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A new analytic method is applied to singular initial-value Lane-Emden-type problems, and the effectiveness and performance of
the method is studied. The proposed method obtains a Taylor expansion of the solution, and when the solution is polynomial,
our method reproduces the exact solution. It is observed that the method is easy to implement, valuable for handling singular
phenomena, yields excellent results at a minimum computational cost, and requires less time. Computational results of several test
problems are presented to demonstrate the viability and practical usefulness of the method. The results reveal that the method is
very effective, straightforward, and simple.

1. Introduction

Since the beginning of stellar astrophysics, the investigation
of stellar structures has been a central problem. There have
been continuous efforts to deduce the radial profiles of the
pressure, density, andmass of a star, and one of the key results
that came out of these efforts is the Lane-Emden equation,
which describes the density profile of a gaseous star. Mathe-
matically, the Lane-Emden equation is a second-order singu-
lar ordinary differential equation. In astrophysics, the Lane-
Emden equation is essentially a Poisson equation for the
gravitational potential of a self-gravitating, spherically sym-
metric polytropic fluid.

The Lane-Emden equation has been used to model sev-
eral phenomena in mathematical physics, thermodynamics,
fluidmechanics, and astrophysics, such as the theory of stellar
structure, the thermal behavior of a spherical cloud of gas,
isothermal gas spheres, and the theory of thermionic currents
[9–13]. Lane-Emden-type equations were first published by
Lane [14]; they were explored in more detail by Emden in
1870 [15], who considered the thermal behavior of a spherical
cloud of gas that acts under the mutual attraction of its

molecules and is subject to the classical laws of thermo-
dynamics. The reader is kindly requested to peruse [9–17]
to know more details about Lane-Emden-type equations,
including their history, variations, and applications.

In the present paper, we introduce a simple new analytical
method we call the residual-power-series (RPS) method [18]
to discover series solutions to linear and nonlinear Lane-
Emden equations.TheRPSmethod is effective and easy to use
to solve Lane-Emden equationswithout linearization, pertur-
bation, or discretization. This method constructs an approx-
imate analytical solution in the form of a polynomial. By
using the concept of residual error, we obtain a series solution,
which in practice tends to be a truncated series solution.

The RPS method has the following characteristics [18]:
first, it obtains a Taylor expansion of the solution, and as a
result, the exact solution is obtained whenever it is a poly-
nomial. Moreover, the solutions and all of its derivatives are
applicable for each arbitrary point in a given interval. Second,
the RPS method has small computational requirements and
high precision, and furthermore it requires less time.

In the present paper, the RPS method is used to obtain a
symbolic approximate solution for generalized Lane-Emden



2 Abstract and Applied Analysis

equations in the following form that are assumed to have a
unique solution in the interval of integration:

𝑦
󸀠󸀠

(𝑥) +
𝑝
1
(𝑥)

𝑞
1
(𝑥) 𝑞
2
(𝑥)

𝑓 (𝑦
󸀠

(𝑥)) +
𝑝
2
(𝑥)

𝑞
2
(𝑥)

𝑔 (𝑦 (𝑥))

+ ℎ (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥)) = 0, 𝑥 ∈ (𝑥
0
, 𝑥
0
+ 𝑎) ,

(1)

which is subject to both the initial conditions,

𝑦 (𝑥
0
) = 𝑎
0
, 𝑦

󸀠
(𝑥
0
) = 𝑎
1
, (2)

and one of the following constraint-conditions cases:

case I: 𝑝
1
(𝑥
0
) ̸= 0, 𝑞

1
(𝑥
0
) = 0,

case II: 𝑞
1
(𝑥
0
) ̸= 0 , 𝑞

2
(𝑥
0
) = 0,

where 𝑓, 𝑔, ℎ are nonlinear analytic functions, 𝑝
𝑖
, 𝑞
𝑖
are ana-

lytic functions on [𝑥
0
, 𝑥
0
+ 𝑎], 𝑦(𝑥) is an unknown function

of an independent variable 𝑥 that is to be determined, and
𝑥
0
, 𝑎
𝑖
, 𝑎 ∈ R with 𝑎 > 0. Throughout this paper, we assume

that 𝑦(𝑥) is an analytic function on the given interval.
As special cases, when 𝑓(𝑦

󸀠
(𝑥)) = 𝑦

󸀠
(𝑥), ℎ(𝑥, 𝑦(𝑥),

𝑦
󸀠
(𝑥)) = ℎ(𝑥), 𝑝

1
(𝑥) ∈ R, 𝑞

1
(𝑥) = 𝑥, 𝑞

2
(𝑥) = 1,

𝑥
0

= 0, and for special forms of 𝑔(𝑦(𝑥)), we obtain
several well-known forms of the Lane-Emden equations. For
example, when 𝑔(𝑦(𝑥)) = (𝑦(𝑥))

𝑛, 𝑛 ∈ N, ℎ(𝑥, 𝑦(𝑥), 𝑦󸀠(𝑥)) =
0, 𝑎
0
= 1, and 𝑎

1
= 0, we obtain the form of (1) and (2)

that is the standard Lane-Emden equation; this equation was
originally used to model the thermal behavior of a spherical
cloud of gas that acts under the mutual attraction of its
molecules and is subject to the classical laws of thermody-
namics [10, 16]. However, when 𝑔(𝑦(𝑥)) = 𝑒

𝑦(𝑥), ℎ(𝑥, 𝑦(𝑥),
𝑦
󸀠
(𝑥)) = 0, 𝑎

0
= 0, and 𝑎

1
= 0, the obtained model can be

used to view isothermal gas spheres, where the temperature
remains constant [10, 17]. For a thorough discussion of the
formulation of the Lane-Emden equations and the corre-
sponding physical behavior of the modeled systems, the
reader is referred to [9–17].

In most cases, the Lane-Emden equation does not always
have solutions that can be obtained using analytical methods.
In fact, many of real physical and engineering phenomena
that are encountered are almost impossible to solve by this
technique; hence, these problems must be attacked by var-
ious approximate and numerical methods. Therefore, some
authors have proposed numerical methods to approximate
the solutions of a special case of (1) and (2). For example, the
Adomian decomposition method has been applied to solve
the Lane-Emden equation 𝑦󸀠󸀠(𝑥) + (𝛽/𝑥)𝑦󸀠(𝑥) + 𝑓(𝑦(𝑥)) +
𝑔(𝑥) = 0 as described in [3]. In [1], the authors developed the
optimal homotopy asymptotic method to solve the singular
equation 𝑦󸀠󸀠(𝑥) + (𝛽/𝑥)𝑦󸀠(𝑥) + 𝑓(𝑦(𝑥)) + ℎ(𝑥) = 0. Addi-
tionally, in [2], the authors provided the Hermite functions
collocation method to further investigate the Lane-Emden
equation 𝑦

󸀠󸀠
(𝑥) + (𝛽/𝑥)𝑦

󸀠
(𝑥) + 𝑝(𝑥)𝑓(𝑦(𝑥)) + 𝑔(𝑥) = 0.

Furthermore, the homotopy perturbation method is carried
out in [4] to solve the equation𝑦󸀠󸀠(𝑥)+(𝛽/𝑥)𝑦󸀠(𝑥)+𝑓(𝑦(𝑥)) =
0. Recently, the Bessel collocation method was proposed to
solve the linear Lane-Emden equation 𝑦󸀠󸀠(𝑥) + (𝛽/𝑥)𝑦󸀠(𝑥) +
𝑝(𝑥)𝑦(𝑥) + 𝑓(𝑥) = 0 in [19].

However, none of the previous studies propose amethod-
ical way to solve (1) and (2). Moreover, the previous studies
require more effort to achieve their results, and usually they
are only suited for a special form of (1) and (2). However, the
applications of other versions of series solutions to linear and
nonlinear problems can be found in [20–25], and, to discern
the numerical solvability of different categories of singular
differential equations, one can consult [26].

The outline of the paper is as follows: in the next section,
we present the formulation of the RPS method. Section 3
covers the convergence theorem. In Section 4, numerical
examples are given to illustrate the capability of the proposed
method. This paper ends in Section 5 with some concluding
remarks.

2. The Formulation of the RPS Method

In this section, we employ the RPS method to find a series
solution to the generalized Lane-Emden equation (1) that
is subject to given initial conditions equation (2). First, we
formulate and analyze the RPS method to solve such prob-
lems.

The RPSmethod consists of expressing the solution of (1)
and (2) as a power-series expansion about the initial point
𝑥 = 𝑥

0
. To achieve our goal, we suppose that these solutions

take the form 𝑦(𝑥) = ∑
∞

𝑚=0
𝑦
𝑚
(𝑥) where 𝑦

𝑚
are the terms of

approximations 𝑦
𝑚
(𝑥) = 𝑐

𝑚
(𝑥 − 𝑥

0
)
𝑚,𝑚 = 0, 1, 2, . . ..

Obviously, when𝑚 = 0, 1 because 𝑦
0
(𝑥), 𝑦󸀠
1
(𝑥) satisfy the

initial conditions (2) as 𝑦(𝑥
0
) = 𝑐
0
= 𝑦
0
(𝑥
0
) and 𝑦󸀠(𝑥

0
) =

𝑐
1
= 𝑦
󸀠

1
(𝑥
0
), we have an initial guess for the approximation of

𝑦(𝑥), namely,𝑦initial(𝑥) = 𝑦(𝑥0)+𝑦
󸀠
(𝑥
0
)(𝑥−𝑥

0
). In contrast, if

we choose 𝑦initial(𝑥) as the initial guess for an approximation
of 𝑦(𝑥), then we can calculate 𝑦

𝑚
(𝑥) for 𝑚 = 2, 3, 4, . . . and

approximate the solution 𝑦(𝑥) of (1) and (2) by the following
𝑘th-truncated series:

𝑦
𝑘

(𝑥) =

𝑘

∑

𝑚=0

𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚

. (3)

Prior to applying the RPSmethod, we rewrite the singular
equations (1) and (2) in the following form:

𝑃 (𝑥) 𝑦
󸀠󸀠

(𝑥) + 𝑄 (𝑥) 𝑓 (𝑦
󸀠

(𝑥)) + 𝑈 (𝑥) 𝑔 (𝑦 (𝑥))

+ 𝑉 (𝑥) ℎ (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥)) = 0,

(4)

where 𝑃(𝑥) = 𝑞
1
(𝑥)𝑞
2
(𝑥), 𝑄(𝑥) = 𝑝

1
(𝑥), 𝑈(𝑥) = 𝑝

2
(𝑥)𝑞
1
(𝑥)

and 𝑉(𝑥) = 𝑞
1
(𝑥)𝑞
2
(𝑥). Substituting the 𝑘th truncated series

𝑦
𝑘
(𝑥) into (4) leads to the following definition of the 𝑘th

residual function:

Res𝑘 (𝑥) = 𝑃 (𝑥)
𝑘

∑

𝑚=2

𝑚(𝑚 − 1) 𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−2

+ 𝑄 (𝑥) 𝑓(

𝑘

∑

𝑚=1

𝑚𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−1

)
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+ 𝑈 (𝑥) 𝑔(

𝑘

∑

𝑚=0

𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚

) + 𝑉 (𝑥) ℎ

× (𝑥,

𝑘

∑

𝑚=0

𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚

,

𝑘

∑

𝑚=1

𝑚𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−1

) ,

(5)
and, furthermore, we obtain the following ∞th residual
function Res∞(𝑥) = lim

𝑘→∞
Res𝑘(𝑥). It easy to see that

Res∞(𝑥) = 0 for each 𝑥 ∈ [𝑥
0
, 𝑥
0
+ 𝑎]. Thus, Res∞(𝑥)

is infinitely differentiable function at 𝑥 = 𝑥
0
. Furthermore,

(𝑑
𝑘−1
/𝑑𝑥
𝑘−1
)Res∞(𝑥

0
) = (𝑑

𝑘−1
/𝑑𝑥
𝑘−1
)Res𝑘(𝑥

0
) = 0. In fact,

this relation is a fundamental rule in the RPS method and its
applications.

Now, in order to obtain the second approximate solution,
we set 𝑘 = 2 and 𝑦

2
(𝑥) = ∑

2

𝑚=0
𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚. Then we

differentiate both sides of (5) with respect to 𝑥 and substitute
𝑥 = 𝑥

0
to obtain the following:

𝑑

𝑑𝑥
Res2 (𝑥

0
)

= 2𝑐
2
𝑃
󸀠
(𝑥
0
) + 2𝑐
2
𝑄 (𝑥
0
)
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
)

+𝑉 (𝑥
0
) (

𝜕

𝜕𝑥
0

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑐
1

𝜕

𝜕𝑐
0

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
)

+ 2𝑐
2

𝜕

𝜕𝑐
1

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
))

+𝑉
󸀠
(𝑥
0
) ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑄
󸀠
(𝑥
0
) 𝑓 (𝑐
1
)

+𝑈
󸀠
(𝑥
0
) 𝑔 (𝑐
0
) + 𝑐
1

𝑑

𝑑𝑐
0

𝑔 (𝑐
0
) 𝑈 (𝑥

0
) .

(6)

Using the facts that (𝑑/𝑑𝑥)Res∞(𝑥
0
) = (𝑑/𝑑𝑥)Res2(𝑥

0
) =

0 and that 𝑈(𝑥
0
) = 𝑉(𝑥

0
) = 0, we know that (6) gives the

following value for 𝑐
2
:

𝑐
2
= −

1

2 (𝑃󸀠 (𝑥
0
) + 𝑄 (𝑥

0
) (𝑑/𝑑𝑐

1
) 𝑓 (𝑐
1
))

× [𝑉
󸀠
(𝑥
0
) ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑄
󸀠
(𝑥
0
) 𝑓(𝑐
1
) + 𝑈
󸀠
(𝑥
0
) 𝑔 (𝑐
0
)].

(7)
Thus, using the second truncated series, the second

approximate solution for (1) and (2) can be written as

𝑦
2

(𝑥)

= 𝑎
0
+ 𝑎
1
(𝑥 − 𝑥

0
) −

1

2!

×
𝑉
󸀠
(𝑥
0
) ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑄
󸀠
(𝑥
0
) 𝑓 (𝑐
1
) + 𝑈
󸀠
(𝑥
0
) 𝑔 (𝑐
0
)

𝑃󸀠 (𝑥
0
) + 𝑄 (𝑥

0
) (𝑑/𝑑𝑐

1
) 𝑓 (𝑐
1
)

× (𝑥 − 𝑥
0
)
2

.

(8)

Similarly, to find the third approximate solution, we set
𝑘 = 3 and 𝑦3(𝑥) = ∑

3

𝑚=0
𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚. Then we differentiate

both sides of (5) with respect to 𝑥 and substitute 𝑥 = 𝑥
0
to

obtain the following value of 𝑐
3
:

𝑐
3
= −

1

6 (2𝑃󸀠 (𝑥
0
) + 𝑄 (𝑥

0
) (𝑑/𝑑𝑐

1
) 𝑓 (𝑐
1
))

× [2𝑐
2
𝑃
󸀠󸀠
(𝑥
0
) + 2𝑉

󸀠
(𝑥
0
)

× [
𝑑

𝑑𝑥
0

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑐
1

𝑑

𝑑𝑐
0

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
)

+ 2𝑐
1

𝑑

𝑑𝑐
1

ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
)]

+ 𝑉
󸀠󸀠
(𝑥
0
) ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 2𝑐
1
𝑈
󸀠
(𝑥
0
)
𝑑

𝑑𝑐
0

ℎ (𝑐
0
)

+ 4𝑐
2

2
𝑄 (𝑥
0
)
𝑑
2

𝑑𝑐2
1

𝑓 (𝑐
1
) + 4𝑐
2
𝑄
󸀠
(𝑥
0
)
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
)

+ 𝑓 (𝑐
1
) 𝑄
󸀠󸀠
(𝑥
0
) ] .

(9)

The above result is valid due to the fact that
(𝑑/𝑑𝑥)Res3(𝑥

0
) = 0. Hence, using the third truncated series,

the third approximate solution for (1) and (2) can be written
as
𝑦
3

(𝑥)

= 𝑎
0
+ 𝑎
1
(𝑥 − 𝑥

0
) −

1

2

×
𝑉
󸀠
(𝑥
0
) ℎ (𝑥
0
, 𝑐
0
, 𝑐
1
) + 𝑄
󸀠
(𝑥
0
) 𝑓 (𝑐
1
) + 𝑈
󸀠
(𝑥
0
) 𝑔 (𝑐
0
)

𝑃󸀠 (𝑥
0
) + 𝑄 (𝑥

0
) (𝑑/𝑑𝑐

1
) 𝑓 (𝑐
1
)

× (𝑥 − 𝑥
0
)
2

−
1

3!
((2𝑐
2
𝑃
󸀠󸀠
(𝑥
0
) + ⋅ ⋅ ⋅ + 4𝑐

2

2
𝑄 (𝑥
0
)
𝑑
2

𝑑𝑐2
1

𝑓 (𝑐
1
)

+ 4𝑐
2
𝑄
󸀠
(𝑥
0
)
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
) + 𝑓 (𝑐

1
) 𝑄
󸀠󸀠
(𝑥
0
))

× (2𝑃
󸀠
(𝑥
0
) + 𝑄 (𝑥

0
)
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
))

−1

)

× (𝑥 − 𝑥
0
)
3

.

(10)

This procedure can be repeated till the arbitrary order
coefficients of RPS solutions for (1) and (2) are obtained.
Moreover, higher accuracy can be achieved by evaluating
more components of the solution.

3. Convergence Theorem and Error Analysis

In this section, we study the convergence of the present
method to capture the behavior of the solution. Afterwards,
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error functions are introduced to study the accuracy and effi-
ciency of the method. Actually, continuous approximations
to the solution will be obtained.

Taylor’s theorem allows us to represent fairly general
functions exactly in terms of polynomialswith a known, spec-
ified, and bounded error. The next theorem will guarantee
convergence to the exact analytic solution of (1) and (2).

Theorem 1. Suppose that 𝑦(𝑥) is the exact solution for (1) and
(2).Then the approximate solution obtained by the RPSmethod
is in fact the Taylor expansion of 𝑦(𝑥).

Proof. Assume that the approximate solution for (1) and (2)
is as follows:

𝑦 (𝑥) = 𝑐
0
+ 𝑐
1
(𝑥 − 𝑥

0
) + 𝑐
2
(𝑥 − 𝑥

0
)
2

+ 𝑐
3
(𝑥 − 𝑥

0
)
3

+ ⋅ ⋅ ⋅ .

(11)

In order to prove the theorem, it is enough to show that the
coefficients 𝑐

𝑚
in (11) take the form

𝑐
𝑚
=

1

𝑚!
𝑦
(𝑚)

(𝑥
0
) , 𝑚 = 0, 1, 2, . . . , (12)

where 𝑦(𝑥) is the exact solution for (1) and (2). Clearly, for
𝑚 = 0 and𝑚 = 1 the initial conditions (2) give 𝑐

0
= 𝑦(𝑥

0
) and

𝑐
1
= 𝑦
󸀠
(𝑥
0
), respectively. Moreover, for 𝑚 = 2, differentiate

both sides of (4) with respect to 𝑥 and substitute 𝑥 = 𝑥
0
to

obtain

𝑄
󸀠
(𝑥
0
) 𝑓 (V) + 𝑄 (𝑥

0
) 𝑦
󸀠󸀠
(𝑥
0
)
𝑑

𝑑V
𝑓 (V) = 0, V = 𝑦󸀠 (𝑥

0
) .

(13)

Indeed, from (11), one can write

𝑦 (𝑥) = 𝑦 (𝑥
0
) + 𝑦
󸀠
(𝑥
0
) (𝑥 − 𝑥

0
) + 𝑐
2
(𝑥 − 𝑥

0
)
2

+ 𝑐
3
(𝑥 − 𝑥

0
)
3

+ ⋅ ⋅ ⋅ .

(14)

By substituting (14) into (4), differentiating both sides of the
resulting equation with respect to 𝑥, and then setting 𝑥 = 𝑥

0
,

we obtain

𝑄
󸀠
(𝑥
0
) 𝑓 (𝑐
1
) + 2𝑐
2
𝑄 (𝑥
0
)
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
) = 0, 𝑐

1
= 𝑦
󸀠
(𝑥
0
) .

(15)

By comparing (13) and (15), it easy to see that 𝑐
2

=

(1/2!)𝑦
󸀠󸀠
(𝑥
0
). Hence, according to (14) the approximation for

(1) and (2) is

𝑦 (𝑥) = 𝑦 (𝑥
0
) + 𝑦
󸀠
(𝑥
0
) (𝑥 − 𝑥

0
) +

1

2
𝑦
󸀠󸀠
(𝑥
0
) (𝑥 − 𝑥

0
)
2

+ 𝑐
3
(𝑥 − 𝑥

0
)
3

+ ⋅ ⋅ ⋅ .

(16)

Furthermore, for𝑚 = 3, differentiating both sides of (4) twice
with respect to 𝑥 and then substituting 𝑥 = 𝑥

0
yields the

following result:

𝑄 (𝑥
0
) (𝑦
󸀠󸀠
(𝑥
0
))
2 𝑑
2

𝑑V2
𝑓 (V)

+ [2𝑄
󸀠
(𝑥
0
) 𝑦
󸀠󸀠
(𝑥
0
) + 2𝑄 (𝑥

0
) 𝑦
󸀠󸀠󸀠
(𝑥
0
)]

𝑑

𝑑V
𝑓 (V)

+ 𝑄
󸀠󸀠
(𝑥
0
) 𝑓 (V) = 0, V = 𝑦󸀠 (𝑥

0
) .

(17)

By substituting (16) into (4), differentiating both sides of the
resulting equation twice with respect to 𝑥, and then setting
𝑥 = 𝑥

0
, we obtain

𝑄 (𝑥
0
) (2𝑐
2
)
2 𝑑
2

𝑑𝑐2
1

𝑓 (𝑐
1
)

+ [𝑄
󸀠
(𝑥
0
) 4𝑐
2
+ 𝑄 (𝑥

0
) 6𝑐
3
]
𝑑

𝑑𝑐
1

𝑓 (𝑐
1
)

+ 𝑄
󸀠󸀠
(𝑥
0
) 𝑓 (𝑐
1
) = 0, V = 𝑦󸀠 (𝑥

0
) .

(18)

By comparing (17) and (18), we can conclude that 𝑐
3

=

(1/3!)𝑦
󸀠󸀠󸀠
(𝑥
0
). Thus, according to (16), we can write the

approximation for (1) and (2) as

𝑦 (𝑥) = 𝑦 (𝑥
0
) + 𝑦
󸀠
(𝑥
0
) (𝑥 − 𝑥

0
) +

1

2
𝑦
󸀠󸀠
(𝑥
0
) (𝑥 − 𝑥

0
)
2

+
1

3!
𝑦
󸀠󸀠󸀠
(𝑥
0
) (𝑥 − 𝑥

0
)
3

+ ⋅ ⋅ ⋅ .

(19)

By continuing the above procedure, we can easily prove (13)
for𝑚 = 4, 5, 6, . . ..Thus, the proof of the theorem is complete.

Corollary 2. If𝑦(𝑥) is a polynomial, then the RPSmethodwill
obtain the exact solution.

It will be convenient to have a notation for the error
in the approximation 𝑦(𝑥) ≈ 𝑦

𝑘
(𝑥). Accordingly, let

Rem𝑘(𝑥) denote the difference between 𝑦(𝑥) and its 𝑘th
Taylor polynomial, which is obtained from the RPS method;
that is, let

Rem𝑘 (𝑥) = 𝑦 (𝑥) − 𝑦𝑘 (𝑥) =
∞

∑

𝑚=𝑘+1

𝑦
(𝑚)

(𝑥
0
)

𝑚!
(𝑥 − 𝑥

0
)
𝑚

.

(20)

The functions Rem𝑘(𝑥) are called the 𝑘th remainder of
the RPS approximation of 𝑦(𝑥). In fact, it often happens that
the remainders Rem𝑘(𝑥) become smaller and approach zero
as 𝑘 approaches infinity. The concept of “accuracy” refers to
how closely a computed or measured value agrees with the
true value. To show the accuracy of the present method, we
report three types of error functions.The first one is the exact
error, Ext, which is defined as follows:

Ext𝑘 (𝑥) := 󵄨󵄨󵄨󵄨󵄨𝑦 (𝑥) − 𝑦
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Rem𝑘 (𝑥)󵄨󵄨󵄨󵄨󵄨 . (21)
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Table 1: A numerical comparison of the exact error function Ext𝑘(𝑥) to Example 1 for different values of 𝑥 in [0, 10].

𝑥
𝑖

Exact solution Reference [1] Reference [2] Present method
0 0 0 0 0
0.01 −0.00000099 6.295572 × 10−19 5.790000 × 10−8 0
0.1 −0.0009 5.83469 × 10−13 8.409000 × 10−7 0
0.5 −0.0625 4.937685 × 10−9 2.195800 × 10−6 0
1 0 1.079378 × 10−8 8.284000 × 10−7 0
2 8 1.614569 × 10−4 1.732000 × 10−7 0
5 500 1.80785 × 10+2 1.909000 × 10−7 0
10 9000 1.894851 × 10+6 3.391999 × 10−4 0

Similarly, the consecutive error, which is denoted byCon, and
the residual error, which is denoted by Res, are defined by

Con𝑘 (𝑥) := 󵄨󵄨󵄨󵄨󵄨𝑦
𝑘+1

(𝑥) − 𝑦
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Rem𝑘+1 (𝑥) − Rem𝑘 (𝑥)󵄨󵄨󵄨󵄨󵄨 ,

Res𝑘 (𝑥) :=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃 (𝑥)
𝑑
2

𝑑𝑥2
𝑦
𝑘

(𝑥) + 𝑄 (𝑥) 𝑓(
𝑑

𝑑𝑥
𝑦
𝑘

(𝑥))

+ 𝑈 (𝑥) 𝑔 (𝑦
𝑘

(𝑥)) + 𝑉 (𝑥) ℎ

× (𝑥, 𝑦
𝑘

(𝑥) ,
𝑑

𝑑𝑥
𝑦
𝑘

(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(22)

respectively, where 𝑥 ∈ [𝑎, 𝑏] and 𝑦𝑘(𝑥) are the 𝑘th-order
approximation of 𝑦(𝑥) that is obtained by the RPS method.
An excellent account of the study of error analysis, which
includes its definitions, varieties, applications, andmethod of
derivations, can be found in [27].

4. Numerical Results and Discussion

The proposed method provides an analytical approximate
solution in terms of an infinite power series. However, there
is a practical need to evaluate this solution and to obtain
numerical values from the infinite power series. The con-
sequent series truncation and the corresponding practical
procedure are realized to accomplish this task.The truncation
transforms the otherwise analytical results into an exact
solution, which is evaluated to a finite degree of accuracy.

In this section, we consider six examples to demonstrate
the performance and efficiency of the present technique.
Throughout this paper, all of the symbolic and numerical
computations are performed using the Maple 13 software
package.

4.1. Example 1. Consider the following linear nonhomoge-
neous Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
8

𝑥
𝑦
󸀠

(𝑥) + 𝑥𝑦 (𝑥) = 𝑥
5
− 𝑥
4
+ 44𝑥

2
− 30𝑥,

0 < 𝑥 < ∞,

(23)

which is subject to the initial conditions

𝑦 (0) = 0, 𝑦
󸀠

(0) = 0. (24)

As we mentioned earlier, if we select the first two terms
of the approximations as 𝑦

0
(𝑥) = 0 and 𝑦

1
(𝑥) = 0, then the

𝑘th-truncated series has the form

𝑦
𝑘

(𝑥) =

𝑘

∑

𝑚=2

𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚

= 𝑐
2
𝑥
2
+ 𝑐
3
𝑥
3
+ 𝑐
4
𝑥
4

+ ⋅ ⋅ ⋅ + 𝑐
𝑘
𝑥
𝑘
.

(25)

To find the values of the coefficients 𝑐
𝑚
, 𝑚 = 2, 3, 4, . . .,

we employ our RPS algorithm. Therefore, we construct the
residual function as follows:

Res𝑘 (𝑥) = 𝑥
𝑘

∑

𝑚=2

𝑚(𝑚 − 1) 𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−2

+ 8

𝑘

∑

𝑚=2

𝑚𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−1

+ 𝑥
2

𝑘

∑

𝑚=2

𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚

− 𝑥 (𝑥
5
− 𝑥
4
+ 44𝑥

2
− 30𝑥) .

(26)
Consequently, the 4th-order approximation of the RPS

solution for (23) and (6) according to this residual function is
as follows:

𝑦
3

(𝑥) = −𝑥
3
+ 𝑥
4
, (27)

which agrees with Corollary 2. It easy to demonstrate that
each of the coefficients 𝑐

𝑚
for 𝑚 ≥ 5 in expansion (25) van-

ishes. In other words,∑∞
𝑚=0

𝑐
𝑚
(𝑥)
𝑚
= ∑
4

𝑚=0
𝑐
𝑚
(𝑥)
𝑚. Thus, the

analytic approximate solution to (23) and (6) is identical to
the exact solution 𝑦(𝑥) = 𝑥4−𝑥3. Table 1 shows a comparison
between the absolute errors of ourmethod that were obtained
from a 4th-order approximation, the optimal homotopy
asymptotic method [1], and the Hermite functions colloca-
tion method [2]. From the table, it can be seen that the RPS
method provides us with an accurate approximate solution
to (23) and (6). In fact, the results reported in this table
confirm the effectiveness and accuracy of our method.

4.2. Example 2. Consider the following nonlinear homoge-
neous Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
8

𝑥
𝑦
󸀠

(𝑥) + 9𝜋𝑦 (𝑥) + 2𝜋𝑦 (𝑥) ln𝑦 (𝑥) = 0,

0 < 𝑥 < ∞,

(28)
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Figure 1: Plots of the RPS solution to (28) and (29) when 𝑘 =

5, 10, 15, 20 and the exact solution is on [0, 𝜋/2].

which is subject to the initial conditions

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0. (29)

Assume that the initial guess approximation (which is the
1st approximation) has the form 𝑦

1
(𝑥) = 1. Then, the 10th

truncated series of the RPS solution of 𝑦(𝑥) for (28) and (29)
is as follows:

𝑦
10

(𝑥) = 1 −
𝜋

2
𝑥
2
+
𝜋
2

8
𝑥
4
−
𝜋
3

48
𝑥
6
+
𝜋
4

384
𝑥
8
−

𝜋
5

3840
𝑥
10

=

5

∑

𝑗=0

(−
𝜋

2
)

𝑗 𝑥
2𝑗

𝑗
.

(30)

Thus, the exact solution of (28) and (29) has a general
form that coincides with the exact solution

𝑦 (𝑥) =

∞

∑

𝑗=0

(−
𝜋

2
)

𝑗 (𝑥
2
)
𝑗

𝑗
= 𝑒
(−𝜋/2)𝑥

2

. (31)

Let us carry out an error analysis of the RPS method for
this example. Figure 1 shows the exact solution 𝑦(𝑥) and the
four iterated approximations 𝑦𝑘(𝑥) for 𝑘 = 5, 10, 15, 20. This
graph exhibits the convergence of the approximate solutions
to the exact solutionwith respect to the order of the solutions.
In Figure 2, we plot the exact error functions Ext𝑘(𝑥) when
𝑘 = 5, 10, 15, 20, 30, which approach the axis 𝑦 = 0 as the
number of iterations increases. This graph shows that the
exact errors become smaller as the order of the solutions
increases, that is, as we progress through more iterations.
These error indicators confirm the convergence of the RPS
method with respect to the order of the solutions. From
Figure 2, it is easy for the reader to compare the new result of
the RPS method with the exact solution. Indeed, this graph
shows that the current method has an appropriate conver-
gence rate.

4E − 04

3E − 04

2E − 04

1E − 04

0E + 00

Ex
ac

t e
rr

or

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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y15 (x)

y20 (x)
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Figure 2: Plots of the exact error functions for (28) and (29) when
𝑘 = 5, 10, 15, 20 on [0, 𝜋/2].

4.3. Example 3. Consider the following nonlinear homoge-
neous Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + 4 (2𝑒
𝑦(𝑥)

+ 𝑒
(1/2)𝑦(𝑥)

) = 0, 0 < 𝑥 < ∞,

(32)

which is subject to the initial conditions

𝑦 (0) = 0, 𝑦
󸀠

(0) = 0. (33)

After we apply the RPS method to solve (32) and (33), we
construct the residual function as follows:

Res𝑘 (𝑥) = 𝑥
𝑘

∑

𝑚=2

𝑚(𝑚 − 1) 𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−2

+ 2

𝑘

∑

𝑚=1

𝑚𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚−1

+ 4𝑥 (2𝑒
∑
𝑘

𝑚=0
𝑐
𝑚
(𝑥−𝑥
0
)
𝑚

+ 𝑒
(1/2)∑

𝑘

𝑚=0
𝑐
𝑚
(𝑥−𝑥
0
)
𝑚

) ,

(34)

where ∑
𝑘

𝑚=2
𝑐
𝑚
(𝑥 − 𝑥

0
)
𝑚 is the 𝑘th-truncated series that

approximates the solution 𝑦(𝑥). As we mentioned earlier, if
we select the first two terms of the approximations as 𝑦

0
(𝑥) =

0 and 𝑦
1
(𝑥) = 0 (which would imply that 𝑐

1
= 𝑐
2
= 0), then

the first few terms of the approximations of the RPS solution
for (32) and (33) are

𝑦
2
(𝑥) = −2𝑥, 𝑦

3
(𝑥) = 0, 𝑦

4
(𝑥) = 𝑥

4
,

𝑦
5
(𝑥) = 0, 𝑦

6
(𝑥) = −

2

3
𝑥
6
, . . . .

(35)
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Table 2: The values of the residual error function Res𝑘(𝑥) to Example 4 when 𝑘 = 10, 15, 20, 25 for different values of 𝑥 in [0, 2].

𝑥
𝑖

Res10(𝑥
𝑖
) Res15(𝑥

𝑖
) Res20(𝑥

𝑖
) Res25(𝑥

𝑖
)

0 0 0 0 0
0.1 4.528461 × 10−13 4.528461 × 10−13 4.528461 × 10−13 4.528461 × 10−13

0.2 1.250167 × 10−12 3.996803 × 10−15 3.996803 × 10−15 3.996803 × 10−15

0.5 1.785672 × 10−9 6.611378 × 10−14 1.045275 × 10−13 1.045275 × 10−13

1 3.539988 × 10−6 8.587641 × 10−9 4.061307 × 10−12 1.395550 × 10−13

1.5 2.884109 × 10−4 3.208217 × 10−6 1.902825 × 10−8 1.854792 × 10−10

2 6.215665 × 10−3 1.865257 × 10−4 7.253518 × 10−6 1.909733 × 10−7

Table 3: A numerical comparison of the approximate solution to Example 4 for different values of 𝑥 in [0, 2].

𝑥
𝑖

Reference [3] Reference [2] Reference [4] Present method
0 1 1 1 1
0.1 0.9985979358 0.9986051425 0.9985979358 0.9985979274
0.2 0.9943962733 0.9944062706 0.9943962733 0.9943962649
0.5 0.9651777886 0.9651881683 0.9651777886 0.9651777802
1 0.8636811027 0.8636881301 0.8636811027 0.8636811256
1.5 0.7050419247 0.7050524103 0.7050419247 0.7050452522
2 0.5063720330 0.5064687568 0.5063720330 0.5064651631

Furthermore, if we collect the above results, then the 10th-
truncated series of the RPS solution for 𝑦(𝑥) is given as

𝑦
10

(𝑥) = − 2𝑥
2
+ 𝑥
4
−
2

3
𝑥
6
+
1

2
𝑥
8
−
2

5
𝑥
10

= − 2 ((𝑥
2
)
1

−
1

2
(𝑥
2
)
2

+
1

3
(𝑥
2
)
3

−
1

4
(𝑥
2
)
4

+
1

5
(𝑥
2
)
5

) .

(36)

Thus, the exact solution of (32) and (33) has the general
form that coincides with the exact solution

𝑦 (𝑥) = −2

∞

∑

𝑗=1

(−1)
𝑗+1 𝑥
2𝑗

𝑗
= −2 ln (1 + 𝑥2) . (37)

In most real-life situations, the Lane-Emden equation is
too complicated to solve exactly, and, as a result, there is a
practical need to approximate the solution. In the next two
examples, the exact solution cannot be found analytically.

4.4. Example 4. Consider the following nonlinear homoge-
neous Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) − sin𝑦 (𝑥) = 0, 0 < 𝑥 < ∞, (38)

which is subject to the initial conditions

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0. (39)

As we mentioned earlier, if we select the initial guess
approximation as 𝑦1(𝑥) = 1, then the Taylor series expansion
of the solution for (38) and (39) is as follows:

𝑦 (𝑥) = 1 + 𝑐
2
𝑥
2
+ 𝑐
3
𝑥
3
+ 𝑐
4
𝑥
4
+ ⋅ ⋅ ⋅ . (40)

Consequently, the 10th-order approximation of the RPS
solution for (38) and (39) is

𝑦
10

(𝑥) = 1 − (
sin 1
6

) 𝑥
2
+ (

sin 2
240

) 𝑥
4
− (

sin 3
7560

−
sin 1
5040

) 𝑥
6

− (
61 sin 4
13063680

−
13 sin 2
1632960

) 𝑥
8

+ (
629 sin 5

3592512000
−

1319 sin 3
3592512000

+
41 sin 1

163296000
)𝑥
10
.

(41)

Our next goal is to show how the 𝑘th value in the 𝑘th-
truncated series (3) affects the approximate solutions. In
Table 2, the residual error has been calculated for various
values of 𝑥 in [0, 2] to measure the extent of agreement
between the 𝑘th-order approximate RPS solutions when 𝑘 =
10, 15, 20, 25. As a result, Table 2 illustrates the rapid conver-
gence of the RPSmethod by increasing the orders of approxi-
mation. To show the efficiency of the RPSmethod, numerical
comparisons are also studied. Table 3 shows a comparison
of 𝑦(𝑥) that is obtained by the 10th-order approximation
of the RPS method with those results that were obtained
by the Adomian decomposition method [3], the Hermite
functions collocation method [2], and the homotopy pertur-
bation method [4]. Again, we find that our method has a
similar degree of accuracy to these other methods.

4.5. Example 5. Consider the following homogeneous non-
linear Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) − 𝑒
−𝑦(𝑥)

= 0, 0 < 𝑥 < ∞, (42)

which is subject to the initial conditions

𝑦 (0) = 0, 𝑦
󸀠

(0) = 0. (43)
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Table 4: A numerical comparison of the approximate solution to Example 5 when 𝑘 = 10 for different values of 𝑥 in [0, 1].

𝑥
𝑖

Reference [5] Reference [6] Reference [7] Reference [8] Present method
0 0 0 0 0 0
0.1 0.0016 0.0166 0.0016 0.0027 0.0017
0.2 0.0065 0.0333 0.0066 0.0038 0.0067
0.3 0.0145 0.0500 0.0149 0.0152 0.0149
0.4 0.0253 0.0666 0.0266 0.0341 0.0265
0.5 0.0385 0.0833 0.0416 0.0456 0.0412
0.6 0.0536 0.1000 0.0598 0.0601 0.0589
0.7 0.0700 0.1166 0.0813 0.0935 0.0797
0.8 0.0870 0.1333 0.1060 0.1399 0.1034
0.9 0.1038 0.1500 0.1338 0.1786 0.1298
1 0.1199 0.1666 0.1646 0.2005 0.1588

Historically, this type of Lane-Emden equation was
derived by Bonnor [28] in 1956 to describe what are now
commonly known as Bonnor-Ebert [28, 29] gas spheres.
These gas spheres are isothermal gas spheres that have been
embedded in a pressurizedmedium at themaximumpossible
mass that allows a hydrostatic equilibrium. The derivation is
based on earlier work by Ebert [29], and hence, the equation
is often referred to as the Lane-Emden equation of the second
kind (which depends on an exponential nonlinearity). For a
derivation of the Lane-Emden equation of the second kind,
the reader is kindly requested to peruse [30–33].

In fact, this model appears in Richardson’s theory of
thermionic currents when the density and electric force of
an electron gas in the neighborhood of a hot body in a
thermal equilibrium [10]must be determined. For a thorough
discussion of the formulation of (42) and (43) and the phys-
ical behavior of the emission of electricity from hot bodies,
see [10, 11]. It should be observed that this equation is non-
linear and has no analytic solution.

As we mentioned earlier, if we select the initial guess
approximation as 𝑦2(𝑥) = 0, then the Taylor series expansion
of solutions to (42) and (43) is as follows:

𝑦 (𝑥) = 𝑐
2
𝑥
2
+ 𝑐
3
𝑥
3
+ 𝑐
4
𝑥
4
+ ⋅ ⋅ ⋅ . (44)

Consequently, the 10th-order approximation of the RPS
solution for (42) and (43) according to this initial guess is
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629

224532000
𝑥
10
.

(45)

As in the previous example, exact solutions do not exist for
the Lane-Emden equations (42) and (43).Thus, in Table 4 we
compare our results to the results from the literature. Some
of these results were obtained in [5] by constructing analytic
approximations based on Euler transform series; others were
obtained in [6] by using two accelerationmethods to improve
the convergence over the standard Taylor series results. In
addition, the author in [7] applied the fractional approxima-
tion technique and the authors in [8] applied the Boubaker

polynomials expansion scheme. In the above table, it can be
seen that our results from the RPS method agree principally
with themethods of [5, 7]. In addition, we find that our results
agree well withmethod [6]. However, for small 𝑥, we find that
the results of [8] agree well with the method of [7], and if 𝑥 is
larger, we find that these results agree with method [6]. This
conclusion is reasonable, as the fractional-approximation-
technique solution in [7] is of low order, and hence, it is
valid for 𝑥 close to 𝑥 = 0. In contrast, the solution in [6]
involves Padé approximation, which can improve the region
of convergence.

In the next example, we show that the RPS method is
capable of reproducing the exact solution to a new version
of the Lane-Emden equation. Furthermore, we show that
the consecutive error is a useful indicator in the iteration
progresses, and moreover, this error can be used to study the
structural analysis of the RPS method.

4.6. Example 6. Consider the following nonlinear nonho-
mogeneous singular initial-value problem:

𝑦
󸀠󸀠

(𝑥) =
𝑒
𝑥

𝑥 sin (𝑥 − 1)
cos (𝑦󸀠 (𝑥))

−
cos𝑥

sin (𝑥 − 1)
sin−1 (𝑦 (𝑥) + 2)

− 𝑦 (𝑥) 𝑦
󸀠

(𝑥) + 𝑒
𝑦(𝑥)+𝑦

󸀠
(𝑥)
+ 𝑓 (𝑥) ,

0 < 𝑥 < ∞

(46)

which is subject to the initial conditions

𝑦 (1) = 1, 𝑦
󸀠

(1) = 1, (47)

where 𝑓(𝑥) is chosen so that the exact solution is 𝑦(𝑥) =

sin(𝑥 − 1) + cos(𝑥 − 1).
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Table 5: The values of the consecutive error function Con𝑘(𝑥) to Example 6 when 𝑘 = 10, 15, 20, 25 for different values of 𝑥 in [1, 3].

𝑥
𝑖

Con10
(𝑥
𝑖
) Con15

(𝑥
𝑖
) Con20

(𝑥
𝑖
) Con25

(𝑥
𝑖
)

1 0 0 0 0
1.2 5.130672 × 10−16 3.132278 × 10−25 4.104743 × 10−35 1.664029 × 10−45

1.4 1.050762 × 10−12 2.052770 × 10−20 8.608271 × 10−29 1.116711 × 10−37

1.6 9.088831 × 10−11 1.348343 × 10−17 4.293706 × 10−25 4.229738 × 10−33

1.8 2.151960 × 10−9 1.345303 × 10−15 1.805285 × 10−22 7.494120 × 10−30

2 2.505211 × 10−8 4.779477 × 10−14 1.957294 × 10−20 2.479596 × 10−27

2.2 1.861393 × 10−7 8.836501 × 10−13 9.004555 × 10−19 2.838529 × 10−25

2.4 1.014501 × 10−6 1.040948 × 10−11 2.292687 × 10−17 1.562104 × 10−23

2.6 4.407214 × 10−6 8.816580 × 10−11 3.785957 × 10−16 5.029219 × 10−22

2.8 1.610059 × 10−5 5.804175 × 10−10 4.491369 × 10−15 1.075143 × 10−20

3 5.130672 × 10−5 3.132278 × 10−9 4.104743 × 10−14 1.664029 × 10−19

If we select the initial guess approximation as 𝑦2(𝑥) =

𝑥 − (1/2)(𝑥 − 1)
2, then the 10th-truncated series of the RPS

solution for (46) and (47) will be
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(48)

Furthermore, if we separate the above approximation’s
odd and even terms, then it is easy to discover that the exact
solution of (46) and (47) has the general form that coincides
with the exact solution
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(49)

Thus, the approximate solution of (46) and (47) has the
general form that coincides with the exact solution

𝑦 (𝑥) = sin (𝑥 − 1) + cos (𝑥 − 1) . (50)

Remark. While one cannot know the exact error with-
out knowing the solution, in most cases the consecutive
error can be used as a reliable indicator in the iteration
progresses. In Table 5, the values of the consecutive error
functions Con𝑘

𝑖
(𝑥), 𝑖 = 1, 2, 3 for two consecutive approx-

imate solutions have been calculated for various values of
𝑥 in [0, 1] with a step size of 0.1; the goal was to measure

the difference between the consecutive solutions that were
obtained from the 10th-order RPS solutions for (46) and
(47). However, the computational results provide a numerical
estimate for the convergence of the RPS method. Indeed, it is
clear that the accuracy that is obtained using the present
method is advanced by using an approximation with only a
few additional terms. In addition,we can conclude that higher
accuracy can be achieved by evaluating more components of
the solution. Thus, we terminate the iteration in our method.

5. Conclusion

The goal of the present work was to develop an efficient and
accurate method to solve the Lane-Emden-type equations of
singular initial-value problems.We can conclude that the RPS
method is a powerful and efficient technique that finds an
approximate solution to linear and nonlinear Lane-Emden
equations. The proposed algorithm produced a rapidly con-
vergent series with easily computable components using
symbolic computation software. The results obtained by the
RPS method are very effective and convenient in linear and
nonlinear cases because they require less computational work
and time. This convenient feature confirms our belief that
the efficiency of our technique will give it much greater
applicability in the future for general classes of linear and
nonlinear singular problems.

Acknowledgments

This work was completed during the visit of the author A.
Sami Bataineh (ASB) to the Universiti Kebangsaan Malaysia
(UKM), in June–August 2013, as a visiting researcher of
mathematics.The authors I. Hashim andA. S. Bataineh grate-
fully acknowledge the Grant provided by UKM out of the
University Research Fund DIP-2012-12.

References

[1] S. Iqbal and A. Javed, “Application of optimal homotopy
asymptotic method for the analytic solution of singular Lane-
Emden type equation,” Applied Mathematics and Computation,
vol. 217, no. 19, pp. 7753–7761, 2011.



10 Abstract and Applied Analysis

[2] K. Parand, M. Dehghan, A. R. Rezaei, and S. M. Ghaderi, “An
approximation algorithm for the solution of the nonlinear Lane-
Emden type equations arising in astrophysics using Hermite
functions collocation method,” Computer Physics Communica-
tions, vol. 181, no. 6, pp. 1096–1108, 2010.

[3] A. Wazwaz, “A new algorithm for solving differential equations
of Lane-Emden type,” Applied Mathematics and Computation,
vol. 118, no. 2-3, pp. 287–310, 2001.

[4] A. Yildirim and T. Ozi, “Solutions of singular IVPs of Lane-
Emden type by homotopy perturbationmethod,” Physics Letters
A, vol. 369, no. 1-2, pp. 70–76, 2007.

[5] C. Hunter, “Series solutions for polytropes and the isothermal
sphere,” Monthly Notices of the Royal Astronomical Society, vol.
328, no. 3, pp. 839–847, 2001.

[6] M. I. Nouh, “Accelerated power series solution of polytropic and
isothermal gas spheres,” New Astronomy, vol. 9, no. 6, pp. 467–
473, 2004.

[7] B. M. Mirza, “Approximate analytical solutions of the Lane-
Emden equation for a self-gravitating isothermal gas sphere,”
Monthly Notices of the Royal Astronomical Society, vol. 395, no.
4, pp. 2288–2291, 2009.

[8] K. Boubaker and R. A. Van Gorder, “Application of the BPES
to Lane-Emden equations governing polytropic and isothermal
gas spheres,” New Astronomy, vol. 17, no. 6, pp. 565–569, 2012.

[9] S. Chandrasekhar, Introduction to the Study of Stellar Structure,
Dover Publications, New York, NY, USA, 1967.

[10] H. T. Davis, Introduction to Nonlinear Differential and Integral
Equations, Dover Publications, New York, NY, USA, 1962.

[11] O. U. Richardson, The Emission of Electricity of Hot Bodies,
London, UK, Longmans Green and Company edition, 1921.
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