐸

0
}. By

LaSalle invariance principle, it follows that the equilibrium𝐸
0

is globally asymptotically stable.

Theorem 4. For system (2), if 𝑅
1
< 1 and 1 < 𝑅

0
≤

1 + (𝜂 + 𝑞)/𝛿, CTL-absent infection equilibrium 𝐸
1
is globally

asymptotically stable.

Proof. Define a Lyapunov function

𝑉
2
(𝑥, 𝑤, 𝑦, 𝑧) = 𝑥 − 𝑥

1
− 𝑥
1
ln 𝑥

𝑥
1

+ 𝑤 − 𝑤
1
− 𝑤
1
ln 𝑤

𝑤
1

+
𝛽𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧

+
𝛿

2 (𝑑 + 𝜂 + 𝑞) 𝑥
1

[(𝑥 − 𝑥
1
) + (𝑤 − 𝑤

1
)]
2

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(𝑦 − 𝑦
1
− 𝑦
1
ln
𝑦

𝑦
1

) .

(13)

Calculating the derivative of 𝑉
2
along positive solutions of

system (2), it follows that

𝑑𝑉
2

𝑑𝑡
= (1 −

𝑥
1

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
)
𝑑𝑦

𝑑𝑡

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
1

[(𝑥 − 𝑥
1
) + (𝑤 − 𝑤

1
)]

× (
𝑑𝑥

𝑑𝑡
+
𝑑𝑤

𝑑𝑡
) + (1 −

𝑤
1

𝑤
)
𝑑𝑤

𝑑𝑡
+
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑐𝑤
1

𝑑𝑧

𝑑𝑡

= (1 −
𝑥
1

𝑥
) (𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦 + 𝛿𝑤)

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
) (𝑞𝑤 − 𝛼𝑦 − 𝑝𝑦𝑧)

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
1

[(𝑥 − 𝑥
1
) + (𝑤 − 𝑤

1
)]

× [𝑠 − 𝑑𝑥 − (𝜂 + 𝑞)𝑤]

+ (1 −
𝑤
1

𝑤
) [𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤]

+
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

𝑦𝑧 −
𝛽𝑝𝑟𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧.

(14)
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At CTL-absent infection equilibrium 𝐸
1
, on substituting 𝑠 =

𝛽𝑥
1
𝑦
1
+ 𝑑𝑥
1
− 𝛿𝑤
1
, 𝛼 = 𝑞(𝑤

1
/𝑦
1
), and 𝛿 + 𝜂 + 𝑞 = 𝛽𝑥

1
𝑦
1
/𝑤
1

into (14), we obtain that
𝑑𝑉
2

𝑑𝑡

= (1 −
𝑥
1

𝑥
) [−𝑑 (𝑥 − 𝑥

1
) − 𝛽𝑥𝑦 + 𝛽𝑥

1
𝑦
1
+ 𝛿 (𝑤 − 𝑤

1
)]

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
)(𝑞𝑤 − 𝑞𝑤

1

𝑦

𝑦
1

− 𝑝𝑦𝑧)

+
𝛿

(𝑑 + 𝜂 + 𝑞)
[(𝑥 − 𝑥

1
) + (𝑤 − 𝑤

1
)]

× [−𝑑 (𝑥 − 𝑥
1
) − (𝜂 + 𝑞) (𝑤 − 𝑤

1
)]

+ (1 −
𝑤
1

𝑤
)(𝛽𝑥𝑦 − 𝛽𝑥

1
𝑦
1

𝑤

𝑤
1

)

+
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

𝑦𝑧 −
𝛽𝑟𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧.

(15)

Noting that

𝛿(1 −
𝑥

𝑥
1

) (𝑤 − 𝑤
1
)

= −𝛿 (𝑤 − 𝑤
1
)
(𝑥 − 𝑥

1
)
2

𝑥𝑥
1

+
𝛿

𝑥
1

(𝑥 − 𝑥
1
) (𝑤 − 𝑤

1
) ,

(16)

therefore,
𝑑𝑉
2

𝑑𝑡

= −(𝑑𝑥
1
− 𝛿𝑤
1
+ 𝛿𝑤 +

𝑑𝛿𝑥

𝑑 + 𝜂 + 𝑞
)
(𝑥 − 𝑥

1
)
2

𝑥𝑥
1

−
𝛿 (𝜂 + 𝑞)

(𝑑 + 𝜂 + 𝑞)
(𝑤 − 𝑤

1
)
2

− 𝛽𝑥
1
𝑦
1
(
𝑥
1

𝑥
+
𝑦
1
𝑤

𝑦𝑤
1

+
𝑥𝑦𝑤
1

𝑥
1
𝑦
1
𝑤
− 3)

+
𝛽𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

[
𝑑 (𝛿 + 𝜂 + 𝑞) + 𝑟𝛽 (𝜂 + 𝑞)

𝛽 (𝜂 + 𝑞)
] (𝑅
1
− 1) 𝑧.

(17)

Since 𝑥
1
/𝑥+𝑦

1
𝑤/𝑦𝑤

1
+𝑥𝑦𝑤

1
/𝑥
1
𝑦
1
𝑤−3 ≥ 0 and the equality

holds if and only if 𝑥 = 𝑥
1
, 𝑤 = 𝑤

1
and 𝑦 = 𝑦

1
. If 𝑅
0
≤

1 + (𝜂 + 𝑞)/𝛿, then 𝑑𝑥
1
− 𝛿𝑤
1
≥ 0. So, if 𝑅

1
< 1 and 1 < 𝑅

0
≤

1 + (𝜂 + 𝑞)/𝛿, then 𝑑𝑉
2
/𝑑𝑡 ≤ 0 for all 𝑥 > 0, 𝑤 > 0, 𝑦 > 0

and 𝑧 > 0. Clearly, it follows from (17) that 𝑑𝑉
2
/𝑑𝑡 = 0 if and

only if 𝑥 = 𝑥
1
, 𝑤 = 𝑤

1
, 𝑦 = 𝑦

1
, and 𝑧 = 0, thus the largest

invariant set in the set {(𝑥, 𝑤, 𝑦, 𝑧) ∈ 𝑅4
+
| 𝑑𝑉
2
/𝑑𝑡 = 0} is the

singleton {𝐸
1
}.Therefore, the global asymptotic stability of𝐸

1

follows from the LaSalle’s invariance principle.

Theorem 5. For system (2), if 𝑅
1
> 1 and 𝑐𝑑(𝛿 + 𝜂 + 𝑞) −

𝑟𝛽𝛿 ≥ 0, CTL-present infection equilibrium 𝐸
2
is globally

asymptotically stable.

Proof. Define a Lyapunov function

𝑉
3
(𝑥, 𝑤, 𝑦, 𝑧)

= 𝑥 − 𝑥
2
− 𝑥
2
ln 𝑥

𝑥
2

+ 𝑤 − 𝑤
2
− 𝑤
2
ln 𝑤

𝑤
2

+
𝛿

2 (𝑑 + 𝜂 + 𝑞) 𝑥
2

[(𝑥 − 𝑥
2
) + (𝑤 − 𝑤

2
)]
2

+
𝛽𝑥
2
𝑦
2

𝑞𝑤
2

(𝑦 − 𝑦
2
− 𝑦
2
ln
𝑦

𝑦
2

)

+
𝛽𝑝𝑥
2
𝑦
2

𝑐𝑞𝑤
2

(𝑧 − 𝑧
2
− 𝑧
2
ln 𝑧

𝑧
2

) .

(18)

Calculating the derivative of 𝑉
3
along positive solutions of

system (2), we obtain that

𝑑𝑉
3

𝑑𝑡

= (1 −
𝑥
2

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝛽𝑥
2
𝑦
2

𝑞𝑤
2

(1 −
𝑦
2

𝑦
)
𝑑𝑦

𝑑𝑡

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
2

[(𝑥 − 𝑥
2
) + (𝑤 − 𝑤

2
)] (

𝑑𝑥

𝑑𝑡
+
𝑑𝑤

𝑑𝑡
)

+ (1 −
𝑤
2

𝑤
)
𝑑𝑤

𝑑𝑡
+
𝛽𝑝𝑥
2
𝑦
2

𝑞𝑐𝑤
2

(1 −
𝑧
2

𝑧
)
𝑑𝑧

𝑑𝑡

= (1 −
𝑥
2

𝑥
) (𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦 + 𝛿𝑤)

+
𝛽𝑥
2
𝑦
2

𝑞𝑤
2

(1 −
𝑦
2

𝑦
) (𝑞𝑤 − 𝛼𝑦 − 𝑝𝑦𝑧)

+
𝛿

(𝑢 + 𝜂 + 𝑞) 𝑥
2

[(𝑥 − 𝑥
2
) + (𝑤 − 𝑤

2
)]

× [𝑠 − 𝑑𝑥 − (𝜂 + 𝑞)𝑤]

+ (1 −
𝑤
2

𝑤
) [𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤]

+
𝛽𝑝𝑥
2
𝑦
2

𝑞𝑐𝑤
2

(1 −
𝑧
2

𝑧
) (𝑐𝑦𝑧 − 𝑟𝑧) .

(19)

At CTL- present infection equilibrium𝐸
2
, on substituting 𝑠 =

𝛽𝑥
2
𝑦
2
+𝑑𝑥
2
−𝛿𝑤
2
, 𝛼 = 𝑞(𝑤

2
/𝑦
2
)−𝑝𝑧
2
, 𝑦
2
= 𝑟/𝑐, and𝛿+𝜂+𝑞 =

𝛽𝑥
2
𝑦
2
/𝑤
2
into (19), it follows that

𝑑𝑉
3

𝑑𝑡
= (1 −

𝑥
2

𝑥
)

× [−𝑑 (𝑥 − 𝑥
2
) − 𝛽𝑥𝑦 + 𝛽𝑥

2
𝑦
2
+ 𝛿 (𝑤 − 𝑤

2
)]
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+
𝛽𝑥
2
𝑦
2

𝑞𝑤
1

(1 −
𝑦
2

𝑦
)(𝑞𝑤 − 𝑞𝑤

2

𝑦

𝑦
2

+ 𝑝𝑦𝑧
2
− 𝑝𝑦𝑧)

+
𝛿

(𝑑 + 𝜂 + 𝑞)
[(𝑥 − 𝑥

2
) + (𝑤 − 𝑤

2
)]

× [−𝑑 (𝑥 − 𝑥
2
) − (𝜂 + 𝑞) (𝑤 − 𝑤

2
)]

+ (1 −
𝑤
2

𝑤
)(𝛽𝑥𝑦 − 𝛽𝑥

2
𝑦
2

𝑤

𝑤
2

)

+
𝛽𝑝𝑥
2
𝑦
2

𝑞𝑐𝑤
2

(1 −
𝑧
2

𝑧
) (𝑐𝑦𝑧 − 𝑟𝑧) .

(20)

Noting that

𝛿(1 −
𝑥

𝑥
2

) (𝑤 − 𝑤
2
) = − 𝛿 (𝑤 − 𝑤

2
)
(𝑥 − 𝑥

2
)
2

𝑥𝑥
2

+
𝛿

𝑥
2

(𝑥 − 𝑥
2
) (𝑤 − 𝑤

2
) ,

(21)

it follows from (20) and (21) that

𝑑𝑉
3

𝑑𝑡
= − (𝑑𝑥

2
+ 𝛿 (𝑤 − 𝑤

2
))
(𝑥 − 𝑥

2
)
2

𝑥𝑥
2

+
𝛿

𝑥
2

(𝑥 − 𝑥
2
) (𝑤 − 𝑤

2
)

+ 𝛽𝑥
2
𝑦
2
(1 −

𝑥𝑦

𝑥
2
𝑦
2

−
𝑥
2

𝑥
+
𝑦

𝑦
2

)

+ 𝛽𝑥
2
𝑦
2
(
𝑤

𝑤
2

−
𝑦

𝑦
2

−
𝑦
2
𝑤

𝑦𝑤
2

+ 1)

−
𝛽𝑝𝑥
2
𝑦
2

𝑞𝑤
2

(𝑦 − 𝑦
2
) (𝑧 − 𝑧

2
)

−
𝛿

𝑥
2

[
𝑑

𝑑 + 𝜂 + 𝑞
(𝑥 − 𝑥

2
)
2
+ (𝑥 − 𝑥

2
)

× (𝑤 − 𝑤
2
) +

𝜂 + 𝑞

𝑑 + 𝜂 + 𝑞
(𝑤 − 𝑤

2
)
2
]

+ 𝛽𝑥
2
𝑦
2
(
𝑥𝑦

𝑥
2
𝑦
2

−
𝑤

𝑤
2

−
𝑥𝑤
2
𝑦

𝑥
2
𝑤𝑦
2

+ 1)

+
𝛽𝑝𝑥
2
𝑦
2

𝑞𝑤
2

(𝑧 − 𝑧
2
) (𝑦 − 𝑦

2
)

= − (𝑑𝑥
2
− 𝛿𝑤
2
+ 𝛿𝑤 +

𝑑𝛿𝑥

𝑑 + 𝜂 + 𝑞
)
(𝑥 − 𝑥

2
)
2

𝑥𝑥
2

−
𝛿 (𝜂 + 𝑞)

(𝑑 + 𝜂 + 𝑞)
(𝑤 − 𝑤

2
)
2

− 𝛽𝑥
2
𝑦
2
(
𝑥
2

𝑥
+
𝑦
2
𝑤

𝑦𝑤
2

+
𝑥𝑤
2
𝑦

𝑥
2
𝑦
2
𝑤
− 3) .

(22)

Since 𝑥
2
/𝑥+𝑦

2
𝑤/𝑦𝑤

2
+𝑥𝑤
2
𝑦/𝑥
2
𝑦
2
𝑤−3 ≥ 0 and the equality

holds if and only if 𝑥 = 𝑥
2
, 𝑤 = 𝑤

2
, and 𝑦 = 𝑦

2
. If 𝑐𝑑 (𝛿 + 𝜂 +

𝑞)−𝑟𝛽𝛿 ≥ 0, then𝑑𝑥
2
−𝛿𝑤
2
= ((𝑐𝑑(𝛿+𝜂+𝑞)−𝑟𝛽𝛿)/𝑟𝛽)𝑤

2
≥ 0.

Therefore, if 𝑅
1
> 1 and 𝑐𝑑 (𝛿 + 𝜂 + 𝑞) − 𝑟𝛽𝛿 ≥ 0, it follows

from (22) that 𝑑𝑉
3
/𝑑𝑡 ≤ 0 for all 𝑥 > 0, 𝑤 > 0, 𝑦 > 0, and

𝑧 > 0. Clearly, it follows from (22) that 𝑑𝑉
3
/𝑑𝑡 = 0 if and

only if 𝑥 = 𝑥
2
, 𝑤 = 𝑤

2
, 𝑦 = 𝑦

2
, and 𝑧 = 𝑧

2
. So the largest

invariant set in the set {(𝑥, 𝑤, 𝑦, 𝑧) ∈ 𝑅4
+
| 𝑑𝑉
3
/𝑑𝑡 = 0} is the

singleton {𝐸
2
}. By LaSalle invariance principle, we conclude

that the equilibrium 𝐸
2
is globally asymptotically stable.

4. The Stability Analysis of the DDE Model

In this section, we consider the stability of the delay model
(3).

Let 𝐶 = 𝐶 ([−𝜏, 0], 𝑅4
+0
) be the Banach space of continu-

ous functions mapping from the interval [−𝜏, 0] to 𝑅4
+0

with
the topology of uniform convergence, where

𝑅
4

+0
= {(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) | 𝑥
𝑖
≥ 0, 𝑖 = 1, 2, 3, 4} . (23)

The initial conditions for system (3) are given as follows:

𝑥 = 𝜑
1
(𝜃) , 𝑤 = 𝜑

2
(𝜃) , 𝑦 = 𝜑

3
(𝜃) ,

𝑧 = 𝜑
4
(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

𝑥 (0) > 0, 𝑤 (0) > 0, 𝑦 (0) > 0, 𝑧 (0) > 0,

(24)

where (𝜑
1
(𝜃), 𝜑
2
(𝜃), 𝜑
3
(𝜃), 𝜑
4
(𝜃)) ∈ 𝐶([−𝜏, 0], 𝑅

4

+0
). It is clear

to see that all solutions of system (3) satisfying the initial
conditions (24) are positive for all 𝑡 ≥ 0. By the similar
method toTheorem 2, we can get the following theorem.

Theorem 6. Let 𝑥(𝑡), 𝑤(𝑡), 𝑦(𝑡), and 𝑧(𝑡) be the solution of
system (3) satisfying the initial conditions (24), then there exists
𝑀 > 0 such that 𝑥(𝑡) < 𝑀, 𝑤(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀, and 𝑧(𝑡) <
𝑀 hold after sufficiently large time 𝑡.

Theorem 7. If 𝑅
0
< 1, the uninfected equilibrium 𝐸

0
of system

(3) is globally asymptotically stable.

Proof. If 𝑅
0
< 1, construct a Lyapunov functional

𝑊
1
(𝑥, 𝑤, 𝑦, 𝑧) = 𝑥 − 𝑥

0
− 𝑥
0
ln 𝑥

𝑥
0

+
𝛿

2 (𝑑 + 𝜂 + 𝑞) 𝑥
0

[(𝑥 − 𝑥
0
) + 𝑤]

2
+ 𝑤

+
(𝛿 + 𝜂 + 𝑞)

𝑞
𝑦 +

𝑝 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧

+
𝑝 (𝛿 + 𝜂 + 𝑞)

𝑞
∫

𝑡

𝑡−𝜏

𝑦 (𝜃) 𝑧 (𝜃) 𝑑𝜃,

(25)
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where 𝑥
0
= 𝑠/𝑑. Calculating the derivative of 𝑊

1
along

positive solutions of system (3), it follows that

𝑑𝑊
1

𝑑𝑡
=
(𝑥 − 𝑥

0
)

𝑥
(𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦 + 𝛿𝑤)

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
0

(𝑥 − 𝑥
0
+ 𝑤)

× [𝑠 − 𝑑𝑥 − (𝜂 + 𝑞)𝑤]

+
(𝛿 + 𝜂 + 𝑞)

𝑞
(𝑞𝑤 − 𝛼𝑦 − 𝑝𝑦𝑧) + 𝛽𝑥𝑦

− (𝛿 + 𝜂 + 𝑞)𝑤 +
𝑝 (𝛿 + 𝜂 + 𝑞)

𝑞
𝑦𝑧

−
𝑝𝑟 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧.

(26)

On substituting 𝑠 = 𝑑𝑥
0

and 𝛿𝑤(𝑥 − 𝑥
0
)/𝑥 =

−𝛿𝑤((𝑥 − 𝑥
0
)
2
/𝑥𝑥
0
) + 𝛿𝑤((𝑥 − 𝑥

0
)/𝑥
0
) into (26), we derive

that

𝑑𝑊
1

𝑑𝑡
= − (𝑑𝑥

0
+ 𝛿𝑤 +

𝑑𝛿𝑥

𝑑 + 𝜂 + 𝑞
)

×
(𝑥 − 𝑥

0
)
2

𝑥𝑥
0

−
𝛿𝑤
2
(𝜂 + 𝑞)

(𝑑 + 𝜂 + 𝑞) 𝑥
0

+
𝛼 (𝛿 + 𝜂 + 𝑞)

𝑞
(𝑅
0
− 1) 𝑦 −

𝑝𝑟 (𝛿 + 𝜂 + 𝑞)

𝑐𝑞
𝑧.

(27)

If 𝑅
0
< 1, we have 𝑑𝑊

1
/𝑑𝑡 ≤ 0 for all 𝑥 > 0, 𝑤 > 0, 𝑦 > 0,

and 𝑧 > 0. It follows that the uninfected equilibrium 𝐸
0
is

stable. Clearly, it follows from (27) that 𝑑𝑊
1
/𝑑𝑡 = 0 if and

only if 𝑥 = 𝑠/𝑑, 𝑤 = 0, 𝑦 = 0, and 𝑧 = 0. Therefore the largest
invariant set in the set {(𝑥, 𝑤, 𝑦, 𝑧) ∈ 𝑅4

+
| 𝑑𝑊
1
/𝑑𝑡 = 0} is the

singleton {𝐸
0
}. By LaSalle invariance principle [21], we can

conclude that the equilibrium 𝐸
0
is globally asymptotically

stable.

From the above analysis, we can obtain that the time delay
has no effect on the stability of the uninfected equilibrium 𝐸

0

for the DDE model.

Theorem 8. For system (3), if 𝑅
1
< 1 and 1 < 𝑅

0
≤ 1 +

(𝜂 + 𝑞)/𝛿, then CTL-absent infection equilibrium 𝐸
1
is globally

asymptotically stable.

Proof. Define a lyapunov functional

𝑊
2
(𝑥, 𝑤, 𝑦, 𝑧) = 𝑥 − 𝑥

1
− 𝑥
1
ln 𝑥

𝑥
1

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(𝑦 − 𝑦
1
− 𝑦
1
ln
𝑦

𝑦
1

)

+
𝛿

2 (𝑑 + 𝜂 + 𝑞) 𝑥
1

[(𝑥 − 𝑥
1
) + (𝑤 − 𝑤

1
)]
2

+ 𝑤 − 𝑤
1
− 𝑤
1
ln 𝑤

𝑤
1

+
𝛽𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧 +
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

∫

𝑡

𝑡−𝜏

𝑦 (𝜃) 𝑧 (𝜃) 𝑑𝜃.

(28)

Calculating the derivative of 𝑊
2
along positive solutions of

system (3), it follows that

𝑑𝑊
2

𝑑𝑡
= (1 −

𝑥
1

𝑥
) (𝑠 − 𝑑𝑥 − 𝛽𝑥𝑦 + 𝛿𝑤)

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
) (𝑞𝑤 − 𝛼𝑦 − 𝑝𝑦𝑧)

+
𝛿

(𝑑 + 𝜂 + 𝑞) 𝑥
1

[(𝑥 − 𝑥
1
) + (𝑤 − 𝑤

1
)]

× [𝑠 − 𝑑𝑥 − (𝜂 + 𝑞)𝑤]

+ (1 −
𝑤
1

𝑤
) [𝛽𝑥𝑦 − (𝛿 + 𝜂 + 𝑞)𝑤]

−
𝛽𝑝𝑟𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧 +
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

𝑦𝑧.

(29)

At CTL-absent infection equilibrium 𝐸
1
, on substituting 𝑠 =

𝛽𝑥
1
𝑦
1
+ 𝑑𝑥
1
− 𝛿𝑤
1
, 𝛼 = 𝑞(𝑤

1
/𝑦
1
), and 𝛿 + 𝜂 + 𝑞 = 𝛽𝑥

1
𝑦
1
/𝑤
1

into (29), we obtain that

𝑑𝑊
2

𝑑𝑡

= (1 −
𝑥
1

𝑥
) [−𝑑 (𝑥 − 𝑥

1
) − 𝛽𝑥𝑦 + 𝛽𝑥

1
𝑦
1
+ 𝛿 (𝑤 − 𝑤

1
)]

+
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
)(𝑞𝑤 − 𝑞𝑤

1

𝑦

𝑦
1

− 𝑝𝑦𝑧)

+
𝛿

(𝑑 + 𝜂 + 𝑞)
[(𝑥 − 𝑥

1
) + (𝑤 − 𝑤

1
)]

× [−𝑑 (𝑥 − 𝑥
1
) − (𝜂 + 𝑞) (𝑤 − 𝑤

1
)]

+ (1 −
𝑤
1

𝑤
)(𝛽𝑥𝑦 − 𝛽𝑥

1
𝑦
1

𝑤

𝑤
1

)

−
𝛽𝑟𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧 +
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

𝑦𝑧.

(30)
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It follows from (16) and (30) that

𝑑𝑊
2

𝑑𝑡
= − (𝑑𝑥

1
+ 𝛿 (𝑤 − 𝑤

1
))
(𝑥 − 𝑥

1
)
2

𝑥𝑥
1

+
𝛿

𝑥
1

(𝑥 − 𝑥
1
) (𝑤 − 𝑤

1
)

+ 𝛽𝑥
1
𝑦
1
(1 −

𝑥𝑦

𝑥
1
𝑦
1

−
𝑥
1

𝑥
+
𝑦

𝑦
1

)

+ 𝛽𝑥
1
𝑦
1
(
𝑤

𝑤
1

−
𝑦

𝑦
1

−
𝑦
1
𝑤

𝑦𝑤
1

+ 1)

−
𝛽𝑥
1
𝑦
1

𝑞𝑤
1

(1 −
𝑦
1

𝑦
)𝑝𝑦𝑧

+ 𝛽𝑥
1
𝑦
1
(
𝑥𝑦

𝑥
1
𝑦
1

−
𝑤

𝑤
1

−
𝑥𝑤
1
𝑦

𝑥
1
𝑤𝑦
1

+ 1)

−
𝛿

𝑥
1

[
𝑑

𝑑 + 𝜂 + 𝑞
(𝑥 − 𝑥

1
)
2
+ (𝑥 − 𝑥

1
)

× (𝑤 − 𝑤
1
) +

𝜂 + 𝑞

𝑑 + 𝜂 + 𝑞
(𝑤 − 𝑤

1
)
2
]

−
𝛽𝑟𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

𝑧 +
𝛽𝑝𝑥
1
𝑦
1

𝑞𝑤
1

𝑦𝑧

= − (𝑑𝑥
1
− 𝛿𝑤
1
+ 𝛿𝑤 +

𝑑𝛿𝑥

𝑑 + 𝜂 + 𝑞
)

×
(𝑥 − 𝑥

1
)
2

𝑥𝑥
1

−
𝛿 (𝜂 + 𝑞)

(𝑑 + 𝜂 + 𝑞)
(𝑤 − 𝑤

1
)
2

− 𝛽𝑥
1
𝑦
1
(
𝑥
1

𝑥
+
𝑦
1
𝑤

𝑦𝑤
1

+
𝑥𝑦𝑤
1

𝑥
1
𝑦
1
𝑤
− 3)

+
𝛽𝑝𝑥
1
𝑦
1

𝑐𝑞𝑤
1

[
𝑑 (𝛿 + 𝜂 + 𝑞) + 𝑟𝛽 (𝜂 + 𝑞)

𝛽 (𝜂 + 𝑞)
] (𝑅
1
− 1) 𝑧.

(31)

Since 𝑥
1
/𝑥+𝑦

1
𝑤/𝑦𝑤

1
+𝑥𝑦𝑤

1
/𝑥
1
𝑦
1
𝑤−3 ≥ 0 and the equality

holds if and only if 𝑥 = 𝑥
1
, 𝑤 = 𝑤

1
, and 𝑦 = 𝑦

1
. If 𝑅
0
≤

1+(𝜂+𝑞)/𝛿, then 𝑑𝑥
1
−𝛿𝑤
1
≥ 0. Therefore, if 𝑅

1
< 1 and 1 <

𝑅
0
≤ 1+ (𝜂+𝑞)/𝛿, it follows from (31) that 𝑑𝑊

2
/𝑑𝑡 ≤ 0 for all

𝑥 > 0, 𝑤 > 0, 𝑦 > 0, and 𝑧 > 0. It is readily seen from (31) that
𝑑𝑊
2
/𝑑𝑡 = 0 if and only if 𝑥 = 𝑥

1
, 𝑤 = 𝑤

1
, 𝑦 = 𝑦

1
, and 𝑧 = 0.

Thus the largest invariant set in the set {(𝑥, 𝑤, 𝑦, 𝑧) ∈ 𝑅4
+
|

𝑑𝑊
2
/𝑑𝑡 = 0} is the singleton {𝐸

1
}.Then the global asymptotic

stability of 𝐸
1
follows from the LaSalle’s invariance principle

[21].

From the above analysis, we obtain that the time delay
has no effect on the stability of the CTL-absent infection
equilibrium 𝐸

1
for the DDEmodel. Next, we analyze stability

and Hopf bifurcation at the CTL-present equilibrium 𝐸
2
.

Firstly, the linearized equations of system (3) at 𝐸
2
are

given as follows:

𝑑𝑥

𝑑𝑡
= − (𝛽𝑦

2
+ 𝑑) 𝑥 (𝑡) − 𝛽𝑥

2
𝑦 (𝑡) + 𝛿𝑤 (𝑡) ,

𝑑𝑤

𝑑𝑡
= 𝛽𝑦
2
𝑥 (𝑡) + 𝛽𝑥2𝑦 (𝑡) − (𝛿 + 𝜂 + 𝑞)𝑤 (𝑡) ,

𝑑𝑦

𝑑𝑡
= 𝑞𝑤 (𝑡) − (𝛼 + 𝑝𝑧

2
) 𝑦 (𝑡) − 𝑝𝑦

2
𝑧 (𝑡) ,

𝑑𝑧

𝑑𝑡
= 𝑐𝑧
2
𝑦 (𝑡 − 𝜏) + 𝑐𝑦2𝑧 (𝑡 − 𝜏) − 𝑟𝑧 (𝑡) .

(32)

The characteristic equation of system (32) at 𝑂 (0, 0, 0, 0)
takes the form

𝐺 (𝜆) = 𝜆
4
+𝑀
1
𝜆
3
+𝑀
2
𝜆
2
+𝑀
3
𝜆 +𝑀

4

− (𝑁
1
𝜆
3
+ 𝑁
2
𝜆
2
+ 𝑁
3
𝜆 + 𝑁

4
) e−𝜆𝜏 = 0,

(33)

where

𝑀
1
= 𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
+ 𝑟,

𝑀
2
= 𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)

+ (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)

+ 𝑟 (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
) ,

𝑀
3
= 𝑟 [𝛽𝑦

2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)

+ (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

+ 𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
) ,

𝑀
4
= 𝑟𝛽𝑦

2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
) ,

𝑁
1
= 𝑟,

𝑁
2
= 𝑟 (𝛽𝑦

2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
)

− 𝑐𝑝𝑦
2
𝑧
2
,

𝑁
3
= 𝑟 [𝛽𝑦

2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)

+ (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

− 𝑐𝑝𝑦
2
𝑧
2
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞) ,

𝑁
4
= 𝑟𝛽𝑦

2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)

− 𝑐𝑝𝑦
2
𝑧
2
[𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)] .

(34)

Theorem 9. Suppose 𝜏 = 0, if 𝑅
1
> 1, then the CTL-present

equilibrium 𝐸
2
of system (3) is locally asymptotically stable.

Proof. If 𝜏 = 0, (33) becomes

𝜆
4
+ (𝑀
1
− 𝑁
1
) 𝜆
3
+ (𝑀
2
− 𝑁
2
) 𝜆
2

+ (𝑀
3
− 𝑁
3
) 𝜆 +𝑀

4
− 𝑁
4
= 0.

(35)
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Since 𝑅
1
> 1, 𝑥

2
> 0, 𝑤

2
> 0, 𝑦

2
> 0, and 𝑧

2
> 0, by the

Routh-Hurwitz criteria, it follows that

𝐻
1
= 𝑀
1
− 𝑁
1
= 𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
> 0,

𝐻
2
= (𝑀

1
− 𝑁
1
) (𝑀
2
− 𝑁
2
) − (𝑀

3
− 𝑁
3
)

= [𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)

+ (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
) + 𝑐𝑝𝑦

2
𝑧
2
]

× (𝛽𝑦
2
𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
)

− 𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)

− 𝑐𝑝𝑦
2
𝑧
2
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)

= [𝑑 (𝛿 + 𝜂 + 𝑞) + (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

× [𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
]

+ 𝛽𝑦
2
(𝜂 + 𝑞) (𝛽𝑦

2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)

+ 𝑐𝑝𝑦
2
𝑧
2
(𝛼 + 𝑝𝑧

2
) > 0,

𝐻
3
= (𝑀

1
− 𝑁
1
) [(𝑀

2
− 𝑁
2
) (𝑀
3
− 𝑁
3
)

− (𝑀
1
− 𝑁
1
) (𝑀
4
− 𝑁
4
)] − (𝑀

3
− 𝑁
3
)
2

= [𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)

+ (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
) + 𝑐𝑝𝑦

2
𝑧
2
]

× (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
)

× [𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)

+𝑐𝑝𝑦
2
𝑧
2
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)]

− (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞 + 𝛼 + 𝑝𝑧

2
)
2

× 𝑐𝑝𝑦
2
𝑧
2
[𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)]

− [𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)

+ 𝑐𝑝𝑦
2
𝑧
2
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)]

2

= 𝐴(𝑐𝑝𝑦
2
𝑧
2
)
2
+ 𝐵𝑐𝑝𝑦

2
𝑧
2
+ 𝐶,

(36)

where

𝐴 = (𝛼 + 𝑝𝑧
2
) (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞) > 0,

𝐵 = [(𝛽𝑦
2
+ 𝑑)
2
+ 𝛽𝑦
2
𝛿] (𝛼 + 𝑝𝑧

2
)

× (𝛽𝑦
2
+ 𝑑 + 𝛼 + 𝑝𝑧

2
) + [(𝛽𝑦

2
+ 𝑑)
2
+ 𝛽𝑦
2
𝛿]

× 𝛿 (𝛼 + 𝑝𝑧
2
) + (𝛽𝑑𝑦

2
+ 𝑑
2
) (𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)

− 𝛽𝑦
2
(𝜂 + 𝑞)

2
(𝛼 + 𝑝𝑧

2
) ,

𝐶 = 𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
) (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)

× [𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞) (𝛽𝑦

2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

+ 𝛽𝑦
2
(𝜂 + 𝑞) (𝛼 + 𝑝𝑧

2
)
2

× [𝑑 (𝛿 + 𝜂 + 𝑞) + (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)] > 0.

(37)

Let

𝐷 = 𝛽𝑦
2
(𝜂 + 𝑞)

2
(𝛼 + 𝑝𝑧

2
) , ℎ = 𝑐𝑝𝑦

2
𝑧
2
> 0,

𝑓 (ℎ) = 𝐴ℎ
2
+ 𝐵ℎ + 𝐶,

𝑔 (ℎ) = 𝐴ℎ
2
− 𝐷ℎ + 𝐶.

(38)

If 𝑔(ℎ) > 0 for all ℎ > 0, then 𝑓(ℎ) > 0. Since

Δ
1
= 𝐷
2
− 4𝐴𝐶

= − 4(𝛼 + 𝑝𝑧
2
)
3
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞) 𝛽𝑦

2
(𝜂 + 𝑞)

× [𝑑 (𝛿 + 𝜂 + 𝑞) + (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

− 4(𝛼 + 𝑝𝑧
2
)
2
(𝛽𝑦
2
+ 𝑑 + 𝛿) 𝛽𝑦

2
(𝜂 + 𝑞)

× (𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)

× [𝛽𝑦
2
(𝜂 + 𝑞)

+ 𝑑 (𝛿 + 𝜂 + 𝑞) (𝛽𝑦
2
+ 𝑑) (𝛼 + 𝑝𝑧

2
)]

− 4(𝛼 + 𝑝𝑧
2
)
3
(𝜂 + 𝑞)

2
𝛽𝑦
2
(𝛽𝑦
2
+ 𝑑 + 𝛿 + 𝜂 + 𝑞)

× 𝑑 (𝛿 + 𝜂 + 𝑞) (𝛽𝑦
2
+ 𝑑)

− 4(𝛼 + 𝑝𝑧
2
)
2
(𝜂 + 𝑞)

3
(𝛽𝑦
2
)
2
(𝛽𝑦
2
+ 𝑑 + 𝛿)

− 3[𝛽𝑦
2
(𝜂 + 𝑞)

2
(𝛼 + 𝑝𝑧

2
)]
2

< 0,

(39)

and 𝑔(0) = 𝐶 > 0, it follows that 𝑔(ℎ) > 0 for all ℎ > 0, thus
𝑓(ℎ) > 0, that is,𝐻

3
> 0.

𝐻
4
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀
1
− 𝑁
1
𝑀
3
− 𝑁
3

0 0

1 𝑀
2
− 𝑁
2
𝑀
4
− 𝑁
4

0

0 𝑀
1
− 𝑁
1
𝑀
3
− 𝑁
3

0

0 1 𝑀
2
− 𝑁
2
𝑀
4
− 𝑁
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (𝑀
4
− 𝑁
4
)𝐻
3
.

(40)

Noting that

𝑀
4
− 𝑁
4
= 𝑐𝑝𝑦

2
𝑧
2
[𝛽𝑦
2
(𝜂 + 𝑞) + 𝑑 (𝛿 + 𝜂 + 𝑞)] > 0, (41)

it follows that 𝐻
4
> 0. Therefore, all the roots of (35) have

negative real parts. This completes the proof of Theorem 9.

For 𝜏 = 0, the all roots of 𝐺(𝜆) = 0 have negative real
roots in Theorem 9. By the continuous dependence of roots
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of 𝐺(𝜆) = 0 on the parameters, it follows that there exists
𝜏 > 0 such that for 𝜏 ∈ [0, 𝜏), all roots of (33) satisfy

𝐺 (𝜆) = 0, Re (𝜆) < 0, for 𝜏 ∈ [0, 𝜏) , (42)

and when 𝜏 = 𝜏, Re (𝜆) = 0. To determine 𝜏 and the
associated purely imaginary roots 𝜔𝑖 (𝜔 > 0).

Suppose that 𝜆 = 𝜔𝑖 (𝜔 > 0) is a solution of (33), it follows
that

𝜔
4
−𝑀
1
𝜔
3
𝑖 − 𝑀

2
𝜔
2
𝑖 + 𝑀

3
𝜔𝑖

− (−𝑁
1
𝜔
3
𝑖 − 𝑁
2
𝜔
2
+ 𝐵
3
𝜔𝑖 + 𝐵

4
) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.

(43)

Separating the real and imaginary parts, it follows that

(𝑁
4
− 𝑁
2
𝜔
2
) cos𝜔𝜏 + (𝑁

3
𝜔 − 𝑁

1
𝜔
3
) sin𝜔𝜏

= 𝜔
4
−𝑀
2
𝜔
2
+𝑀
4
,

(𝑁
1
𝜔
3
− 𝑁
3
𝜔) cos𝜔𝜏 + (𝑁

4
− 𝑁
2
𝜔
2
) sin𝜔𝜏

= 𝑀
1
𝜔
3
−𝑀
3
𝜔.

(44)

From (44), we obtain that

cos𝜔𝜏 = 1

Δ
(𝐴
1
𝜔
6
+ 𝐴
2
𝜔
4
+ 𝐴
3
𝜔
2
+ 𝐴
4
) ,

sin𝜔𝜏 = −𝜔
Δ
(𝐵
1
𝜔
6
+ 𝐵
2
𝜔
4
+ 𝐵
3
𝜔
2
+ 𝐵
4
) ,

(45)

where

𝐴
1
= 𝑀
1
𝑁
1
− 𝑁
2
,

𝐴
2
= 𝑁
4
+𝑀
2
𝑁
2
−𝑀
1
𝑁
3
−𝑀
3
𝑁
1
,

𝐴
3
= 𝑀
3
𝑁
3
−𝑀
2
𝑁
4
−𝑀
4
𝑁
2
, 𝐴

4
= 𝑀
4
𝑁
4
,

𝐵
1
= 𝑁
1
, 𝐵

2
= 𝑀
1
𝑁
2
− 𝑁
3
−𝑀
2
𝑁
1
,

𝐵
3
= 𝑀
2
𝑁
3
+𝑀
4
𝑁
1
−𝑀
3
𝑁
2
−𝑀
1
𝑁
4
,

𝐵
4
= 𝑀
3
𝑁
4
−𝑀
4
𝑁
3
,

Δ = (𝑁
4
− 𝑁
2
𝜔
2
)
2

+ (𝑁
3
𝜔 − 𝑁

1
𝜔
3
)
2

> 0.

(46)

It follows from (44) that

𝜔
8
+ 𝑞
1
𝜔
6
+ 𝑞
2
𝜔
4
+ 𝑞
3
𝜔
2
+ 𝑞
4
= 0, (47)

where

𝑞
1
= 𝑀
2

1
− 2𝑀
2
− 𝑁
2

1
,

𝑞
2
= 𝑀
2

2
+ 2𝑀
4
− 2𝑀
1
𝑀
3
+ 2𝑁
1
𝑁
3
−𝑀
2

2
,

𝑞
3
= 𝑀
2

3
− 2𝑀
2
𝑀
4
+ 2𝑁
2
𝑁
4
−𝑀
2

3
, 𝑞

4
= 𝑀
2

4
− 𝑁
2

4
.

(48)

Letting 𝑢 = 𝜔2, (47) becomes

𝑢
4
+ 𝑞
1
𝑢
3
+ 𝑞
2
𝑢
2
+ 𝑞
3
𝑢 + 𝑞
4
= 0. (49)

Denote 𝐺(𝑢) = 𝑢4 + 𝑞
1
𝑢
3
+ 𝑞
2
𝑢
2
+ 𝑞
3
𝑢 + 𝑞
4
. Then we have

𝐺
󸀠
(𝑢) = 4𝑢

3
+ 3𝑞
1
𝑢
2
+ 2𝑞
2
𝑢 + 𝑞
3
. (50)

Suppose that (49) has positive real roots. Without loss of
generality, we assume that it has 𝑛 (1 ≤ 𝑛 ≤ 4) positive real
roots, defined by 𝑢

1
< 𝑢
2
< ⋅ ⋅ ⋅ < 𝑢

𝑛
, respectively. Then (47)

has 𝑛 positive real roots

𝜔
1
= √𝑢1, 𝜔2 = √𝑢2, . . . , 𝜔𝑛 = √𝑢𝑛. (51)

From (45), we have

𝜏
𝑗

𝑙
=
1

𝜔
𝑙

(arccos
𝐴
1
𝜔
6

𝑙
+ 𝐴
2
𝜔
4

𝑙
+ 𝐴
3
𝜔
2

𝑙
+ 𝐴
4

(𝑁
4
−𝑁
2
𝜔2
𝑙
)
2
+(𝑁
3
𝜔
𝑙
−𝑁
1
𝜔3
𝑙
)
2
+2𝑗𝜋) , (52)

where 𝑙 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, 3, . . ., then ± 𝜔
𝑙
i are a pair of

purely imaginary roots of (33) with 𝜏𝑗
𝑙
.

Differentiating (33) implicitly with respect to 𝜏, we obtain
that

[
𝑑𝜆

𝑑𝜏
]

−1

=
− (4𝜆
3
+ 3𝑀
1
𝜆
2
+ 2𝑀
2
𝜆 +𝑀

3
) e𝜆𝜏

𝜆 (𝑁
1
𝜆3 + 𝑁

2
𝜆2 + 𝑁

3
𝜆 + 𝑁

4
)

+
3𝑁
1
𝜆
2
+ 2𝑁
2
𝜆 + 𝑁

3

𝜆 (𝑁
1
𝜆3 + 𝑁

2
𝜆2 + 𝑁

3
𝜆 + 𝑁

4
)
−
𝜏

𝜆
.

(53)

Thus,

Re [𝑑𝜆
𝑑𝜏
]

−1

𝜏=𝜏
𝑗

𝑙

=
1

𝜔
𝑙
Δ
{(3𝑀

1
𝜔
2

𝑙
−𝑀
3
)

× [(𝑁
1
𝜔
3

𝑙
− 𝑁
3
𝜔
𝑙
) cos𝜔

𝑙
𝜏

+ (𝑁
4
− 𝑁
4
𝜔
2

𝑙
) sin𝜔

𝑙
𝜏]

+ (4𝜔
3

𝑙
− 2𝑀
2
𝜔
𝑙
)

× [(𝑁
4
− 𝑁
2
𝜔
2

𝑙
) cos𝜔

𝑙
𝜏

− (𝑁
1
𝜔
3

𝑙
− 𝑁
3
𝜔
𝑙
) sin𝜔

𝑙
𝜏]

+ (𝑁
3
− 3𝑁
1
𝜔
2

𝑙
) (𝑁
1
𝜔
3

𝑙
− 𝑁
3
𝜔
𝑙
)

+ 2𝑁
2
𝜔
𝑙
(𝑁
4
− 𝑁
2
𝜔
2

𝑙
)} .

(54)

On substituting (45) into (54), we obtain

Re [𝑑𝜆
𝑑𝜏
]

−1

𝜏=𝜏
𝑗

𝑙

=
1

Δ
[4𝜔
6

𝑙
+ 3 (𝑀

2

1
− 2𝑀
2
− 𝑁
2

1
) 𝜔
4

𝑙

+ 2 (𝑀
2

2
− 𝑁
2

2
+ 2𝑀
4
+ 2𝑁
1
𝑁
3
− 2𝑀
1
𝑀
3
) 𝜔
2

𝑙

+𝑀
2

3
− 𝑁
2

3
+ 2𝑁
2
𝑁
4
− 2𝑀
2
𝑀
4
] =

𝐺
󸀠
(𝑢
𝑙
)

Δ
,

(55)
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whereΔ = (𝑁
4
− 𝑁
2
𝜔
2
)
2

+(𝑁
3
𝜔 − 𝑁

1
𝜔
3
)
2

> 0. If we suppose
that 𝐺󸀠(𝑢) ̸= 0, then

sign{Re [𝑑𝜆
𝑑𝜏
]

𝜏=𝜏
𝑗

𝑙

} = sign{Re [𝑑𝜆
𝑑𝜏
]

−1

𝜏=𝜏
𝑗

𝑙

}

= sign{
𝐺
󸀠
(𝑢
𝑙
)

Δ
} = sign {𝐺󸀠 (𝑢

𝑙
)} .

(56)

Applying Theorem 9 and the Hopf bifurcation theorem for
functional differential equation [22] from (56), we derive the
existence of a Hopf bifurcation as follows.

Theorem 10. Suppose that (49) has at least one simple positive
root and 𝑢 is the last such root, then there is a Hopf bifurcation
for the system (3) as 𝜏 passes upwards through 𝜏 leading to a
periodic solution that bifurcates from 𝐸

2
, where

𝜏 =
1

𝜔
(arccos

𝐴
1
𝜔
6

𝑙
+ 𝐴
2
𝜔
4

𝑙
+ 𝐴
3
𝜔
2

𝑙
+ 𝐴
4

(𝑁
4
− 𝑁
2
𝜔
2

𝑙
)
2

+ (𝑁
3
𝜔
𝑙
− 𝑁
1
𝜔
3

𝑙
)
2
+ 2𝑗𝜋) .

(57)

Remark 11. If 𝑢 is the last simple positive root of (49), then
we have 𝐺󸀠(𝑢) > 0. From (56), we obtain Re [𝑑𝜆/𝑑𝜏]

𝜏=𝜏
> 0.

Remark 12. In this paper, we construct a few Lyapunov func-
tions (functionals) to prove the global stability of steady states
of ODE model (DDE model). This function (functional)
can also prove the global stability of steady states of other
viral infections models with cure rate [7, 10]. Moreover, the
method studying the existence of Hopf bifurcations applies to
other viral infections models with immune delay [2, 18, 19].

5. Numerical Simulations

In this section, we perform numerical calculation to support
our theoretical analysis of this paper.

Example 13. If we choose parameters 𝑠 = 1.5, 𝛽 = 0.3, 𝛼 =
0.1, 𝑝 = 0.015, 𝑐 = 0.12, 𝑟 = 0.8, 𝑑 = 0.1, 𝛿 = 0.6, 𝜂 = 0.4, and
𝑞 = 0.7, then 𝑅

1
= 1.33 > 1 and the CTL-present equilibrium

𝐸
2
(1.1751, 1.3825, 6.6667, 1.6283). From (49), we obtain that

𝑢
4
+ 10.5385𝑢

3
+ 3.9615𝑢

2
+ 0.0729𝑢 + 0.0151 = 0. (58)

Equation (58) has no positive roots, and all roots have
negative real parts. Therefore, the equilibrium is locally
asymptotically stable for all 𝜏 ≥ 0 (e.g., 𝜏 = 1.5, see Figure 1).

Example 14. If we select parameters 𝑠 = 10, 𝛽 = 0.1, 𝛼 =

0.4, 𝑝 = 0.3, 𝑐 = 0.5, 𝑟 = 0.9, 𝑑 = 1, 𝛿 = 1, 𝜂 = 1, and
𝑞 = 4, then 𝑅

1
= 1.45 > 1 and the CTL-present equilibrium

𝐸
2
(8.8107, 0.2642, 1.7997, 0.6244). It follows from (49) that

𝑢
4
+ 40.7439𝑢

3
+ 41.9038𝑢

2
− 1.9589𝑢 − 2.0726 = 0.

(59)

Equation (59) has only one positive real root 𝑢 =

0.2217 and any other roots have negative real parts. Thus,
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)
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2

Figure 1:The CTL-present infection equilibrium 𝐸
2
of system (3) is

locally asymptotically stable when 𝑅
1
= 1.33 > 1 and 𝜏 = 1.5.
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Figure 2:The CTL-present infection equilibrium 𝐸
2
of system (3) is

locally asymptotically stable when 𝑅
1
= 1.45 > 1 and 𝜏 = 0.2 < 𝜏.

𝜔 = √𝑢 = 0.4709. In addition, it is easy to show that
𝜏 = 0.948. Therefore, Theorem 10 is satisfied.

If 𝜏 = 0.2 < 𝜏, the CTL-present infection equilibrium 𝐸
2

of system (3) is locally asymptotically stable (see Figure 2). If
𝜏 = 5 > 𝜏, then the CTL-present infection equilibrium 𝐸

2
of

system (3) becomes unstable, and theHopf bifurcation occurs
(see Figure 3).

6. Conclusion

In this paper, we have studied an HIV infection model
including infected cells in an eclipse stage and CTL immune
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Figure 3:The bifurcating periodic solution from the equilibrium 𝐸
2

of system (3) occurs when 𝜏 = 5.

response. The global stability of the uninfected equilibrium
𝐸
0
for system (2) and (3) has been given by the LaSalle’s

invariance principlewhen the basic reproductive ratio𝑅
0
< 1;

it shows that the disease will be controlled. Compared with
the earlier modeling studies on the immune response of HIV
infection [14, 18, 20], our analysis reveals the existence of
a CTL-absent infection equilibrium 𝐸

1
(𝑥
1
, 𝑤
1
, 𝑦
1
, 0) when

𝑅
0
> 1. We also obtained the global asymptotic stability of

a CTL-absent infection equilibrium 𝐸
1
for system (2) and (3)

when 𝑅
1
< 1 and 1 < 𝑅

0
< 1 + (𝜂 + 𝑞)/𝛿. This indicates

that there is a persistent HIV infection with no humeral and
cellular immune responses. Furthermore, we can see that the
time delay has no effect on the stability of the uninfected
equilibrium 𝐸

0
and CTL-absent infection equilibrium 𝐸

1
for

the DDE model.
When 𝑅

1
> 1, we show that the CTL-present infection

equilibrium 𝐸
2
is locally asymptotically stable when the delay

𝜏 is small, and with the increase of the delay 𝜏 the stability of
𝐸
2
may destabilize and lead toHopf bifurcation.This suggests

that, with the HIV infection developing, the proviral load
and CTL frequency can either stabilize at a constant level
or show oscillations. Similar phenomenon was also observed
in [17–19]. The HIV dynamics model without immune delay
is globally stable [14, 15]. In this paper, we show that the
HIV infection model including infected cells in an eclipse
stage and CTL immune response without immune delay is
globally stable; and for the model with immune delay, Hopf
bifurcation appears under some conditions.
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