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This paper deals with a Dirac systemwith transmission condition and eigenparameter in boundary condition.We give an operator-
theoretic formulation of the problem then investigate the existence of the solution. Some spectral properties of the problem are
studied.

1. Introduction

After Walter [1] had given an operator-theoretic formulation
of eigenvalue problems with eigenvalue parameter in the
boundary conditions, Fulton [2, 3] has carried over the
methods of Titchmarsh [4, chapter 1] to this problem. Then,
a large amount of the mathematical literature was devoted to
these subjects during the last twenty years. We will mention
some of the papers published at least twenty years ago, but
of course there are many other interesting and important
papers published more recently, which are not referred to
here. The existence of solution and some spectral properties
of Sturm-Liouville problem with eigenparameter-dependent
boundary conditions and also with transmission conditions
at one or more inner points of considered finite interval
has been studied by Mukhtarov and Tunç [5]; see also [6,
7]. A Dirac system when the eigenparameter appears in
boundary conditions has been studied by Kerimov [8]. In
[9], an inverse problem for the Dirac system with eigenvalue-
dependent boundary conditions and transmission condition
is investigated.

The aim of the present paper is to study a Dirac system
with transmission condition and eigenparameter in bound-
ary condition. For this, we follow the method in [5]. We
consider the Dirac system

ℓ (𝑢) = 𝐴𝑢
󸀠

(𝑥) − 𝑃 (𝑥) 𝑢 (𝑥) = 𝜆𝑢 (𝑥) , (1)

where

𝐴 = (
0 1

−1 0
) ,

𝑃 (𝑥) = (
𝑝
1
(𝑥) 0

0 𝑝
2
(𝑥)

) ,

𝑢 (𝑥) = (
𝑢
1
(𝑥)

𝑢
2
(𝑥)

) ,

(2)

or
𝑢
󸀠

2
(𝑥) − 𝑝

1
(𝑥) 𝑢
1
(𝑥) = 𝜆𝑢

1
(𝑥) ,

𝑢
󸀠

1
(𝑥) + 𝑝

2
(𝑥) 𝑢
2
(𝑥) = − 𝜆𝑢

2
(𝑥) , 𝑥 ∈ [𝑎, 𝑐) ∪ (𝑐, 𝑏] ,

(3)

with boundary conditions

sin𝛼𝑢
1
(𝑎) − cos𝛼𝑢

2
(𝑎) = 0, (4)

𝑏
1
𝑢
1
(𝑏) − 𝑎

1
𝑢
2
(𝑏) + 𝜆 (sin𝛽𝑢

1
(𝑏) − cos𝛽𝑢

2
(𝑏)) = 0, (5)

and transmission conditions at the inner point 𝑥 = 𝑐

𝑢
1
(𝑐 − 0) = 𝛾𝑢

1
(𝑐 + 0) ,

𝑢
2
(𝑐 − 0) = 𝛾

−1
𝑢
2
(𝑐 + 0) .

(6)

Here and later on, 𝜆 is a complex eigenvalue parameter; the
functions𝑝

𝑖
(𝑥)(𝑖 = 1, 2) are continuous on [𝑎, 𝑐)∪(𝑐, 𝑏]which

have finite limits𝑝
𝑖
(±𝑐) = lim

𝑥→±𝑐
𝑝
𝑖
(𝑥)(𝑖 = 1, 2). 𝑎

1
, 𝑏
1
, 𝛾 are

real numbers and 𝛼, 𝛽 ∈ [0, 𝜋).



2 Abstract and Applied Analysis

2. Operator Formulation of the Problem

For convenience, we will assume that |𝑎
1
| + |𝑏
1
| ̸= 0, 𝛾 ̸= 0. To

formulate a theoretic approach to problem (1)–(6), we define
the Hilbert space H = 𝐿

2
[𝑎, 𝑐) ∪ 𝐿

2
(𝑐, 𝑏] ⊕ C

𝜎
with an inner

product

⟨𝑈, 𝑉⟩H = ∫

𝑐

𝑎

𝑢
𝑇

(𝑥) V (𝑥) 𝑑𝑥 + ∫
𝑏

𝑐

𝑢
𝑇

(𝑥) V (𝑥) 𝑑𝑥 +
1

𝜎
𝑢̃Ṽ,

(7)

where 𝑇 stands for the transpose and

𝑈 = (
𝑢 (𝑥)

𝑢̃
) , 𝑉 = (

V (𝑥)
Ṽ

) ∈ H,

𝑢 (𝑥) = (
𝑢
1
(𝑥)

𝑢
2
(𝑥)

) , V (𝑥) = (
V
1
(𝑥)

V
2
(𝑥)

) ∈ 𝐻,

(8)

𝑢
𝑖
(𝑥), V
𝑖
(𝑥) ∈ 𝐿

2
[𝑎, 𝑐) ∪ 𝐿

2
(𝑐, 𝑏], (𝑖 = 1, 2), 𝑢̃, Ṽ ∈ C. The

constant 𝜎 is defined by

𝜎 := det( 𝑏
1

𝑎
1

sin𝛽 cos𝛽) > 0. (9)

Let dom(A) ⊆ H be set of all 𝑈 = (
𝑢(𝑥)

𝑢̂
) ∈ H, such that

𝑢
1
(𝑥), 𝑢
2
(𝑥) are absolutely continuous on [𝑎, 𝑐) ∪ (𝑐, 𝑏], 𝑢̂ =

sin𝛽𝑢
1
(𝑏)−cos𝛽𝑢

2
(𝑏) and ℓ(𝑢) ∈ H, sin𝛼𝑢

1
(𝑎)−cos𝛼𝑢

2
(𝑎) =

0, 𝑢
1
(±𝑐), 𝑢

2
(±𝑐) have finite limits, 𝑢̃ = 𝑏

1
𝑢
1
(𝑏)−𝑎

1
𝑢
2
(𝑏). Now

define the operator A : dom(A) → H by

A(
𝑢 (𝑥)

𝑢̂
) = (

ℓ (𝑢)

−𝑢̃
) . (10)

Hence, we can rewrite the problem (1)–(6) in the operator
form as

A𝑈 = 𝜆𝑈. (11)

Obviously, the operator A and the Dirac system (1)–(6)
have the same eigenvalues. Also the eigenvectors of (1)–(6)
coincide with the first two components of the corresponding
eigenelement of the operator A.

Lemma 1. The dom(A) is dense in H.

Proof. It is easily seen that there is no nonzero vector 𝐹 =

(𝑓(𝑥), 𝑓) ∈ H such that for every 𝑈 = (𝑢(𝑥), 𝑢̂) ∈ dom(A),
⟨𝐹, 𝑈⟩H = 0. This implies dom(A)⊥ = {Θ}, where Θ =

(0, 0, 0). Therefore, dom(A) is dense in H.

Theorem 2. The operator A is symmetric.

Proof. For each 𝑈,𝑉 ∈ dom(A) from the inner product (7)
and the integration by parts, we have

⟨A𝑈,𝑉⟩H = ∫

𝑐

𝑎

(𝑢
󸀠

2
− 𝑝
1
𝑢
1
) V
1
𝑑𝑥 − ∫

𝑐

𝑎

(𝑢
󸀠

1
+ 𝑝
2
𝑢
2
) V
2
𝑑𝑥

+ ∫

𝑏

𝑐

(𝑢
󸀠

2
− 𝑝
1
𝑢
1
) V
1
𝑑𝑥

− ∫

𝑏

𝑐

(𝑢
󸀠

1
+ 𝑝
2
𝑢
2
) V
2
𝑑𝑥 −

1

𝜎
𝑢̃V̂

= [𝑢
2
V
1
− 𝑢
1
V
2
]
𝑐−0

𝑎
+ [𝑢
2
V
1
− 𝑢
1
V
2
]
𝑏

𝑐+0

− ∫

𝑐

𝑎

𝑢
2
V󸀠
1
𝑑𝑥 − ∫

𝑐

𝑎

𝑝
1
𝑢
1
V
1
𝑑𝑥 + ∫

𝑐

𝑎

𝑢
1
V󸀠
2
𝑑𝑥

− ∫

𝑐

𝑎

𝑝
2
𝑢
2
V
2
𝑑𝑥 − ∫

𝑏

𝑐

𝑢
2
V󸀠
1
𝑑𝑥 − ∫

𝑏

𝑐

𝑝
1
𝑢
1
V
1
𝑑𝑥

+ ∫

𝑏

𝑐

𝑢
1
V󸀠
2
𝑑𝑥 − ∫

𝑏

𝑐

𝑝
2
𝑢
2
V
2
𝑑𝑥 −

1

𝜎
𝑢̃V̂

= [𝑢
2
(𝑐 − 0) V

1
(𝑐 − 0) − 𝑢

1
(𝑐 − 0) V

2
(𝑐 − 0)]

− [𝑢
2
(𝑎) V
1
(𝑎) − 𝑢

1
(𝑎) V
2
(𝑎)]

+ [𝑢
2
(𝑏) V
1
(𝑏) − 𝑢

1
(𝑏) V
2
(𝑏)]

− [𝑢
2
(𝑐 + 0) V

1
(𝑐 + 0) − 𝑢

1
(𝑐 + 0) V

2
(𝑐 + 0)]

− ∫

𝑐

𝑎

𝑢
2
(V󸀠
1
+ 𝑝
2
V
2
) 𝑑𝑥 + ∫

𝑐

𝑎

𝑢
1
(V󸀠
2
− 𝑝
1
V
1
) 𝑑𝑥

− ∫

𝑏

𝑐

𝑢
2
(V󸀠
1
+ 𝑝
2
V
2
) 𝑑𝑥 + ∫

𝑏

𝑐

𝑢
1
(V󸀠
2
− 𝑝
1
V
1
) 𝑑𝑥

−
1

𝜎
(𝑏
1
𝑢
1
(𝑏) − 𝑎

1
𝑢
2
(𝑏))

× (sin𝛽V
1
(𝑏) − cos𝛽V

2
(𝑏)) .

(12)

Since𝑈 and𝑉 satisfy the same boundary condition (4) at 𝑥 =
𝑎,

𝑢
2
(𝑎) V
1
(𝑎) = 𝑢

1
(𝑎) V
2
(𝑎) . (13)

From transmission condition (6), it follows that

𝑢
2
(𝑐 − 0) V

1
(𝑐 − 0) = 𝑢

2
(𝑐 + 0) V

1
(𝑐 + 0) ,

𝑢
1
(𝑐 − 0) V

2
(𝑐 − 0) = 𝑢

1
(𝑐 + 0) V

2
(𝑐 + 0) .

(14)

Furthermore,

[𝑢
2
(𝑏) V
1
(𝑏) − 𝑢

1
(𝑏) V
2
(𝑏)] −

1

𝜎
(𝑏
1
𝑢
1
(𝑏) − 𝑎

1
𝑢
2
(𝑏))

× (sin𝛽V
1
(𝑏) − cos𝛽V

2
(𝑏))

= −
1

𝜎
(sin𝛽𝑢

1
(𝑏) − cos𝛽𝑢

2
(𝑏)) (𝑏

1
V
1
(𝑏) − 𝑎

1
V
2
(𝑏))

= −
1

𝜎
𝑢̂Ṽ.

(15)

Now substituting (13), (14), and (15) in (12), we obtain

⟨A𝑈,𝑉⟩H = ⟨𝑈,A𝑉⟩H. (16)
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Since the operator A is symmetric, the following orthog-
onality relation is valid.

Corollary 3. All the eigenvalues of the system (1)–(6) are real
and to every eigenvalue 𝜆

𝑛
, there corresponds a vector-valued

eigenfunction 𝑢
𝑇

𝑛
(𝑥, 𝜆
𝑛
) = (𝑢

1𝑛
(𝑥, 𝜆
𝑛
),𝑢
2𝑛
(𝑥, 𝜆
𝑛
)). Moreover,

vector-valued eigenfunctions belonging to different eigenvalues
are orthogonal in the sense of

⟨𝑢
𝑛
, 𝑢
𝑚
⟩
H
= ∫

𝑐

𝑎

𝑢
𝑇

𝑛
𝑢
𝑚
𝑑𝑥 + ∫

𝑏

𝑐

𝑢
𝑇

𝑛
𝑢
𝑚
𝑑𝑥 −

1

𝜎
𝑢̃
𝑛
𝑢̂
𝑚
= 0. (17)

Remark 4. The vector-valued eigenfunctions stated in
Corollary 3 are not orthogonal in the usual sense in the
Hilbert space 𝐿

2
[𝑎, 𝑏].

3. Existence of Solutions

In this section, we study the existence of the solution of the
Dirac system (1) with boundary conditions (4) and transmis-
sion condition (6).

Theorem 5. The Dirac system (1) has a solution Φ(𝑥, 𝜆) on
[𝑎, 𝑏] satisfying boundary condition (4) and transmission con-
dition (6). For each 𝑥,Φ(𝑥, 𝜆) is a vector-valued entire function
of 𝜆.

Proof. From the classical theory of differential equations (see
[10]), since the Dirac system

𝐴𝑢
󸀠

(𝑥) − 𝑃 (𝑥) 𝑢 (𝑥) = 𝜆𝑢 (𝑥) , 𝑥 ∈ [𝑎, 𝑐) (18)

with the initial conditions

𝑢
1
(𝑎) = cos𝛼, 𝑢

2
(𝑎) = sin𝛼 (19)

is continuous on the interval [𝑎, 𝑐), this system has a unique
solutionΦ

1
(𝑥, 𝜆) = (Φ

11
(𝑥, 𝜆), Φ

21
(𝑥, 𝜆))

𝑇 which is an entire
function of 𝜆 on [𝑎, 𝑐).

Now consider the Dirac system of differential equations

𝑢
󸀠

2
(𝑥) − 𝑝

1
(𝑥) 𝑢
1
(𝑥) = 𝜆𝑢

1
(𝑥) ,

𝑢
󸀠

1
(𝑥) + 𝑝

2
(𝑥) 𝑢
2
(𝑥) = −𝜆𝑢

2
(𝑥) , 𝑥 ∈ (𝑐, 𝑏] ,

(20)

and nonstandard initial conditions contain eigenparameter

𝑢
1
(𝑐 + 0) = 𝛾

−1
Φ
11
(𝑐 − 0, 𝜆) ,

𝑢
2
(𝑐 + 0) = 𝛾Φ

21
(𝑐 − 0, 𝜆) .

(21)

Let us denote solutions of (20) by 𝑢
0
(𝑥, 𝜆) = (𝑢

10
(𝑥, 𝜆),

𝑢
20
(𝑥, 𝜆))

𝑇 in the case 𝑝
1
(𝑥) = 𝑝

2
(𝑥) ≡ 0. It is clear that the

vector-valued function 𝑢
0
(𝑥, 𝜆) is written as

𝑢
10
(𝑥, 𝜆) = 𝑐

1
cos 𝜆𝑥 + 𝑐

2
sin 𝜆𝑥,

𝑢
20
(𝑥, 𝜆) = −𝑐

1
sin 𝜆𝑥 + 𝑐

2
cos 𝜆𝑥.

(22)

From the initial conditions (21), we obtain constants 𝑐
1
and 𝑐
2
.

Then, inserting these values into (22) and using some basic
trigonometric identities, we arrive at

𝑢
0
(𝑥, 𝜆) = (

𝑢
10
(𝑥, 𝜆)

𝑢
20
(𝑥, 𝜆)

) = (
𝛾
−1
Φ
11
(𝑐 − 0, 𝜆) cos 𝜆 (𝑥 − (𝑐 + 0)) + 𝛾Φ

21
(𝑐 − 0, 𝜆) sin 𝜆 (𝑥 − (𝑐 + 0))

𝛾
−1

1
Φ
11
(𝑐 − 0, 𝜆) sin 𝜆 (𝑥 − (𝑐 + 0)) + 𝛾Φ

21
(𝑐 − 0, 𝜆) cos 𝜆 (𝑥 − (𝑐 + 0))) . (23)

By applying the method of variation of the constants as in [11,
page 243], we find the following system of integral equations:

𝑢 (𝑥, 𝜆) = (
𝑢
1
(𝑥, 𝜆)

𝑢
2
(𝑥, 𝜆)

) = (

𝑢
10
(𝑥, 𝜆) + ∫

𝑥

𝑐

{𝑝
1
(𝑠) 𝑢
1
(𝑥, 𝜆) sin 𝜆 (𝑠 − 𝑥) − 𝑝

2
(𝑠) 𝑢
2
(𝑥, 𝜆) cos 𝜆 (𝑠 − 𝑥)} 𝑑𝑠

𝑢
20
(𝑥, 𝜆) + ∫

𝑥

𝑐

{𝑝
1
(𝑠) 𝑢
1
(𝑥, 𝜆) cos 𝜆 (𝑠 − 𝑥) + 𝑝

2
(𝑠) 𝑢
2
(𝑥, 𝜆) sin 𝜆 (𝑠 − 𝑥)} 𝑑𝑠

) . (24)

In what follows, we use the method of successive approx-
imations, which is helpful in constructing a solution of

the integral equation system (24). This method requires a
sequence of functions {𝑢

𝑛
(𝑥, 𝜆)} for 𝑛 = 1, 2, . . . defined as

𝑢
𝑛
(𝑥, 𝜆) = (

𝑢
1𝑛
(𝑥, 𝜆)

𝑢
2𝑛
(𝑥, 𝜆)

) = (

𝑢
10
(𝑥, 𝜆) + ∫

𝑥

𝑐

{𝑝
1
(𝑠) 𝑢
1𝑛−1

sin 𝜆 (𝑠 − 𝑥) − 𝑝
2
(𝑠) 𝑢
2𝑛−1

cos 𝜆 (𝑠 − 𝑥)} 𝑑𝑠

𝑢
20
(𝑥, 𝜆) + ∫

𝑥

𝑐

{𝑝
1
(𝑠) 𝑢
1𝑛−1

cos 𝜆 (𝑠 − 𝑥) + 𝑝
2
(𝑠) 𝑢
2𝑛−1

sin 𝜆 (𝑠 − 𝑥)} 𝑑𝑠
) , (25)

where 𝑢
10
(𝑥, 𝜆) and 𝑢

20
(𝑥, 𝜆) are defined in (23). It is obvious

that each of 𝑢
𝑛
(𝑥, 𝜆) is an entire function of 𝜆 for every 𝑥 ∈

(𝑐, 𝑏].

Set
𝑧
𝑛
(𝑥, 𝜆) = 𝑢

𝑛
(𝑥, 𝜆) − 𝑢

𝑛−1
(𝑥, 𝜆) , (26)



4 Abstract and Applied Analysis

where 𝑧
𝑇

𝑛
(𝑥, 𝜆) = (𝑧

1𝑛
(𝑥, 𝜆), 𝑧

2𝑛
(𝑥, 𝜆)), and let 𝑀

1
=

max
𝑥∈(𝑐,𝑏]

|𝑝
1
(𝑥)|,𝑀

2
= max

𝑥∈(𝑐,𝑏]
|𝑝
2
(𝑥)|,𝑀 =max(𝑀

1
,𝑀
2
),

𝑁
1
(𝜆) = max

𝑥∈(𝑐,𝑏]
|𝑢
10
(𝑥, 𝜆)|, 𝑁

2
(𝜆) = max

𝑥∈(𝑐,𝑏]
|𝑢
20
(𝑥, 𝜆)|.

Then,

󵄩󵄩󵄩󵄩𝑧1 (𝑥, 𝜆)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑥

𝑐

󵄨󵄨󵄨󵄨𝑝1 (𝑠) 𝑢10 sin 𝜆 (𝑠 − 𝑥)

−𝑝
2
(𝑠) 𝑢
20
cos 𝜆 (𝑠 − 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑥

𝑐

󵄨󵄨󵄨󵄨𝑝1 (𝑠) 𝑢10 cos 𝜆 (𝑠 − 𝑥)

+𝑝
2
(𝑠) 𝑢
20
sin 𝜆 (𝑠 − 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 2𝑀(𝑁
1
(𝜆) + 𝑁

2
(𝜆)) (𝑥 − 𝑐) ,

(27)

where the norm ‖ ⋅ ‖ can be any convenient norm in H, but
for the sake of presentation, we used 1 − norm. Furthermore,
let 𝑁
1
= max

|𝜆|≤𝑅
𝑁
1
(𝜆), 𝑁

2
= max

|𝜆|≤𝑅
𝑁
2
(𝜆), and 𝑁

𝑅
=

max(𝑁
1
, 𝑁
2
) in closed contour {𝜆 ∈ C : |𝜆| ≤ 𝑅}; then

󵄩󵄩󵄩󵄩𝑧1 (𝑥, 𝜆)
󵄩󵄩󵄩󵄩 ≤ 2𝑀𝑁

𝑅
(𝑥 − 𝑐) . (28)

Similarly,

󵄩󵄩󵄩󵄩𝑧2 (𝑥, 𝜆)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑥

𝑐

󵄨󵄨󵄨󵄨𝑝1 (𝑠) (𝑢11 − 𝑢10) sin 𝜆 (𝑠 − 𝑥)

−𝑝
2
(𝑠) (𝑢
21
− 𝑢
20
) cos 𝜆 (𝑠 − 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑥

𝑐

󵄨󵄨󵄨󵄨𝑝1 (𝑠) (𝑢11 − 𝑢10) cos 𝜆 (𝑠 − 𝑥)

+𝑝
2
(𝑠) (𝑢
21
− 𝑢
20
) sin 𝜆 (𝑠 − 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 2
2
𝑀
2
𝑁
𝑅

(𝑥 − 𝑐)
2

2
,

(29)

and so generally,

󵄩󵄩󵄩󵄩𝑧𝑛 (𝑥, 𝜆)
󵄩󵄩󵄩󵄩 ≤ 2
𝑛
𝑀
𝑛
𝑁
𝑅

(𝑥 − 𝑐)
𝑛

𝑛!
. (30)

Now, consider the infinite series

𝑢
0
(𝑥, 𝜆) +

∞

∑

𝑘=1

𝑧
𝑘
(𝑥, 𝜆) . (31)

The 𝑛th partial sum of this series is 𝑢
𝑛
(𝑥, 𝜆); that is,

𝑢
𝑛
(𝑥, 𝜆) = 𝑢

0
(𝑥, 𝜆) +

𝑛

∑

𝑘=1

𝑧
𝑘
(𝑥, 𝜆) . (32)

Therefore, the sequence {𝑢
𝑛
(𝑥, 𝜆)} converges if and only if

series (31) does so. In view of (30), it follows that series (31) is
uniformly convergent with respect to 𝑥 on (𝑐, 𝑏] and 𝜆 in the
closed contour {𝜆 ∈ C : |𝜆| ≤ 𝑅}. Let the sum of series (31) be
Φ
2
(𝑥, 𝜆) = (Φ

12
(𝑥, 𝜆), Φ

22
(𝑥, 𝜆))

𝑇; that is,

Φ
2
(𝑥, 𝜆) = 𝑢

0
(𝑥, 𝜆) +

∞

∑

𝑘=1

𝑧
𝑘
(𝑥, 𝜆) , (33)

and so, (32) gives

lim
𝑛→∞

𝑢
𝑛
(𝑥, 𝜆) = Φ

2
(𝑥, 𝜆) . (34)

Finally, we will show next that the limit functionΦ
2
(𝑥, 𝜆)

satisfies (20). For this, we need to findΦ󸀠
2
(𝑥, 𝜆). From (33),

Φ
󸀠

2
(𝑥, 𝜆) = (

Φ
󸀠

12
(𝑥, 𝜆)

Φ
󸀠

22
(𝑥, 𝜆)

)

= (

𝑢
󸀠

11
(𝑥, 𝜆)

𝑢
󸀠

21
(𝑥, 𝜆)

) +

∞

∑

𝑘=2

(

𝑧
󸀠

1𝑘
(𝑥, 𝜆)

𝑧
󸀠

2𝑘
(𝑥, 𝜆)

) .

(35)

For the first term on the right-hand side of (35), if we take
𝑛 = 1 in (25), then

(
𝑢
11

𝑢
21

) = (
𝑢
10

𝑢
20

)

+∫

𝑥

𝑐

(
𝑝
1
(𝑠) sin 𝜆 (𝑠 − 𝑥) −𝑝

2
(𝑠) cos 𝜆 (𝑠 − 𝑥)

𝑝
1
(𝑠) cos 𝜆 (𝑠 − 𝑥) 𝑝

2
(𝑠) sin 𝜆 (𝑠 − 𝑥) )

× (
𝑢
10

𝑢
20

)𝑑𝑠,

(

𝑢
󸀠

11

𝑢
󸀠

21

) = (

𝑢
󸀠

10

𝑢
󸀠

20

)

+∫

𝑥

𝑐

(
−𝜆𝑝
1
(𝑠) cos 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) sin 𝜆 (𝑠 − 𝑥)

𝜆𝑝
1
(𝑠) sin 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) cos 𝜆 (𝑠 − 𝑥))

× (
𝑢
10

𝑢
20

)𝑑𝑠

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)(
𝑢
10

𝑢
20

) ;

(36)

now from (25) and the fact that (𝑢
10
, 𝑢
20
)
𝑇 is a solution of the

homogeneous system, we have

(

𝑢
󸀠

11

𝑢
󸀠

21

) = (
0 −𝜆

𝜆 0
)(

𝑢
11

𝑢
21

) + (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)(
𝑢
10

𝑢
20

) .

(37)

For the second term on the right-hand side of (35), it follows
from (25) and (26) that

(
𝑧
1𝑘

𝑧
2𝑘

) = ∫

𝑥

𝑐

(
𝑝
1
(𝑠) sin 𝜆 (𝑠 − 𝑥) −𝑝

2
(𝑠) cos 𝜆 (𝑠 − 𝑥)

𝑝
1
(𝑠) cos 𝜆 (𝑠 − 𝑥) 𝑝

2
(𝑠) sin 𝜆 (𝑠 − 𝑥) )

× (
𝑧
1𝑘−1

𝑧
2𝑘−1

)𝑑𝑠

(38)
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and its derivative is

(

𝑧
󸀠

1𝑘

𝑧
󸀠

2𝑘

) = ∫

𝑥

𝑐

(
−𝜆𝑝
1
(𝑠) cos 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) sin 𝜆 (𝑠 − 𝑥)

𝜆𝑝
1
(𝑠) sin 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) cos 𝜆 (𝑠 − 𝑥))

× (
𝑧
1𝑘−1

𝑧
2𝑘−1

)𝑑𝑠

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)(
𝑧
1𝑘−1

𝑧
2𝑘−1

) .

(39)

In this equation

∫

𝑥

𝑐

(
−𝜆𝑝
1
(𝑠) cos 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) sin 𝜆 (𝑠 − 𝑥)

𝜆𝑝
1
(𝑠) sin 𝜆 (𝑠 − 𝑥) −𝜆𝑝

2
(𝑠) cos 𝜆 (𝑠 − 𝑥))

× (
𝑧
1𝑘−1

𝑧
2𝑘−1

)𝑑𝑠 = (
0 −𝜆

𝜆 0
)(

𝑧
1𝑘

𝑧
2𝑘

) .

(40)

By using (39) and (40), the second term on the right-hand
side of (35) becomes

∞

∑

𝑛=2

(

𝑧
󸀠

1𝑘
(𝑥, 𝜆)

𝑧
󸀠

2𝑘
(𝑥, 𝜆)

) = (
0 −𝜆

𝜆 0
)

∞

∑

𝑘=2

(
𝑧
1𝑘

𝑧
2𝑘

)

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)

∞

∑

𝑘=2

(
𝑧
1𝑘−1

𝑧
2𝑘−1

)

= (
0 −𝜆

𝜆 0
)[

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

) − (
𝑧
11

𝑧
21

)]

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

) .

(41)

Substituting (37) and (41) into (35) gives

(

Φ
󸀠

12
(𝑥, 𝜆)

Φ
󸀠

22
(𝑥, 𝜆)

) = (
0 −𝜆

𝜆 0
) [(

𝑢
11

𝑢
21

) − (
𝑧
11

𝑧
21

)]

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)(
𝑢
10

𝑢
20

)

+ (
0 −𝜆

𝜆 0
)

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

)

+ (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

)

= (
0 −𝜆

𝜆 0
)(

𝑢
10

𝑢
20

) + (
0 −𝑝

2
(𝑥)

𝑝
1
(𝑥) 0

)(
𝑢
10

𝑢
20

)

+ (
0 −𝜆 − 𝑝

2
(𝑥)

𝜆 + 𝑝
1
(𝑥) 0

)

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

)

= (
0 −𝜆 − 𝑝

2
(𝑥)

𝜆 + 𝑝
1
(𝑥) 0

)

× [(
𝑢
10

𝑢
20

) +

∞

∑

𝑘=1

(
𝑧
1𝑘

𝑧
2𝑘

)]

= (
0 −𝜆 − 𝑝

2
(𝑥)

𝜆 + 𝑝
1
(𝑥) 0

)(
Φ
12
(𝑥, 𝜆)

Φ
22
(𝑥, 𝜆)

)

(42)

so that Φ
2
(𝑥, 𝜆) satisfies (20) on (𝑐, 𝑏]. It also clearly satisfies

the boundary conditions (21). As a result, the vector-valued
functionΦ(𝑥, 𝜆) defined by

Φ (𝑥, 𝜆) =
{

{

{

Φ
𝑇

1
(𝑥, 𝜆) = (Φ

11
, Φ
21
) , 𝑥 ∈ [𝑎, 𝑐) ,

Φ
𝑇

2
(𝑥, 𝜆) = (Φ

12
, Φ
22
) , 𝑥 ∈ (𝑐, 𝑏]

(43)

satisfies the Dirac system (1), (4), and (6).

Theorem 6. For any 𝜆 ∈ C, the Dirac system

𝑢
󸀠

2
(𝑥) − 𝑝

1
(𝑥) 𝑢
1
(𝑥) = 𝜆𝑢

1
(𝑥) ,

𝑢
󸀠

1
(𝑥) + 𝑝

2
(𝑥) 𝑢
2
(𝑥) = −𝜆𝑢

2
(𝑥)

(44)

has a solution

Ψ (𝑥, 𝜆) =
{

{

{

Ψ
𝑇

1
(𝑥, 𝜆) = (Ψ

11
, Ψ
21
) , 𝑥 ∈ [𝑎, 𝑐) ,

Ψ
𝑇

2
(𝑥, 𝜆) = (Ψ

12
, Ψ
22
) , 𝑥 ∈ (𝑐, 𝑏]

(45)

on [𝑎, 𝑐) ∪ (𝑐, 𝑏] satisfying the boundary condition (5) and
transmission condition (6). For each 𝑥 ∈ [𝑎, 𝑐) ∪ (𝑐, 𝑏],Ψ(𝑥, 𝜆)
is a vector-valued entire function of 𝜆.

Proof. The proof of this theorem is similar to that of
Theorem 5 and hence is omitted.

4. The Eigenvalues of the Problem

We know from [11, page 194] that the Wronskians𝑊(Φ
𝑖
, Ψ
𝑖
),

(𝑖 = 1, 2) do not depend on 𝑥 ∈ [𝑎, 𝑐) ∪ (𝑐, 𝑏]. They depend
only on 𝜆, and let 𝑊(Φ

𝑖
(𝑥, 𝜆), Ψ

𝑖
(𝑥, 𝜆)) =: 𝜔

𝑖
(𝜆)(𝑖 = 1, 2).

However, it follows from (6) that

𝜔
1
(𝜆) = 𝑊(Φ

1
, Ψ
1
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Φ
11
(𝑥, 𝜆) Φ

21
(𝑥, 𝜆)

Ψ
11
(𝑥, 𝜆) Ψ

21
(𝑥, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Φ
11
(𝑐 − 0, 𝜆)Ψ

21
(𝑐 − 0, 𝜆)

− Φ
21
(𝑐 − 0, 𝜆)Ψ

11
(𝑐 − 0, 𝜆)

= 𝛾
−1
Φ
12
(𝑐 + 0, 𝜆) 𝛾Ψ

22
(𝑐 + 0, 𝜆)

− 𝛾Φ
22
(𝑐 + 0, 𝜆) 𝛾

−1
Ψ
12
(𝑐 + 0, 𝜆)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Φ
12
(𝑥, 𝜆) Φ

22
(𝑥, 𝜆)

Ψ
12
(𝑥, 𝜆) Ψ

22
(𝑥, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑊 (Φ
2
, Ψ
2
) = 𝜔
2
(𝜆) .

(46)
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Hence, we get

𝜔
1
(𝜆) = 𝜔

2
(𝜆) := 𝜔 (𝜆) . (47)

Here we defined a function 𝜔(𝜆).
Let the solutionsΦ(𝑥, 𝜆) andΨ(𝑥, 𝜆) of (1)–(6) be defined

by the initial conditions for some 𝛼, 𝛽 ∈ [0, 𝜋)

Φ
11
(𝑎, 𝜆) = cos𝛼, Φ

21
(𝑎, 𝜆) = sin𝛼,

Ψ
12
(𝑏, 𝜆) = 𝑎

1
+ 𝜆 cos𝛽, Ψ

22
(𝑏, 𝜆) = 𝑏

1
+ 𝜆 sin𝛽.

(48)

Therefore, any solution of (1)–(6) may be represented as

𝑢 (𝑥, 𝜆)

=
{

{

{

𝑢
𝑇

1
(𝑥, 𝜆) = (𝑐

1
Φ
11
+ 𝑐
2
Ψ
11
, 𝑐
1
Φ
21
+ 𝑐
2
Ψ
21
) , 𝑥 ∈ [𝑎, 𝑐)

𝑢
𝑇

2
(𝑥, 𝜆) = (𝑐

3
Φ
12
+ 𝑐
4
Ψ
12
, 𝑐
3
Φ
22
+ 𝑐
4
Ψ
22
) , 𝑥 ∈ (𝑐, 𝑏] .

(49)

Applying conditions (4), (5), and (6) to solution (49) and
considering the initial values (48), we obtain the following
coefficients matrix of linear system equations of the variables
𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
:

[
[
[
[
[

[

0 𝜔
1
(𝜆) 0 0

0 0 𝜔
2
(𝜆) 0

Φ
11
(𝑐 − 0, 𝜆) Ψ

11
(𝑐 − 0, 𝜆) −𝛾Φ

12
(𝑐 + 0, 𝜆) −𝛾Ψ

12
(𝑐 + 0, 𝜆)

Φ
21
(𝑐 − 0, 𝜆) Ψ

21
(𝑐 − 0, 𝜆) −𝛾

−1
Φ
22
(𝑐 + 0, 𝜆) −𝛾

−1
Ψ
22
(𝑐 + 0, 𝜆)

]
]
]
]
]

]

,

(50)
and let us denote the determinant of this matrix by 𝑊(𝜆);
then for every 𝜆 ∈ C,

𝑊(𝜆) = −𝜔
1
(𝜆) 𝜔
2
(𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Φ
11
(𝑐 − 0, 𝜆) Ψ

11
(𝑐 − 0, 𝜆)

Φ
21
(𝑐 − 0, 𝜆) Ψ

21
(𝑐 − 0, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −𝜔
2

1
(𝜆) 𝜔
2
(𝜆) = −𝜔

3

(𝜆) .

(51)

Theorem 7. The eigenvalues of the problem (1)–(6) are the
zeros of the function 𝜔(𝜆).

Proof. Let 𝜔(𝜆
𝑛
) = 0 for any 𝜆 = 𝜆

𝑛
. Then, it follows from

(51) that the Wronskian ofΦ
2
(𝑥, 𝜆
𝑛
) and Ψ

2
(𝑥, 𝜆
𝑛
) is zero, so

that Ψ
2
(𝑥, 𝜆
𝑛
) is a constant multiple of Φ

2
(𝑥, 𝜆
𝑛
), say

Ψ
2
(𝑥, 𝜆
𝑛
) = 𝑘Φ

2
(𝑥, 𝜆
𝑛
) , 𝑥 ∈ (𝑐, 𝑏] . (52)

It follows that Ψ(𝑥, 𝜆
𝑛
) also fulfils the boundary condition

(5) and, therefore, is a vector-valued eigenfunction of the
problem (1)–(6) for eigenvalue 𝜆

𝑛
.

Conversely, let 𝑢
𝑛
(𝑥, 𝜆
𝑛
) be a vector-valued eigenfunction

corresponding to eigenvalue 𝜆
𝑛
, but 𝜔(𝜆

𝑛
) ̸= 0. Then, from

(51), at least one of the pair of the functions (Φ𝑇
1
, Φ
𝑇

2
) and

(Ψ
𝑇

1
, Ψ
𝑇

2
)would be linearly independent.Therefore, 𝑢

𝑛
(𝑥, 𝜆
𝑛
)

can be expressed as

𝑢
𝑛
(𝑥, 𝜆
𝑛
) =

{

{

{

𝐶
1
Φ
𝑇

1
(𝑥, 𝜆
𝑛
) + 𝐶
2
Ψ
𝑇

1
(𝑥, 𝜆
𝑛
) , 𝑥 ∈ [𝑎, 𝑐) ,

𝐷
1
Φ
𝑇

2
(𝑥, 𝜆
𝑛
) + 𝐷
2
Ψ
𝑇

2
(𝑥, 𝜆
𝑛
) , 𝑥 ∈ (𝑐, 𝑏] ,

(53)

where at least one of the constants 𝐶
1
, 𝐶
2
,𝐷
1
,𝐷
2
is not zero.

Since 𝑢
𝑛
(𝑥, 𝜆
𝑛
) is a vector-valued eigenfunction correspond-

ing to eigenvalue 𝜆
𝑛
by substitution in conditions (4)–(6), we

obtain a system of linear, homogeneous equations and the
determinant of this system is zero. This means that𝑊(𝜆

𝑛
) =

0, and from (51), 𝜔(𝜆
𝑛
) = 0 which yields a contradiction to

the assumption that 𝜔(𝜆
𝑛
) ̸= 0. This completes the proof.

Since 𝜔(𝜆) is an entire function of 𝜆 and the eigenvalues
of the problem (1)–(6) consist of the zeros of 𝜔(𝜆), we have
the next theorem.

Theorem 8. The Dirac system (1)–(6) has at most denumer-
ably many eigenvalues, and these eigenvalues have no finite
limit point.
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Sturm-Liouville equations with transmission conditions,” Israel
Journal of Mathematics, vol. 144, pp. 367–380, 2004.
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