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This paper analyses the dynamics of a duopoly with quantity-setting firms and different attitudes towards strategic uncertainty.
By following the recent literature on decision making under uncertainty, where the Choquet expected utility theory is adopted
to allow firms to plan their strategies, we investigate the effects of the interaction between pessimistic and optimistic firms on
economic dynamics described by a two-dimensional map. In particular, the study of the local and global behaviour of the map
is performed under three assumptions: (1) both firms have complete information on the market demand and adjust production
over time depending on past behaviours (static expectations—“best reply” dynamics); (2) both firms have incomplete information
and production is adjusted over time by following a mechanism based on marginal profits; and (3) one firm has incomplete
information on the market demand and production decisions are based on the behaviour of marginal profits, and the rival has
complete information on the market demand and static expectations. In cases 2 and 3 it is shown that complex dynamics and
coexistence of attractors may arise. The analysis is carried forward through numerical simulations and the critical lines technique.

1. Introduction

In this paper, we analyse the dynamics of a Cournot duopoly
under strategic uncertainty with pessimistic and optimistic
firms within the framework of a nonlinear dynamic oligopoly
as those developed by a recent burgeoning literature (see [1]
and the papers cited therein).

The issue of decision making under uncertainty as dis-
tinct from risk has recently been revisited, amongst others,
by [2–6]. In these papers, strategic uncertainty is represented
by means of the Choquet expected utility (CEU) theory [7]
where agents exhibit different attitudes towards uncertainty,
that is, pessimism or optimism, overweighing less or more
uncertain events. This theory has also been adopted by [8]
to represent strategic behaviour à la Cournot with different
firms’ attitude towards uncertainty (CEU theory has been
applied to other economic contexts, where optimism and
pessimism can explain the paradox of people buying insur-
ance and gambling, the equity premium puzzle, and the small
stock puzzle [6]).

In a strategic context such as a duopoly game, it is crucial
to forecast the behaviour of the competitor in order to make
a decision and to specify the information set available to each
player. In the literature on nonlinear oligopolies, two distinct
assumptions with regard to available information are usually
made: players have a complete knowledge of the market
demand and use some form of expectations about the rival’s
strategic variable decision (e.g., naive, rational, or adaptive
expectations or, alternatively, some weighted sum of previous
rules) to set the price or the quantity in the future period (e.g.,
[9, 10]); players have limited information about the market
demand and use some forms of estimation of their own
current marginal profits (e.g., [11–14]) or other adjustment
mechanisms such as the local monopolistic approximation
to determine the price or quantity in the future period [15].
This is because, under the hypothesis of limited information,
players are unable to solve the optimisation problem by
accounting for expectations about the value of the strategic
variable that the competitor will choose for the next period,
but they are able to get either a correct estimate of the slope
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of their own profit function in the current period, that is,
the partial derivative of the profit function computed at the
current state of production, or use a linear approximation
of the demand function by market experiments without any
guess about the influence of the competitors (i.e., monopolis-
tic approximation).

In this paper we study local and global dynamics of
a Cournot duopoly model with strategic uncertainty as in
[8] by considering different information sets of players. In
particular, (1) both firms have complete information on
the market demand and use the “best reply” adjustment
mechanism (static expectations) to vary production period
by period; (2) both firms have incomplete information on
the market demand and adjust production by following a
mechanism based on marginal profits; (3) one firm has
incomplete information and production decisions are based
on the behaviour of marginal profits, and the rival has com-
plete information and static expectations.These assumptions
make the topological structure of the map different and
then comparing the local and global properties of the three
dynamic systems is relevant. In particular, in cases 2 and
3 we find that complex dynamics as well as coexistence
of attractors may occur. These phenomena depend on the
relative value of the parameter that weights the strategic
uncertainty of firms. The analysis is performed by applying
the critical lines techniques as well as through numerical
simulations.

The rest of the paper proceeds as follows. Section 2
develops the Cournot model with strategic uncertainty.
Section 3 studies the dynamics of the model under complete
information and static expectations of both firms. Section 4
introduces the adjustment mechanism of production based
onmarginal profits for both firms and performs the local and
global dynamics. Section 5 analyses themixed case. Section 6
outlines the conclusions.

2. The Model

We consider a Cournot duopoly for a single homogenous
product with a liner negatively sloped inverse demand given
by

𝑝 = max {0, 𝑎 − 𝑏𝑄} , (1)

where 𝑎, 𝑏 > 0, 𝑝 > 0 denotes the consumers’ marginal
willingness to pay for product𝑄 = 𝑞

1
+𝑞
2
, and 𝑞

1
(resp., 𝑞

2
) is

the output produced by firm 1 (resp., firm 2).The average and
marginal costs for each single firm to provide one additional
unit of output in the market are equal and given by 0 < 𝑐 < 𝑎.

Profits of firm 𝑖 = {1, 2}, Π
𝑖
, can be written as follows:

Π
𝑖
= max
𝑞𝑖≥0

{−𝑐, (𝑎 − 𝑏𝑄 − 𝑐)} 𝑞
𝑖
. (2)

We assume that firms are risk neutral and their single
productive capacity is able to satisfy the whole market. With
regard to strategic uncertainty, each firm does not know
whether the rival behaves as a quantity setter à la Cournot.
However, each firm has some beliefs about rival’s behaviour
and such beliefs are different because each firm has a specific

attitude, that is, it is either pessimistic or optimistic, towards
uncertainty. In particular, we assume that the pessimistic
firm assigns a positive probability of being in the worst case
(which is realised when the market price equals zero) (the
firm considers it possible that the supply of the other firm is
large enough to get the price to zero), while the optimistic
firm assigns a positive probability of being in the best case,
(which is realised when it behaves as a monopolist in the
market).

By using CEU theory, it is assumed that each firm
maximises its ownCEU functionwhich is given by aweighted
average (with the parameter 𝛾 ∈ [0, 1]) of its expected profits
and the profits in the worst case (resp., best case) for the
pessimistic (resp., optimistic) firm, where 𝛾 (assumed to be
the same for both firms) represents the degree of confidence
that each firmhas about the Cournot behavioural assumption
[5, 8]. An economic interpretation of 𝛾 is the following [8]:
values of 𝛾 close to zero may represent a relatively new
market characterised by a high level of strategic uncertainty
(in which pessimistic firms aremore likely to decide to do not
produce because the level of uncertainty may be too high for
them); values of 𝛾 close to one may represent mature markets
characterised by a relatively stable environment, where firms
are relatively confident about their conjecture.

Let firm 1 (resp., firm 2) be the pessimistic 𝑃 (resp.,
optimistic 𝑂) firm. They have to solve the following problem
of maximisation of expected utility, respectively:

max
𝑞1

𝑈
𝑃

1
= 𝛾Π
1

+ (1 − 𝛾) (−𝑐𝑞
1
)

= 𝛾 [𝑎 − 𝑏 (𝑞
1
+ 𝑞
2
)] 𝑞
1
− 𝑐𝑞
1
,

max
𝑞2

𝑈
𝑂

2
= 𝛾Π
2
+ (1 − 𝛾) (𝑎 − 𝑏𝑞

2
− 𝑐) 𝑞

2

= [𝑎 − 𝑏 (𝛾𝑞
1
+ 𝑞
2
)] 𝑞
2
− 𝑐𝑞
2
.

(3)

From (3) we see that if 𝛾 = 0 the pessimistic firm will expect
−𝑐𝑞
1
, while the optimistic firm will expect monopolistic

profits given by (𝑎 − 𝑏𝑞
2

− 𝑐)𝑞
2
. When 𝛾 = 1 the model

boils down to the standard Cournot model without strategic
uncertainty.Maximisation of (3) gives the followingmarginal
CEU for firm 1 and firm 2, respectively:

𝜕𝑈
𝑃

1

𝜕𝑞
1

= 𝛾 [𝑎 − 𝑏𝑞
2
− 2𝑏𝑞

1
] − 𝑐, (4)

𝜕𝑈𝑂
2

𝜕𝑞
2

= 𝑎 − 𝑐 − 𝛾𝑏𝑞
1
− 2𝑏𝑞

2
. (5)

From (4) and (5), if 𝛾 > 0 we get the following reaction
functions of the pessimistic and optimistic firms; that is:

𝜕𝑈
𝑃

1

𝜕𝑞
1

= 0 ⇐⇒ 𝑞
1
(𝑞
2
) = max{0,

𝛾 (𝑎 − 𝑏𝑞
2
) − 𝑐

2𝑏𝛾
} , (6)

𝜕𝑈𝑂
2

𝜕𝑞
2

= 0 ⇐⇒ 𝑞
2
(𝑞
1
) = max{0,

𝑎 − 𝑐 − 𝑏𝛾𝑞
1

2𝑏
} . (7)



Abstract and Applied Analysis 3

The interior Nash equilibrium of the game therefore is
obtained as follows:

𝐸
∗

= (𝑞
∗

1
, 𝑞
∗

2
) = (

𝛾𝑎 − 𝑐 (2 − 𝛾)

𝑏𝛾 (4 − 𝛾)
,
𝑎 (2 − 𝛾) − 𝑐

𝑏 (4 − 𝛾)
) . (8)

From (4) and (5), we note that if 𝛾 = 0 no interior Nash
equilibrium exists.Thus, for economic reasons we impose the
following.

Assumption 1 (𝛾 ∈ (0, 1]). In addition, from (8) the condition
to guarantee that the quantities are positive is as follows:

𝑎 > 𝑎low := max{
𝑐 (2 − 𝛾)

𝛾
,

𝑐

2 − 𝛾
} =

𝑐 (2 − 𝛾)

𝛾
. (9)

Then, we introduce the following.

Assumption 2 (𝑎 > 𝑎low). We note that the values of price and
profits corresponding to Nash equilibrium (8) are given by

𝑝
∗

=
𝛾𝑎 + 2𝑐

𝛾 (4 − 𝛾)
, (10)

Π
𝑖
=

𝛾𝑎 + 𝑐 [(𝛾 − 2)
2

− 2]

𝛾 (4 − 𝛾)
𝑞
∗

𝑖
, (11)

which are positive without imposing any other conditions
than (9). In fact, for (11) we note that the condition 𝑎 >

𝑐(2 − 𝛾)/𝛾 implies 𝑎 > 𝑐([2 − (𝛾 − 2)
2
]/𝛾) (being 𝑎 >

𝑐(2 − 𝛾)/𝛾 ≥ (𝑐[2 − (𝛾 − 2)
2
]/𝛾) for all 𝛾 ∈ (0, 1]).

This is the solution of the static game. In the following
sections, we study the Cournot duopoly model with strategic
uncertainty from a dynamic point of view. In particular,
we introduce dynamic adjustment mechanisms to look at
whether theNash equilibrium represents the long-term stable
allocation of the market or nonconvergent dynamics exist.
With this regard, Section 3 introduces the case in which
players have complete information and static expectations as
in [16]. Section 4 analyses the case in which both firms have
limited information about the market demand and use an
adjustmentmechanismof production based on an estimate of
their own marginal CEU period by period [17, 18]. Section 5
considers the case in which one firm has limited information
and the rival has complete information about the market
demand with static expectations [16], that is, the “best-reply”
dynamics. This is because under heterogeneous adjustment
mechanisms the map has a topological structure different
than thatwhen both firms adjust production period by period
by using an estimate of their own marginal CEU.

3. Dynamics under Complete Information
(‘‘Best Reply’’ Dynamics)

One of the first dynamic adjustment mechanisms studied in
the literature on nonlinear oligopolies is the one proposed
by [16], which is based on firms’ reaction functions. In
this case, players play their best replies by assuming that
the rival does not modify production with respect to the

previous period. We now therefore introduce time, which
is discrete and indexed by 𝑡 = 0, 1, 2, . . . and assume that
players have complete information about the market demand
and use static expectations to adjust production period by
period. Then, by using (6) and (7) the two-dimensional map
describing the dynamics of the economy is as follows:

𝑀
0
:

{{{{{

{{{{{

{

𝑞


1
= max{0,

𝛾 (𝑎 − 𝑏𝑞
2
) − 𝑐

2𝑏𝛾
}

𝑞


2
= max{0,

𝑎 − 𝑐 − 𝑏𝛾𝑞
1

2𝑏
} ,

(12)

where  is the unit-time advancement operator; that is, if the
right-hand side variables are defined at time 𝑡, the left-hand
side ones are defined at time 𝑡+1. In order tomake the reading
easier, we recall that 𝑎, 𝑏 > 0, 0 < 𝑐 < 𝑎, and 𝛾 ∈ (0, 1].

Since the market demand is linear and average (and
marginal) costs are constant, map (12) is piecewise linear and
Nash equilibrium (8) is the unique interior fixed point of the
map. We note that (0, 0) is not a fixed point of map (12).
In fact, given (0, 0) the subsequent iterate leads to a positive
value of 𝑞

2
. In addition, corner fixed points (0, 𝑞

2
) and (𝑞

1
, 0)

are avoided by Assumption 2 and the max operator in (12),
respectively. In what follows, we focus on dynamics starting
from the set

𝐷 = {(𝑞
1
, 𝑞
2
) : 𝑞
1
≥ 0, 𝑞
2
≥ 0, 𝑞
1
+ 𝑞
2
<

𝑎

𝑏
} , (13)

that is, dynamics that start with a positive price. We note that
considering initial conditions that lie on set𝐷 does guarantee
that the dynamics remain on𝐷 for every iteration. In fact, we
have that 0 ≤ 𝑞



1
≤ (𝑎𝛾 − 𝑐)/2𝑏𝛾 and 0 ≤ 𝑞

2
≤ (𝑎 − 𝑐)/2𝑏, and

thus also the inequality 𝑞
1
+ 𝑞
2

< 𝑎/𝑏 holds. In particular, if
the dynamics lie on int(𝐷) for any 𝑛, where 𝑛 is the number
of iterations, then dynamics are described by

𝑞


1
:= −(

√𝛾

2
)

𝑡
𝐹

√𝛾
+ (−

√𝛾

2
)

𝑡
𝐵

√𝛾
+ 𝑞
∗

1

𝑞


2
:= (

√𝛾

2
)

𝑡

𝐹 + (−
√𝛾

2
)

𝑡

𝐵 + 𝑞
∗

2
,

(14)

where

𝐹 = (𝑞
0

1
𝑏𝛾√𝛾 + √𝛾𝑐 + 𝛾𝑎 − 𝑞

0

2
𝑏𝛾

−𝑞
0

1
2𝑏𝛾 − 𝑐 − √𝛾𝑎 + 𝑞

0

2
2√𝛾𝑏)

× (2√𝛾𝑏 (2 − √𝛾))
−1

,

𝐵 = (𝑞
0

1
𝑏𝛾√𝛾 + 𝑞

0

1
2𝑏𝛾 − 𝛾𝑎 + 𝑞

0

2
𝑏𝛾

+√𝛾𝑐 − √𝛾𝑎 + 𝑞
0

2
2𝑏√𝛾 + 𝑐)

× (2√𝛾𝑏 (2 + √𝛾))
−1

(15)

are fixed for a given initial condition (𝑞0
1
, 𝑞0
2
). However,

depending on initial conditions it is possible that an iterate
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lies on the border of 𝐷. This implies that at least one of the
two firms does not produce. In any case, this is a temporary
result since the dynamics definitely lie on int(𝐷) and they are
captured byNash equilibrium (8)which is the global attractor
of map (12) on 𝐷.

Proposition 3. The fixed point (8) is the global attractor of
map (12) on D.

Proof. First of all, we focus on

𝐿 :

{{{{{

{{{{{

{

𝑞


1
=

𝛾 (𝑎 − 𝑏𝑞
2
) − 𝑐

2𝑏𝛾

𝑞
2
=

𝑎 − 𝑐 − 𝑏𝛾𝑞
1

2𝑏
,

(13
)

which is obtained by (12) by removing the nonnegative
constraints. It means that if 𝑞

𝑖
= 0 for 𝑀

0
then 𝑞

𝑖
≤ 0

for 𝐿. We note that according to the signs of parameters
of the model we have that map 𝐿 is a contraction; that is
there exists 0 < 𝑘 < 1 such that 𝑑(𝐿( ̆𝑞

1
, ̆𝑞
2
), 𝐿(
⌣

𝑞
1
,
⌣

𝑞
2
) ≤

𝑘𝑑(( ̆𝑞
1
, ̆𝑞
2
), (
⌣

𝑝
1
,
⌣

𝑞
2
)) for any ( ̆𝑞

1
, ̆𝑞
2
), (
⌣

𝑞
1
,
⌣

𝑞
2
) ∈ 𝑅2.Thus, fixed

point (8) is the global attractor of 𝐿 : 𝑅2 → 𝑅2. We now
prove that also 𝑀

0
: 𝑐𝑙(𝐷) → 𝑐𝑙(𝐷) is a contraction; that is,

there exists 0 < ℎ < 1 such that 𝑑(𝑀
0
( ̆𝑞
1
, ̆𝑞
2
),𝑀
0
(
⌣

𝑞
1
,
⌣

𝑞
2
)) ≤

ℎ𝑑(( ̆𝑞
1
, ̆𝑞
2
), (
⌣

𝑞
1
,
⌣

𝑞
2
)) for any ( ̆𝑞

1
, ̆𝑞
2
), (
⌣

𝑞
1
,
⌣

𝑞
2
) ∈ 𝐷. Let us

consider ( ̆𝑞
1
, ̆𝑞
2
), (
⌣

𝑞
1
,
⌣

𝑞
2
) ∈ 𝐷. Then, we have 𝑀

0
( ̆𝑞
1
, ̆𝑞
2
) =

( ̆𝑞
1
, ̆𝑞
2
) and 𝑀

0
(
⌣

𝑞
1
,
⌣

𝑞
2
) = (

⌣

𝑞


1
,
⌣

𝑞


2
). The following cases are

possible.

(1) If ̆𝑞


1
> 0, ̆𝑞



2
> 0,
⌣

𝑞


1
> 0,
⌣

𝑞


2
> 0 then 𝑀

0
( ̆𝑞
1
, ̆𝑞
2
) =

𝐿( ̆𝑞
1
, ̆𝑞
2
) and𝑀

0
(
⌣

𝑞
1
,
⌣

𝑞
2
) = 𝐿(

⌣

𝑞
1
,
⌣

𝑞
2
), and the property for𝑀

0

follows from the property stated for 𝐿.

(2) If ̆𝑞
1
= 0, ̆𝑞
2
≥ 0,
⌣

𝑞


1
= 0,
⌣

𝑞


2
≥ 0, then

𝑑(𝑀
0
( ̆𝑞
1
, ̆𝑞
2
) ,𝑀
0
(
⌣

𝑞


1
,
⌣

𝑞


2
))

=


̆𝑞


2
−
⌣

𝑞


2


≤ 𝑑 (𝐿 ( ̆𝑞

1
, ̆𝑞
2
) , 𝐿 (
⌣

𝑞
1
,
⌣

𝑞
2
))

≤ 𝑘𝑑 (( ̆𝑞
1
, ̆𝑞
2
) , (
⌣

𝑞
1
,
⌣

𝑞
2
)) .

(16)

The result follows by assuming ℎ = 𝑘. A similar argument

may be applied for the case ̆𝑞
1
≥ 0, ̆𝑞
2
= 0,
⌣

𝑞


1
≥ 0,
⌣

𝑞


2
= 0.

(3) If ̆𝑞
1
= 0, ̆𝑞
2
≥ 0,
⌣

𝑞


1
≥ 0,
⌣

𝑞


2
= 0 then

𝑑(𝑀
0
( ̆𝑞
1
, ̆𝑞
2
) ,𝑀
0
(
⌣

𝑞


1
,
⌣

𝑞


2
))

= √( ̆𝑞
2
)
2

− (
⌣

𝑞


2
)

2

≤ 𝑑(𝐿 ( ̆𝑞
1
, ̆𝑞
2
) , 𝐿 (
⌣

𝑞
1
,
⌣

𝑞
2
))

≤ 𝑘𝑑 (( ̆𝑞
1
, ̆𝑞
2
) , (
⌣

𝑞
1
,
⌣

𝑞
2
)) .

(17)

The result follows by assuming ℎ = 𝑘. A similar argument

may be applied for the case ̆𝑞


1
≥ 0, ̆𝑞
2
= 0,
⌣

𝑞


1
= 0,
⌣

𝑞


2
≥ 0.

(4) If ̆𝑞
1
= 0, ̆𝑞
2
= 0,
⌣

𝑞


1
> 0,
⌣

𝑞


2
> 0 then

𝑑(𝑀
0
( ̆𝑞
1
, ̆𝑞
2
) ,𝑀
0
(
⌣

𝑞


1
,
⌣

𝑞


2
))

= √(
⌣

𝑞


1
)

2

− (
⌣

𝑞


2
)

2

≤ 𝑑(𝐿 ( ̆𝑞
1
, ̆𝑞
2
) , 𝐿 (
⌣

𝑞
1
,
⌣

𝑞
2
))

≤ 𝑘𝑑 (( ̆𝑞
1
, ̆𝑞
2
) , (
⌣

𝑞
1
,
⌣

𝑞
2
)) .

(18)

The result follows by assuming ℎ = 𝑘. A similar argument

may be applied for the case ̆𝑞
1
> 0, ̆𝑞
2
> 0,
⌣

𝑞


1
= 0,
⌣

𝑞


2
= 0.

Then, we can conclude that fixed point (8) is the global
attractor for 𝑀

0
on cl(𝐷). From the inequality 𝑞

1
+ 𝑞
2

< 𝑎/𝑏

for any (𝑞
1
, 𝑞
2
) ∈ 𝐷, we have the result.

In addition, we note that in contrast with the standard
Cournot game (𝛾 = 1), under strategic uncertainty (𝛾 < 1)
it is more likely that the pessimistic (resp., optimistic) firm
decides not to produce (resp., to produce) a positive quantity
at a certain date (as shown in Figure 1).

4. Dynamics under Limited Information

This section studies the dynamics of the Cournot model with
strategic uncertainty by using an adjustment mechanism of
production introduced by [17] in a model with continuous
time and used by [18] in a model with discrete time. With
regard to the information set of players, in this section
we assume that both firms have limited information (no
knowledge of the market demand) as in [11–14]. In order to
overcome this informational lacuna, we assume that at any
time 𝑡 each player uses an adjustment mechanism based on
local estimates of its own marginal CEU at time 𝑡 (𝜕𝑈/𝜕𝑞)
to determine production at time 𝑡 + 1. The adjustment
mechanism is as follows:

𝑞


1
= 𝑞
1
+ 𝛼𝑞
1

𝜕𝑈𝑃
1

𝜕𝑞
1

,

𝑞


2
= 𝑞
2
+ 𝛼𝑞
2

𝜕𝑈𝑂
2

𝜕𝑞
2

,

(19)

where 𝛼 > 0 is a coefficient that captures the speed of
adjustment of each firm’s quantity with respect to a marginal
change in its marginal CEU and 𝛼𝑞 is the intensity of the
reaction of each player. Therefore, in this case the pessimistic
firm and the optimistic firm increase or decrease their
production at time 𝑡 + 1 depending on whether 𝜕𝑈

𝑃

1
/𝜕𝑞
1
and

𝜕𝑈𝑂
2
/𝜕𝑞
2
are positive or negative, respectively. This type of

adjustment mechanism implies that although players have
incomplete information about demand and cost functions,
they are able to get a correct estimate of their marginal CEU
in the current period.
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q2

3

2

1

0

q1

0 1 2 3

p = 0

Figure 1: Starting from the red (resp., black) region, the first iterate
is (0, 𝑞

2
), with 𝑞

2
> 0 (resp., (𝑞

1
, 0), with 𝑞

1
> 0).The yellow lines are

the best reply curves of the two firms. The solid blue line represents
points in which 𝑝 = 0. The dotted and dashed blue lines represent
trajectories that start from the red and black regions, respectively,
and end up to the Nash equilibrium. Parameter set: 𝑎 = 2.8, 𝑏 = 1,
𝑐 = 1, and 𝛾 = 0.7.

By using (4), (5), and (6), the two-dimensional system
that characterises the dynamics of a Cournot duopoly, under
strategic uncertainty and incomplete information is as fol-
lows:

𝑀
1
: {

𝑞
1
= 𝑞
1
+ 𝛼𝑞
1
[𝑎𝛾 − 𝑏𝛾 (2𝑞

1
+ 𝑞
2
) − 𝑐]

𝑞
2
= 𝑞
2
+ 𝛼𝑞
2
[𝑎 − 𝑏 (𝛾𝑞

1
+ 2𝑞
2
) − 𝑐] .

(20)

Fromamathematical point of view,map (20) is defined on the
whole plane but for economic reasons only the dynamics that
lie on set 𝐺 = {(𝑞

1
, 𝑞
2
) : 𝑞
1
≥ 0, 𝑞
2
≥ 0, 𝑞
1
+ 𝑞
2
< 𝑎/𝑏 ∀𝑛} are

meaningful (i.e., 𝑝 > 0), where 𝑛 is the number of iterations
and the last inequality guarantees a positive value of the
market price along the trajectory. We note that starting from
initial conditions that lie on set 𝐷 = {(𝑞

1
, 𝑞
2
) : 𝑞
1

≥ 0, 𝑞
2

≥

0, 𝑞
1
+𝑞
2
≤ 𝑎/𝑏} does not guarantee that the dynamics remain

on 𝐷 for every iteration (i.e., (𝑞
1
, 𝑞
2
) ∈ 𝐺). To avoid this

problem, [13] and [19] introduce nonnegativity constraints
on the mechanism of adjustment. This allows having well-
defined trajectories by starting on whatever feasible initial
condition from an economic point of view. By adapting this
idea to the model under scrutiny we have that the map
defined on set 𝐷 becomes as follows:

𝑀
∗

1
: {

𝑞
1
:= max {0, 𝑞

1
+ 𝛼𝑞
1
[𝛾𝑎 − 𝑐 − 𝑏𝛾 (2𝑞

1
+ 𝑞
2
)]}

𝑞
2
:= max {0, 𝑞

2
+ 𝛼𝑞
2
[𝑎 − 𝑐 − 𝑏 (𝛾𝑞

1
+ 2𝑞
2
)]} .

(21)

Although in this paper we concentrate on the study of map
(20), this does not represent a loss of generality, since it is

possible to show that trajectories that exit from 𝐷 coincide
with trajectories of map (21) for which there exists a 𝑡

∗ such
that for any 𝑡 > 𝑡∗ at least one of the two variables is zero; that
is, one of the two firm exits from the market (see [13]).

4.1. Local Analysis. The fixed points of map (20) are obtained
as nonnegative solutions of the algebraic system:

𝛼𝑞
1
[𝛾𝑎 − 𝑐 − 𝑏𝛾 (2𝑞

1
+ 𝑞
2
)] = 0

𝛼𝑞
2
[𝑎 − 𝑐 − 𝑏 (𝛾𝑞

1
+ 2𝑞
2
)] = 0.

(22)

Thus, the stationary equilibria are the following: 𝐸∗ =

(𝑞∗
1
, 𝑞∗
2
), 𝐸
0

= (0, 0), 𝐸
1

= (0, (𝑎 − 𝑐)/2𝑏), and 𝐸
2

= ((𝑎𝛾 −

𝑐)/2𝑏𝛾, 0).
The study of local stability of equilibrium solutions is

based on the study of the Jacobian matrix:

𝐽 (𝑞1, 𝑞2)

= [
1 − 𝛼 (𝑐 − 𝛾𝑎) − 𝛼𝑏𝛾 (4𝑞1 + 𝑞2) −𝛼𝑞1𝑏𝛾

−𝛼𝑞2𝑏𝛾 1 − 𝛼 (𝑐 − 𝑎) − 𝛼𝑏 (𝛾𝑞1 + 4𝑞2)
] ,

(23)

evaluated at the fixed point.

Proposition 4. The fixed points 𝐸
0
, 𝐸
1
, and 𝐸

2
are unstable.

Proof. We have

𝐽 (0, 0) = [
1 + 𝛼 (𝛾𝑎 − 𝑐) 0

0 1 + 𝛼 (𝑎 − 𝑐)
] . (24)

The eigenvalues associated with (24) are 𝜆
1

= 1 + 𝛼(𝛾𝑎 −

𝑐) > 1 and 𝜆
2
= 1 + 𝛼(𝑎 − 𝑐) > 1. Then, 𝐸

0
is a source:

𝐽 (0,
𝑎 − 𝑐

2𝑏
) =

[
[
[

[

1 +
𝑎𝛾 − 𝑐 (2 − 𝛾)

2
𝛼 0

−
𝛼𝛾 (𝑎 − 𝑐)

2
1 − 𝛼 (𝑎 − 𝑐)

]
]
]

]

. (25)

The eigenvalues associated with (25) are 𝜆
1
= 1 + [𝑎𝛾 − 𝑐(2 −

𝛾)](𝛼/2) > 1, where the sign of the inequality follows from
Assumption 2, and 𝜆

2
= 1−𝛼(𝑎− 𝑐) < 1. Then, 𝐸

1
is a source

or a saddle depending on the value of 𝛼:

𝐽 (
𝑎𝛾 − 𝑐

2𝑏𝛾
, 0) =

[
[
[
[

[

1 + (𝑐 − 𝑎𝛾) 𝛼 −
𝛼 (𝑎𝛾 − 𝑐)

2

0 1 +
𝛼 [(2 − 𝛾) 𝑎 − 𝑐]

2

]
]
]
]

]

.

(26)

The eigenvalues associated with (26) are 𝜆
1

= 1 + (𝛼[(2 −

𝛾)𝑎 − 𝑐])/2 > 1, where the sign of the inequality follows from
Assumption 2, and 𝜆

2
= 1+(𝑐−𝑎𝛾)𝛼 < 1.Then,𝐸

2
is a source

or a saddle depending on the value of 𝛼.

Proposition 5. Thefixed point𝐸∗ is locally stable if and only if
𝛼 < 𝛼

𝑓
:= 2(2𝑎−3𝑐+𝑐𝛾+√ Dis (𝑎)/[𝑎𝛾−(2−𝛾)𝑐][(2−𝛾)𝑎−𝑐]),

where Dis (𝑎) is defined in proof. For 𝛼 = 𝛼
𝑓
, 𝐸∗ undergoes a

supercritical flip bifurcation. No other local bifurcations may
arise around 𝐸

∗.
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Proof. The Jacobian matrix of map (20) evaluated at 𝐸∗ is the
following:

𝐽 (𝑞
∗

1
, 𝑞
∗

2
)

=

[
[
[
[

[

𝛾 + 2𝛼𝛾 (𝑎 + 𝑐) − 4 (1 + 𝛼𝑐)

𝛾 − 4

𝛼 [𝛾 (𝑎 + 𝑐) − 2𝑐]

𝛾 − 4

−
𝛼𝛾 (𝑎𝛾 + 𝑐 − 2𝑎)

𝛾 − 4

𝛼 (−2𝑎𝛾 − 2𝑐 + 4𝑎) − 4 + 𝛾

𝛾 − 4

]
]
]
]

]

.

(27)

The trace and determinant associated with (27) are therefore
given by

Tr (𝐽 (𝑞
∗

1
, 𝑞
∗

2
)) =

(4𝑎 − 6𝑐 + 2𝑐𝛾) 𝛼 − 8 + 2𝛾

𝛾 − 4
,

Det (𝐽 (𝑞
∗

1
, 𝑞
∗

2
))

= ([(𝑐 + 𝑎) 𝛾 − 2𝑐] (𝑎𝛾 + 𝑐 − 2𝑎) 𝛼
2

+ (4𝑎 − 6𝑐 + 2𝑐𝛾) 𝛼 − 4 + 𝛾)

× (𝛾 − 4)
−1

.

(28)

The local stability of Nash equilibrium is given by using Jury’s
conditions; that is,

Det − 1 < 0

1 − Tr+Det > 0

1 + Tr+Det > 0,

(29)

which for our system become

𝑉
1
:= (([𝑎𝛾 − (2 − 𝛾) 𝑐] [(2 − 𝛾) 𝑎 − 𝑐]

− (4𝑎 − 6𝑐 + 2𝑐𝛾)) × (4 − 𝛾)
−1

) 𝛼 < 0,

𝑉
2
:=

[𝑎𝛾 − (2 − 𝛾) 𝑐] [(2 − 𝛾) 𝑎 − 𝑐] 𝛼2

4 − 𝛾
> 0,

𝑉
3
:= ([𝑎𝛾 − (2 − 𝛾) 𝑐] [(2 − 𝛾) 𝑎 − 𝑐] 𝛼

2

− (8𝑎 − 12𝑐 + 4𝑐𝛾) 𝛼 + 16 − 4𝛾)

× (4 − 𝛾)
−1

> 0.

(30)

From condition 𝑎 > 𝑎low we have that second inequality in
(30) is always verified; with regard to the third condition, we
note that 𝑉

3
is a second-degree polynomial with respect to 𝛼.

In addition, since 8𝑎 − 12𝑐 + 4𝑐𝛾 > 0 (in fact, 𝑎 > 𝑎low >

(3 − 𝛾)𝑐/2) it follows that𝑉
3
admits two positive roots 𝛼

1
and

𝛼
2
, if the discriminant associated with the equation results to

be positive. We now verify the sign of the discriminant. By
simple calculations, we have that

Dis (𝑎) := (−𝛾
3
+ 6𝛾
2
− 8𝛾 + 4) 𝑎

2

− 𝑐 (𝛾 − 2) (𝛾
2
− 5𝛾 + 2) 𝑎 + 𝑐

2
.

(31)

This expression is quadratic in 𝑎 and by a simple studywe find
that −𝛾

3
+ 6𝛾
2
− 8𝛾 + 4 is always positive for any 𝛾 ∈ (0, 1).

Then, Dis(𝑎) defines a concave function.
Now, since 𝑎 > 𝑎low, Dis(𝑎low) = (𝑐(𝛾 − 1)(4 − 𝛾)/𝛾)

2
> 0

and Dis(𝑎low) = 𝑐(𝛾−2)
2
(𝛾−1)(4−𝛾)/𝛾 > 0, then Dis(𝑎) > 0

for any feasible value of 𝑎.
To sum up, 𝑉

3
> 0 for any 𝛼 such that 𝛼 < 𝛼

1
∨ 𝛼 > 𝛼

2
,

where 0 < 𝛼
1
< 𝛼
2
and their explicit expressions are given by

𝛼
1,2

= 2
2𝑎 − 3𝑐 + 𝑐𝛾 ± √Dis (𝑎)

[𝑎𝛾 − (2 − 𝛾) 𝑐] [(2 − 𝛾) 𝑎 − 𝑐]
. (32)

With regard to the first condition in (30), we note that the
sign of 𝑉

1
is given by the sign of

V (𝛼) := 2 ([𝑎𝛾 − (2 − 𝛾) 𝑐] [(2 − 𝛾) 𝑎 − 𝑐] 𝛼

− (4𝑎 − 6𝑐 + 2𝛾𝑐)) × (4 − 𝛾)
−1

,

(33)

where V(𝛼) is the first derivative of 𝑉
3
. Then, V(𝛼) = 0 for

a value 𝛼
ℎ

∈ (𝛼
1
, 𝛼
2
), which corresponds to the minimum

point of 𝑉
3
. By considering the sign of the coefficients and

inequalities involved, we have the result.

4.2. Critical Curves. An important feature of map (20) is
that it is a noninvertible endomorphism. In fact, for a given
(𝑞


1
, 𝑞
2
) the rank-1 preimage (that is the backward iterate

defined as 𝑀−1
1
) may not exist or may be multivalued. In the

specific case, if wewant to compute (𝑞
1
, 𝑞
2
) in terms of (𝑞

1
, 𝑞
2
)

in (20) we have to solve a fourth-degree algebraic system that
may have four, two, or no solutions. In a natural way, we are
led to subdivide the plane in regions𝑍

0
,𝑍
2
, and𝑍

4
according

to the number of such preimages (where the subscripts in 𝑍

indicate this number). A direct consequence of this fact is
that if we let (𝑞



1
, 𝑞
2
) vary in the plane 𝑅2, 𝑀

1
, the number

of the rank-1 preimages changes as the point (𝑞
1
, 𝑞
2
) crosses

the boundary that separates these regions. Such boundaries
are generally characterised by the existence of two coincident
preimages. In this regard, by following [20] we introduce the
definition of the critical curves. The critical curve of rank
1, denoted by LC is defined as the locus of points that have
two (or more) coincident rank-1 preimages located on a set
called LC

−1
. It is quite intuitive to interpret the set LC as the

two-dimensional generalisation of the notion of critical value,
local minimumormaximum, of a one-dimensional map, and
LC
−1
as the generalization of the notion of critical point (local

extremumpoint). Arcs of LC separate the regions of the plane
characterised by a different number of real preimages.

Since 𝑀
1
is a continuously differentiable map, LC

−1

belongs to the locus of points where the Jacobian determinant
of 𝑀
1
vanishes (i.e., the points where 𝑀

1
is not locally

invertible). In our case,

LC
−1

⊆ {(𝑞
1
, 𝑞
2
) ∈ 𝑅
2
: Det (𝐽 (𝑞

1
, 𝑞
2
)) = 0} , (34)

and LC is the rank-1 image of LC
−1

under 𝑀
1
; that is, LC =

𝑀
1
(LC
−1

).
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From direct computation, we have that Det(𝐽(𝑞
1
, 𝑞
2
)) = 0

if and only if

4𝛼
2
𝑞
2

1
𝛾
2
𝑏
2
+ 4𝛼
2
𝑞
2

2
𝛾𝑏
2
+ 16𝛼

2
𝛾𝑏
2
𝑞
1
𝑞
2

+ 𝛼𝑏𝛾 (5𝛼𝑐 − 4𝛼𝑎 − 𝛼𝛾𝑎 − 5) 𝑞
1

+ 𝛼𝑏 (−𝛾 + 𝛼𝛾𝑐 + 4𝛼𝑐 − 4 − 5𝛼𝛾𝑎) 𝑞
2

+ (1 + (−𝑐 + 𝑎) 𝛼) (1 + (𝛾𝑎 − 𝑐) 𝛼) = 0.

(35)

It is easy to check that (35) is the equation of a hyperbola
in the plane (𝑞

1
, 𝑞
2
). Thus, LC

−1
is formed by two branches,

denoted by LC(𝑎)
−1

and LC(𝑏)
−1
. This implies that also LC and

subsequent iterations of the critical curves may be seen as the
union of two different branches. In Figure 2 we can read LC(𝑎)

and LC(𝑏). Each branch of the critical curve LC separates
the phase plane of 𝑀

1
into regions whose points have the

same number of distinct rank-1 preimages. Specifically, LC(𝑏)

separates region 𝑍
0
from region 𝑍

2
, and LC(𝑎) separates

region 𝑍
2
from region 𝑍

4
. This allows us to study some

global properties of the map and the evolution of basins of
attraction and their qualitative changes (or bifurcations) as
some parameters are varied.

4.3. Basins of Attraction. In this section, we describe the
properties of the basins of attraction of map (20). We begin
by studying the projection of the map on the Cartesian axes.
For axes 𝑞

1
= 0 and 𝑞

2
= 0 we have, respectively,

𝑞


2
= −2𝛼𝑏𝑞

2

2
+ [1 + 𝛼 (𝑎 − 𝑐)] 𝑞

2
, (36)

𝑞


1
= −2𝛼𝑏𝛾𝑞

2

1
+ [1 + 𝛼 (𝑎𝛾 − 𝑐)] 𝑞

1
. (37)

We note that these equations are both conjugated to the
logistic map 𝑧 = 𝜇𝑧(1 − 𝑧) through the transformation

𝑞
2
=

𝜇

2𝛼𝑏
𝑧, (38)

with 𝜇 = 1 + 𝛼(𝑎 − 𝑐) for (36) and

𝑞
1
=

𝜇

2𝛼𝑏
𝑧, (39)

with 𝜇 = 1 + 𝛼(𝑎𝛾 − 𝑐) for (37).
It follows that the dynamics on axes 𝑞

1
= 0 and 𝑞

2
= 0 can

be obtained from the well-known behaviour of the standard
logistic map by a homeomorphism (see [21]). In particular,
(a) if 0 < 𝛼(𝑎 − 𝑐) < 3 (resp., 0 < 𝛼(𝑎𝛾 − 𝑐) < 3),
then we can deduce that bounded trajectories along 𝑞

1
= 0

(resp., 𝑞
2
= 0) are generated if the initial conditions are taken

inside the segment line 𝜔
1

= [0, (1 + 𝛼(𝑎 − 𝑐))/2𝛼𝑏] (resp.,
𝜔
2

= [0, (1 + 𝛼(𝑎𝛾 − 𝑐))/2𝛼𝑏𝛾]; (b) from the computation
of the eigenvalues of the cycles belonging to one of axes, we
have that the direction transverse to the coordinate axes is
always repelling; (c) initial conditions (𝑞

0

1
, 𝑞0
2
) with 𝑞0

1
< 0 or

𝑞0
2

< 0 generate a divergent trajectory. From (a), (b), and (c)
it follows that 𝜔

1
and 𝜔

2
and their preimages belong to the

boundary of 𝐵(∞). In addition, under the conditions in (a),
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Figure 2: Critical curves are represented for the parameter set: 𝛼 =

0.3, 𝑎 = 7.2, 𝑏 = 0.22, 𝑐 = 0.4, and 𝛾 = 0.9. The blue lines LC(𝑎)
−1

and
LC(𝑏)
−1

are the two branches of the LC
−1

set. The portion of the plane
that lies between the axes and LC(𝑎) defines region 𝑍

4
; the portion

of the plane that lies between the black lines LC(𝑎) and LC(𝑏) defines
region 𝑍

2
; the portion of the plane beyond LC(𝑏) defines region 𝑍

0
.

In addition,𝑂 and its preimages define the quadrilateral𝑂𝐴𝐵𝐶 that
delimitates the (grey) region of bounded trajectories. The blue line
𝑝 = 0 represents points in which the market price equals zero. The
white region below the line 𝑝 = 0 represents initial conditions with
respect to which trajectories lead to the invariant axes for map 𝑀∗

1
.

when the preimages belong to 𝑍
0
, we can show that 𝐵(∞)

is given by the region outside the quadrilateral 𝑂𝐴𝐵𝐶 with
𝐴(0, (1+𝛼𝑎−𝛼𝑐)/2𝛼𝑏),𝐵((1+𝛼𝑎𝛾−𝛼𝑐)/2𝛼𝑏𝛾, 0), and𝐶(𝑞

1
, 𝑞
2
)

where 𝑞
1

= (2 − 𝛾 + 𝛼𝛾𝑎 + 𝛼𝛾𝑐 − 2𝛼𝑐)/(4 − 𝛾)𝛼𝑏𝛾 and
𝑞
2
= (1 − 𝛼𝛾𝑎 − 𝛼𝑐 + 2𝛼𝑎)/𝛼𝑏(4 − 𝛾) so that the quadrilateral

represents the region of trajectories that converge to a finite
distance attractor that does not lie on the axes. Finally, from
an economic point of viewwe note that, in order to preserve a
positive value of the price inside the quadrilateral 𝑂𝐴𝐵𝐶, we
have to impose the condition 𝑝(𝑞

1
, 𝑞
2
) = 𝑎 − 𝑏(𝑞

1
+ 𝑞
2
) > 0;

that is, 𝑎 > 2(1 − 𝛼𝑐)/𝛼𝛾.

4.4. Global Analysis and Numerical Simulations. In this
section we study the dynamic system 𝑀

1
for the following

parameter values: 𝑎 = 7.2, 𝑏 = 0.22, 𝑐 = 0.4, and 𝛾 = 0.9 and
let 𝛼 vary. Figures 3(a) and 3(b) show the existence of a period
doubling cascade that (starting from the flip bifurcation value
𝛼 = 𝛼

𝑓
≅ 0.3081) generates cyclic attractors of higher period

until a global attractor is born.
By increasing the value of 𝛼, we have an important

topological change in the structure of the basins of attraction.
In particular, when 𝛼 ≅ 0.4265 we have a tangency between
LC(b) and the upper side of the quadrilateral (the grey region
in the figures). For higher values of 𝛼 portions of the basin
of attraction of the attractors on the axes enter 𝑍

2
region (at

least one of the firms exit the market). After the bifurcation
(tangency), one main lake lies inside 𝑍

2
. Hence, the lake has

further preimages which form smaller lakes within the grey
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Figure 3: Parameter set: 𝑎 = 7.2, 𝑏 = 0.22, 𝑐 = 0.4, and 𝛾 = 0.9. (a) Bifurcation diagram ofmap𝑀
1
and the corresponding Lyapunov exponent

(Λ) for 𝛼 ∈ [0.2, 0.43]. The blue line 𝑝 = 0 represents points in which the market price equals zero. (b) Chaotic attractor for 𝛼 = 0.41.
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Figure 4: (a) Portions of the basin of attraction of trajectories that converge to invariant axes for map 𝑀
1
enter 𝑍

2
region. This causes the

appearance of several holes in the basin of attraction of the interior attractor. The blue line 𝑝 = 0 represents points in which the market price
equals zero. (b) Enlargement view of the birth of the portion of the basin of the attraction of the attractors on the axes in region𝑍

2
. Parameter

set: 𝑎 = 7.2, 𝑏 = 0.22, 𝑐 = 0.4, 𝛾 = 0.9, and 𝛼 = 0.427.

region. These ones lie inside the quadrilateral in the region
complement to 𝑍

0
. When 𝛼 increases further, LC continues

to move upwards, the portion 𝐻
0
grows up and then the

holes become larger (see Figures 4(a) and 4(b)). At this stage
it is really difficult to predict the long-term dynamics of
the economic model, because slight changes in the initial
conditions may lead to very different long-term outcomes (it
is possible that only one firm produces or both firms produce
but with erratic patterns). We note that the attractors located
on the axes are not locally attracting. However, they attract
a set of initial conditions with positive Lebesgue measure;
that is, they are attractors à la Milnor (we recall that a closed

invariant set 𝐴 is a Milnor attractor if its stable set 𝐵(𝐴) has
positive Lebesgue measure (see [11] for details)). Finally, for
𝛼 sufficiently large a contact bifurcation destroys the interior
attractor.

5. Dynamics under Both Limited and
Complete Information

In this section, we assume that firms adjust production period
by period by using different mechanisms. In particular,
the pessimistic firm has limited information and modifies
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production depending on the value of its own marginal
profits, while the optimistic firm has complete information
and static expectations (“best reply” dynamics). Given this
type of heterogeneity and using (4) (pessimistic firm) and (7)
(optimistic firm), the two-dimensional system that charac-
terises the dynamics of the economy is now given by

𝑀
2
:
{

{

{

𝑞


1
:= max {0, 𝑞

1
+ 𝛼𝑞
1
[𝑎𝛾 − 𝑐 − 𝑏𝛾 (2𝑞

1
+ 𝑞
2
)]}

𝑞
2
:= max{0,

𝑎 − 𝑐 − 𝑏𝛾𝑞
1

2𝑏
} ,

(40)

which is defined on int(𝐷).
Map (40) admits two fixed points: 𝐸∗ = (𝑞∗

1
, 𝑞∗
2
) defined

by (8) and 𝐸 = (0, (𝑎 − 𝑐)/2𝑏). To guarantee that the unique
Nash equilibrium of the game has economic meaning, we
assume that the inequality 𝑎 > 𝑐(2 − 𝛾)/𝛾 continues to
be fulfilled. This condition also implies that the equilibrium
values of profits and price are positive.

5.1. Local Analysis. The study of local stability of equilibrium
solutions is based on the study of the Jacobian matrix of the
dynamic system. The Jacobian matrix of map 𝑀

2
computed

in a generic point has the following form:

𝐽 (𝑞
1
, 𝑞
2
)

= (

1 + (−2𝑏𝑞
1
+ 𝑎 − 𝑏𝑞

2
) 𝑎𝛾 − 𝑐 − 2𝛼𝑏𝛾𝑞

1
−𝛼𝑏𝛾𝑞

1

−
𝛾

2
0

) .
(41)

The following propositions hold.

Proposition 6. The fixed point 𝐸 is unstable.

Proof. The Jacobian matrix of map (40) evaluated at 𝐸 is as
follows

𝐽 (0,
𝑎 − 𝑐

2𝑏
) =

[
[

[

1 +
1

2
𝛼 [𝛾 (𝑎 + 𝑐) − 𝑐] 0

−
𝛾

2
0

]
]

]

. (42)

The eigenvalues associated with (42) are as follows: 𝜆
0

= 0

and 𝜆
1
= 1 + (1/2)𝛼[𝛾(𝑎 + 𝑐) − 𝑐] > 1.

Proposition 7. The fixed point 𝐸∗ is locally stable if and only
if 𝛼 < 𝛼∗

𝑓
:= (16 − 4𝛾)/(4 + 𝛾)[𝑎𝛾 − (2 − 𝛾)𝑐]. For 𝛼 = 𝛼∗

𝑓
,

𝐸∗ undergoes a supercritical flip bifurcation. No other local
bifurcations may arise around 𝐸∗.

Proof. The Jacobian matrix of map (40) evaluated at 𝐸∗ is as
follows:

𝐽 (𝑞
∗

1
, 𝑞
∗

2
)

=
[
[
[

[

4 (1 + 𝛼𝑐) − 𝛾 [1 + 2𝛼 (𝑎 + 𝑐)]

𝛾 − 4
−

𝛼 [𝑎𝛾 − (2 − 𝛾) 𝑐]

𝛾 − 4

−
𝛾

2
0

]
]
]

]

.

(43)
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Figure 5: Different colours correspond to different behaviours of
the model. In the yellow region, 𝑞

1
> 0 and 𝑞

2
> 0. In the red region,

𝑞
1
= 0 and 𝑞

2
= 0. In the black region, 𝑞

1
= 0 and 𝑞

2
> 0.

The trace and determinant associated with (43) are therefore
given by

Tr (𝐽 (𝑞
∗

1
, 𝑞
∗

2
)) =

4 (1 + 𝛼𝑐) − 𝛾 [1 + 2𝛼 (𝑎 + 𝑐)]

𝛾 − 4
,

Det (𝐽 (𝑞
∗

1
, 𝑞
∗

2
)) =

𝛼𝛾 [𝑎𝛾 − 𝑐 (2 − 𝛾)]

2 (4 − 𝛾)
.

(44)

The proof follows by using Jury’s conditions in (29), which are
now given by

𝑊
1
:=

𝛼𝛾 [𝑎𝛾 − 𝑐 (2 − 𝛾)]

2 (𝛾 − 4)
− 1 < 0

𝑊
2
:=

1

2
𝛼 [𝑎𝛾 − (2 − 𝛾) 𝑐] > 0

𝑊
3
:=

4 (4 − 𝛾) − (4 + 𝛾) [𝑎𝛾 − 𝑐 (2 − 𝛾)] 𝛼

2 (4 − 𝛾)
> 0.

(45)

5.2. Global Dynamics. This section develops the global anal-
ysis of map (40). First of all, we note that if we relax the
nonnegative constraints on variables 𝑞

1
and 𝑞

2
, map (40)

results to be invertible (i.e., given (𝑞
1
, 𝑞
2
) there exists one and

only one (𝑞
1
, 𝑞
2
)). However, map (40) is noninvertible with

nonnegative constraints on 𝑞
1
and 𝑞
2
.This can be ascertained

by looking at Figure 5. From a global perspective, it is possible
to identify regions on set 𝐷 corresponding to which at least
one of the best replies of the two firms is zero (Figure 5). It
is important to note that the introduction of heterogeneity in
the mechanism of adjustment between the two firms leads to
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Figure 6: Parameter set: 𝑎 = 3, 𝑏 = 1, 𝑐 = 0.5, and 𝛾 = 0.963. (a) Bifurcation diagram of map 𝑀
2
and the corresponding Lyapunov exponent

(Λ) for 𝛼 ∈ [0.2, 1.63]. (b) Chaotic attractor for 𝛼 = 1.61.
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Figure 7: Parameter set: 𝑎 = 3, 𝑏 = 1, 𝑐 = 0.5, and 𝛾 = 0.963.
Coexistence of interior attractors for 𝛼 = 1.498.

different behaviours of the map along the Cartesian axes with
respect to the model developed in Section 4. In particular,
the axis 𝑞

1
= 0 is a trapping subset. In fact, when 𝑞

1
=

0 the subsequent iteration results to be (0, (𝑎 − 𝑐)/2𝑏). In
contrast, the axis 𝑞

2
= 0 does not have this property: the

points that start on axis 𝑞
2

= 0 can lead to different fates
(Figure 6(b)). Figure 5 shows that in the black region the
subsequent iteration leads to a point (0, 𝑞

2
), with 𝑞

2
> 0,

while in the yellow region the subsequent iterate leads to a
point (𝑞

1
, 𝑞
2
) with 𝑞

1
> 0 and 𝑞

2
> 0. In the red region the

subsequent iteration leads to (0, 0) and finally the successive
iterates will be located on the segment line 𝑂𝐴.

We note, however, that by starting from points that lie in
the yellow region it is possible that the subsequent iteration
continues to lie in the yellow region or, alternatively, it leads

to either the red region or black region and the dynamics will
definitely end up on the point (0, (𝑎 − 𝑐)/2𝑏). In this case the
side equilibrium is not locally attracting.However, it attracts a
set of initial conditionswith positive Lebesguemeasure. From
a mathematical point of view, these portions of the phase
plane can be identified through the union of the preimages
of any rank of the points in black and red regions.

Analogously with map 𝑀
1
, complex dynamics can be

observed also for map 𝑀
2
. Figures 6(a) and 6(b) show

the bifurcation diagram and the corresponding Lyapunov
exponent (Λ) for 𝛼 by using the following parameter values:
𝑎 = 3, 𝑏 = 1, 𝑐 = 0.5, and 𝛾 = 0.963. When 𝛼 < 1.032,
the interior fixed point is stable. Starting from 𝛼 = 𝛼

∗

𝑓
≅

1.032, there exists a cascade of period-doubling bifurcations
until the occurrence of a chaotic attractor, which is shown
in Figure 6(b) that depicts the basin of attraction and the
corresponding chaotic attractor for 𝛼 = 1.61.

In addition, in the model with heterogeneous adjustment
mechanisms we note that coexistence of interior attractors
can occur by slightly reducing the value of 𝛼 (this result is not
usual in the nonlinear oligopoly literaturewith heterogeneous
adjustment mechanisms [9, 10]). With this regard, Figure 7
shows that a cycle of period four (black points in the light-
grey region) coexists with a cycle of period six (yellow points
in the dark-grey region) when 𝛼 = 1.498.

6. Conclusions

This paper developed a nonlinear Cournot duopoly to study
the role of strategic uncertainty on the dynamics of themodel
economy. We characterised the local and global properties of
a discrete two-dimensional map by considering that (1) both
firms have complete information on the market demand and
adjust production over time depending on past behaviours
(static expectations, “best reply” dynamics); (2) both firms
have incomplete information and production is adjusted over
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time by following a mechanism based on marginal profits;
and (3) one firm has incomplete information and production
decisions depend on marginal profits, and the rival has
complete information with static expectations (mixed case).
In cases 2 and 3 we showed the existence of complex
phenomena such as chaotic attractors and coexistence of
attractors. The different behaviour of the model depending
on whether the adjustment mechanisms are homogeneous
or heterogeneous is interesting from an economic point of
view, because of the different long-term dynamics that can be
observed. In particular, in the cases in which (a) both firms
have incomplete information and the adjustment mechanism
of production is homogeneous and (b) the information
set available to firms and the adjustment mechanisms of
production are mixed, there exists the possibility that at least
one firm decides to exit from the market (i.e., to do not
produce). This result does not hold when both firms have
complete information on themarket demand and production
is based on the behaviour of the previous period.
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