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We present some operator splitting methods improved by the use of the Zassenhaus product and designed for applications to
multiphysics problems. We treat iterative splitting methods that can be improved by means of the Zassenhaus product formula,
which is a sequential splitting scheme.Themain idea for reducing the computation time needed by the iterative scheme is to embed
fast and cheap Zassenhaus product schemes, since the computation of the commutators involved is very cheap, since we are dealing
with nilpotent matrices. We discuss the coupling ideas of iterative and sequential splitting techniques and their convergence. While
the iterative splitting schemes converge slowly in their first iterative steps, we improve the initial convergence rates by embedding
the Zassenhaus product formula. The applications are to multiphysics problems in fluid dynamics. We consider phase models in
computational fluid dynamics and analyse how to obtain higher order operator splittingmethods based on the Zassenhaus product.
The computational benefits derive from the use of sparse matrices, which arise from the spatial discretisation of the underlying
partial differential equations. Since the Zassenhaus formula requires nearly constant CPU time due to its sparse commutators, we
have accelerated the iterative splitting schemes.

1. Introduction

Our motivation to study the operator splitting methods
comes from models in fluid dynamics, for example problems
in bioremediation [1] or radioactive contaminants [2]. Such
multiphysics problems are delicate, and the solver methods
can be accelerated by decoupling the different physical
behaviours; see [3, 4]. Based on the splitting error of all the
splitting schemes, we have to take into account higher order
ideas; see [5, 6]. While standard splitting methods deal with
lower order convergence, see Lie splitting and Strang splitting
[7, 8], we propose a combination of iterative splittingmethods
with an embedded Zassenhaus product formula. Such a com-
bination allows reducing the splitting error and also reducing
theCPU time needed; see [9].Theoretically, we combine fixed
point schemes (iterative splitting methods) with sequential
splitting schemes (Zassenhaus products), which are con-
nected with the theory of Lie groups and Lie algebras. Based
on that relation, we can construct higher order splitting
schemes for an underlying Lie algebra and improve the
convergence results with cheap iterative schemes.

Historically, the efficiency of decoupling different physi-
cal processes into simpler processes, for example, convection
and reaction, has helped to accelerate the solution process and
is discussed in [10].

We propose the following ideas.

(i) Iterative splitting schemes are based on fixed point
schemes, for example, waveform relaxation, which
linearly improve the convergence order. Based on
reducing the integral operators to cheaply computable
matrices, they can be seen as solver methods; see [9].

(ii) Zassenhaus formula is based on nested commutators,
which are themain keys to deriving higher order stan-
dard splitting schemes (e.g., Lie-Trotter and Strang
splitting).They are simple to compute because of their
nilpotent structure; see [11].

In this paper we study the following ordinary differen-
tial equations, that can arose of semidiscretized partial
differential equations, for example, multiphysics problem, see
[2, 3], or theoretical physics; see [12, 13].



2 International Journal of Differential Equations

We focus our attention on the case of two linear operators
(i.e., we consider the Cauchy problem) as follows:

𝜕𝑐 (𝑡)

𝜕𝑡
= 𝐴𝑐 (𝑡) + 𝐵𝑐 (𝑡) , with 𝑡 ∈ [0, 𝑇] , 𝑐 (0) = 𝑐

0
,

(1)

whereby the initial function 𝑐
0
is given, and 𝐴 and 𝐵 are

assumed to be bounded linear operators in the Banach space
X with 𝐴, 𝐵 : X → X. In realistic applications, the operators
correspond to discretised matrices, for example, such as
convection and diffusion matrices; see [2]. Further, they can
be givenmatrices, for example, such as in perturbation theory
[14].

For all such problems, the solution of the Cauchy problem
(1) is given as

𝑐 (𝑡) = exp (𝐴 + 𝐵) 𝑐 (0) , with 𝑡 ∈ [0, 𝑇] , (2)

where 𝑐(0) is the initial condition.
Here one of the main ideas to compute such delicate

solutions is to separate or decouple the term exp(𝐴 + 𝐵) into
simpler and parallel computational expression, for example,
exp(𝐴) exp(𝐵); see [10, 15]. To reduce the splitting error for
such decompositions, iterative splittingmethod and products
of exponential of noncommuting operators, see [16, 17], are
important.We concentrate on iterative splittingmethods and
improve their convergence order with embedded Zassenhaus
expansion; see [18].

While iterative splitting methods are cheap to implement
and can be computed fast, one of their drawbacks is due
to their initial process. Here, Zassenhaus expansion is an
attractive tool to overcome such a drawback and improve
the initial solutions to higher accuracy. While on the other
hand, we deal only with lower nested commutators of the
Zassenhaus formula, the drawbacks of stringent regularity
conditions on the operators are less; see [19, 20].

The outline of the present paper is as follows.The splitting
methods are discussed in Section 2. In Section 3, we present
the numerical experiments and the benefits of the higher
order splittingmethods. Finally, we discuss future work in the
area of iterative and noniterative splitting methods.

2. Splitting Methods

We consider the following splitting schemes:

(i) iterative splitting schemes,

(ii) Zassenhaus formula.

Their ideas and their underlying convergence analysis, based
on the Cauchy problem (1), are discussed in the next subsec-
tions.

2.1. Iterative Operator Splitting. In the following, we develop
two ideas of the iterative splitting schemes.

Iterative splitting with respect to one operator (also called
a one-sided scheme) as follows:

𝜕𝑐
𝑖
(𝑡)

𝜕𝑡
= 𝐴𝑐
𝑖
(𝑡) + 𝐵𝑐

𝑖−1
(𝑡) , with 𝑐

𝑖
(𝑡
𝑛
) = 𝑐
𝑛
,

𝑖 = 1, 2, . . . , 𝑚.

(3)

Iterative splitting with respect to two operators (also called a
two-sided scheme) as follows:

𝜕𝑐
𝑖 (𝑡)

𝜕𝑡
= 𝐴𝑐
𝑖 (𝑡) + 𝐵𝑐

𝑖−1 (𝑡) , with 𝑐
𝑖
(𝑡
𝑛
) = 𝑐
𝑛
, (4)

𝜕𝑐
𝑖+1 (𝑡)

𝜕𝑡
= 𝐴𝑐
𝑖
(𝑡) + 𝐵𝑐

𝑖+1
(𝑡) , with 𝑐

𝑖+1
(𝑡
𝑛
) = 𝑐
𝑛
,

𝑖 = 1, 3, . . . , 2𝑚 + 1.

(5)

Theorem 1. Let one considers the abstract Cauchy problem
given in (1). One obtains for the one-sided iterative operator
splitting method (4) the following accuracy:

󵄩󵄩󵄩󵄩𝑆𝑖 − exp ((𝐴 + 𝐵) 𝜏)
󵄩󵄩󵄩󵄩 ≤ 𝐶𝜏

𝑖
, (6)

where 𝑆
𝑖
is the approximate solution for the 𝑖th iterative step

and 𝐶 is a constant that can be chosen uniformly on bounded
time intervals.

Proof. The proof is given for 𝑖 = 1, 2, . . . and with the
consistency error 𝑒

𝑖
(𝜏) = 𝑐(𝜏) − 𝑐

𝑖
(𝜏), we have

𝑐
𝑖
(𝜏) = exp (𝐴𝜏) 𝑐 (𝑡

𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠)) 𝐵 exp (𝑠𝐴) 𝑐 (𝑡
𝑛
) 𝑑𝑠

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠
1
)) 𝐵

× ∫

𝑡
𝑛+1
−𝑠
1

𝑡
𝑛

exp ((𝑡
𝑛+1

− 𝑠
1
− 𝑠
2
)𝐴)

× 𝐵 exp (𝑠
2
𝐴) 𝑐 (𝑡

𝑛
) 𝑑𝑠
2
𝑑𝑠
1

+ ⋅ ⋅ ⋅ + ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠
1
)) 𝐵

⋅ ⋅ ⋅ ∫

𝑡
𝑛+1
−∑
𝑖−2

𝑗=1
𝑠
𝑗

𝑡
𝑛

exp((𝑡
𝑛+1

−

𝑖−1

∑

𝑗=1

𝑠
𝑗
)𝐴)

× 𝐵𝑐init (𝑠𝑖) 𝑑𝑠𝑖𝑑𝑠𝑖−1, . . . , 𝑑𝑠2𝑑𝑠1,

𝑐 (𝜏) = exp (𝐴𝜏) 𝑐 (𝑡
𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠)) 𝐵 exp (𝑠𝐴) 𝑐 (𝑡
𝑛
) 𝑑𝑠

+ ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠
1
)) 𝐵

× ∫

𝑡
𝑛+1
−𝑠
1

𝑡
𝑛

exp ((𝑡
𝑛+1

− 𝑠
1
− 𝑠
2
)𝐴)

× 𝐵 exp (𝑠
2
𝐴) 𝑐 (𝑡

𝑛
) 𝑑𝑠
2
𝑑𝑠
1
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+ ⋅ ⋅ ⋅ + ∫

𝑡
𝑛+1

𝑡
𝑛

exp (𝐴 (𝑡
𝑛+1

− 𝑠
1
)) 𝐵

⋅ ⋅ ⋅ ∫

𝑡
𝑛+1
−∑
𝑖−1

𝑗=1
𝑠
𝑗

𝑡
𝑛

exp((𝑡
𝑛+1

−

𝑖

∑

𝑗=1

𝑠
𝑗
)𝐴)

× 𝐵 exp ((𝑠
𝑖
(𝐴 + 𝐵)) 𝑐 (𝑡

𝑛
) 𝑑𝑠
𝑖
, . . . , 𝑑𝑠

2
𝑑𝑠
1
.

(7)

We obtain
󵄩󵄩󵄩󵄩𝑒𝑖

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩exp ((𝐴 + 𝐵) 𝜏) 𝑐 (𝑡

𝑛
) − 𝑆
𝑖 (𝜏) 𝑐init (𝜏)

󵄩󵄩󵄩󵄩

≤ 𝐶𝜏
𝑖 max
𝑠
𝑖
∈[0,𝜏]

󵄩󵄩󵄩󵄩exp (𝑠
𝑖
(𝐴 + 𝐵)) 𝑐 (𝑡

𝑛
) − 𝑐init (𝑠𝑖)

󵄩󵄩󵄩󵄩

≤ 𝐶𝜏
𝑖 󵄩󵄩󵄩󵄩exp (𝜏 (𝐴 + 𝐵)) 𝑐 (𝑡

𝑛
) − 𝑐init (𝜏)

󵄩󵄩󵄩󵄩 ,

(8)

where 𝑖 is the number of iterative steps.
The same idea can be applied to the even iterative scheme

and also for alternating 𝐴 and 𝐵.

Remark 2. The accuracy of the initialisation 𝑐init(𝜏) is impor-
tant for conserving or improving the underlying iterative
splitting scheme.

Here we have the following initialisation schemes:

𝑐
1
(𝜏) = exp (𝐴𝜏) 𝑐 (𝑡

𝑛
) 󳨀→

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩 ≤ 𝐶𝜏

𝑖
𝑐 (𝑡
𝑛
) ,

𝑐
1
(𝜏) = exp (𝐴𝜏) exp (𝐵𝜏) 𝑐 (𝑡

𝑛
) 󳨀→

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩 ≤ 𝐶𝜏

𝑖+1
𝑐 (𝑡
𝑛
) .

(9)

So the slow convergence in the initial process 𝑐
1
(𝜏) of the

iterative splitting schemes can be improved by a cheap
computable initial process 𝑐

1
(𝜏) ≈ exp((𝐴 + 𝐵)𝜏). We will

next discuss the fast convergent Zassenhaus formula for the
initial process.

2.2. Zassenhaus Formula (Sequential Splitting). The Zassen-
haus formula is an extension to the exponential splitting
schemes and can be given inTheorem 3; see also [20].

Theorem 3. One assumes L(𝐴, 𝐵) is the free Lie algebra
generated by 𝐴 and 𝐵. The kernel function of solution (1),
exp((𝐴 + 𝐵)𝑡), can be uniquely decomposed as

exp ((𝐴 + 𝐵) 𝑡) = exp (𝐴𝑡) exp (𝐵𝑡) 𝜋
𝑗

𝑖=1
𝜋
𝑚

𝑘=2

× exp (𝐶
𝑘 (𝐴, 𝐵) 𝑡

𝑘
)

+ O (𝑡
𝑚+1

) ,

(10)

where 𝐶
𝑗
(𝐴, 𝐵) ∈ L(𝐴, 𝐵) is a homogeneous Lie polynomial

of 𝐴 and 𝐵 of degree 𝑗.

Proof. The sketch of the proof is given in [20]. The idea
is based on the existence of the BCH (Baker-Campbell-
Hausdorff) formula, and we obtain

exp (−𝐴𝑡) exp ((𝐴 + 𝐵) 𝑡) = exp (𝐵𝑡 + 𝐷 (𝑡)) , (11)

where𝐷(𝑡) is a Lie polynomial of degree >1, and

exp ((𝐴 + 𝐵) 𝑡) = exp (𝐴𝑡) exp (𝐵𝑡) + O (𝑡
2
) . (12)

Further we have

exp (−𝐵𝑡) exp (𝐵𝑡 + 𝐷 (𝑡)) = exp (𝐶
2
𝑡
2
+ 𝐷 (𝑡)) , (13)

where𝐷(𝑡) is a Lie polynomial of degree >2, and

exp ((𝐴 + 𝐵) 𝑡) = exp (𝐴𝑡) exp (𝐵𝑡) exp (𝐶
2
𝑡
2
) + O (𝑡

3
) .

(14)

We can repeat the recursive process and obtain by complete
induction the results.

The first Zassenhaus polynomials are given as

𝐶
2
(𝐴, 𝐵) =

1

2
[𝐵, 𝐴] ,

𝐶
3 (𝐴, 𝐵) =

1

3
[[𝐵, 𝐴] , 𝐵] +

1

6
[[𝐵, 𝐴] , 𝐴] ,

𝐶
4 (𝐴, 𝐵) =

1

24
[[[𝐵, 𝐴] , 𝐴] , 𝐴] +

1

8
[[[𝐵, 𝐴] , 𝐵] , 𝐴]

+
1

8
[[[𝐵, 𝐴] , 𝐵] , 𝐵] .

(15)

Here we see the benefit of such schemes in the computation
of the commutators. If we assume that we have quickly
computable commutators, for example, nilpotent matrices
or sparse matrices, the computation time needed for the
adjacent (or perturbed) operators exp(𝐶

𝑘
𝑡
𝑘
) of the scheme is

much less than that of the main operators exp(𝐴𝑡) exp(𝐵𝑡),
and so the scheme is very effective and can be used as an
initial solution of the iterative schemes.

Remark 4. We can also generalize the application of the
Zassenhaus formula to decompositionmethods with existing
BCH formulas, for example,

(i) 𝐴-𝐵 splitting or Lie-Trotter splitting,
(ii) Strang splitting.

Example 5. (1)A-B or Lie-Trotter Splitting. For the Lie-Trotter
splitting, there exists a BCH formula, andwe have derived the
polynomials in Theorem 3.

(2) Strang Splitting.There exists also a BCH formula, which is
given as

exp (
𝐴𝑡

2
) exp (𝐵𝑡) exp (

𝐴𝑡

2
)= exp (𝑡𝑆

1
+ 𝑡
3
𝑆
3
+ 𝑡
5
𝑆
5
+⋅ ⋅ ⋅ ) ,

(16)

where the 𝑆
𝑖
(𝐴, 𝐵) ∈ L(𝐴, 𝐵) is a homogeneous Lie

polynomial in 𝐴 and 𝐵 of degree 𝑖; see [21].
The BCH formula is given as

exp ((
𝐴

2
+

𝐵

2
) 𝑡) = Π

∞

𝑘=2
exp (𝐶

𝑘
𝑡
𝑘
) exp (

𝐴

2𝑡
) exp(

𝐵

2𝑡
) ,

exp((
𝐵

2
+

𝐴

2
) 𝑡) = exp (

𝐵

2𝑡
) exp(

𝐴

2𝑡
)Π
∞

𝑘=2
exp (𝐶

𝑘
𝑡
𝑘
) ,

(17)
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and so there exists a new product based on the Zassenhaus
polynomials as follows:

Π
∞

𝑘=3
exp (𝐷

𝑘
𝑡
𝑘
) = Π

∞

𝑘=2
exp (𝐶

𝑘
𝑡
𝑘
)Π
∞

𝑘=2
exp (𝐶

𝑘
𝑡
𝑘
) , (18)

and we obtain a higher order scheme; see also [22].

Remark 6. The application of the Zassenhaus formula to
partial differential equations, for example, second-order
parabolic evolution equations, needs additional stringent
regularity conditions on the operators. Due to the nested
commutators, which are needed to apply the Zassenhaus
formula, one needs at least higher regularity conditions.

We need some functional analytical results on the
domains of the operators. The domains of the operators have
to satisfy the following compatibility conditions for the first
Zassenhaus exponents.

(i) Condition for the first term 𝐶
2
of the Zassenhaus

formula

D (𝐿
2
) ⊂ D (𝐴

2
) ∩D (𝐴𝐵) ∩D (𝐵𝐴) ∩D (𝐵

2
) , (19)

where𝐿 = 𝐴+𝐵, andD is the domain of the operators.
(ii) Condition for the second term 𝐶

3
of the Zassenhaus

formula

D (𝐿
3
) ⊂ D (𝐴

3
) ∩D (𝐴

2
𝐵)

∩D (𝐴𝐵𝐴) ∩D (𝐴𝐵
2
) ∩D (𝐵

3
) ,

(20)

where𝐿 = 𝐴+𝐵, andD is the domain of the operators.

Example 7. If we assume to apply the Zassenhaus formula to a
second-order diffusion equation and we assume to split each
spatial direction, see the functional analytical framework
[23], where the domains are given as

D (𝐿) = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) ,

D (𝐴) = {𝑐 ∈ 𝐿
2
(Ω) ; 𝜕

𝑥𝑥
𝑐, 𝜕
𝑥
𝑐 ∈ 𝐿
2
Ω,

𝑢 (0, 𝑦) = 𝑢 (1, 𝑦) = 0, ∀𝑦 ∈ (0, 1) } ,

D (𝐵) = {𝑐 ∈ 𝐿
2
(Ω) ; 𝜕

𝑦𝑦
𝑐, 𝜕
𝑦
𝑐 ∈ 𝐿
2
Ω,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0, ∀𝑥 ∈ (0, 1) } ,

(21)

whereΩ = (0, 1)
2.

Then we need the following regularity result:

(i) condition for the first term 𝐶
2
of the Zassenhaus

formula

D (𝐿
2
) ⊂ 𝐻

4
(Ω) , (22)

(ii) condition for the second term 𝐶
3
of the Zassenhaus

formula

D (𝐿
3
) ⊂ 𝐻

6
(Ω) . (23)

In the example, we need a very high regular domain to
apply a first or second Zassenhaus exponent. This is one of
the limitations and drawbacks of applying the Zassenhaus
formula. In our applications, we restrict on applying the first
or at least the second Zassenhaus exponent. We apply the
third and fourth Zassenhaus exponents to the benchmark
problems given as matrix equations without such restrictions
to the domains; see [20].

2.3. Embedding the Zassenhaus Expansion into an Iterative
Splitting Scheme. We now discuss the embedding of the
Zassenhaus formula into the iterative operator splitting
schemes.

Definition 8. We apply the Lie-Trotter splitting with the
embedded Zassenhaus formula, which is given as

𝐸Zassen,Comp,1 (𝑡) = exp (𝐴𝑡) exp (𝐵𝑡) ,

𝐸Zassen,Comp,𝑗 (𝑡) = exp (𝐶
𝑗
𝑡
𝑗
) , for 𝑗 ∈ 2, . . . , 𝑖,

(24)

where the sequential Zassenhaus operators are defined as

𝐸Zassen,𝑖 (𝑡) = Π
𝑖

𝑗=1
𝐸Zassen,Comp,𝑗 (𝑡) , (25)

and we obtain an accuracy of O(𝑡
𝑖
), and 𝑖 is the number of

Zassenhaus components.

In the following theorem, we present the improvement of
the iterative splitting scheme with the Zassenhaus expansion.

Theorem 9. One solves the initial value problem (1). We
assume bounded and constant operators 𝐴, 𝐵.

The initialisation process is done with the Zassenhaus
formula

𝑐
𝑖
(𝑡) = 𝐸

𝑍𝑎𝑠𝑠𝑒𝑛,𝑖
(𝑡) 𝑐
0
, (26)

where 𝐸
𝑍𝑎𝑠𝑠𝑒𝑛,𝑖

(𝑡) is given in (25).
Furthermore, the improved solutions are embedded in the

iterative splitting scheme (4) and one has after 𝑗 iterative steps
the following result:

𝑐
𝑖+𝑗

(𝑡) = 𝐸
𝑖𝑡𝑒𝑟,𝑗

(𝑡) 𝐸
𝑍𝑎𝑠𝑠𝑒𝑛,𝑖

(𝑡) 𝑐
0
. (27)

This has improved the error of the iterative scheme to O(𝑡
𝑖+𝑗

).

Proof. The solution of the iterative splitting scheme (4) is

𝑐
𝑖+𝑗

(𝑡) = 𝐸iter,𝑖 (𝑡) 𝑐init,𝑗, (28)

where 𝑆
𝑖
(𝑡) = 𝐸iter,𝑖(𝑡), given inTheorem 1.

The initialisation is given by the Zassenhaus formula

𝑐init,𝑗 (𝑡) = 𝐸Zassen,𝑗 (𝑡) 𝑐0. (29)

Combining both splitting schemes, we have a local error of

𝑒
𝑖+𝑗 (𝑡) =

󵄩󵄩󵄩󵄩󵄩
𝑐 (𝑡) − 𝑐

𝑖+𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑐 (𝑡) − 𝐸iter,𝑖 (𝑡) 𝐸Zassen,𝑗 (𝑡) 𝑐0

󵄩󵄩󵄩󵄩󵄩

≤ O (𝑡
𝑖+𝑗

) 𝑐
0
.

(30)
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Remark 10. We obtain an acceleration of the iterative scheme
by applying cheap higher order Zassenhaus formula. Such a
benefit allows reducing to 2-3 iterative steps, while the initial
solution is of a higher order. Taking into account the sparsity
or nilpotency of the commutators, we nowhave a fast iterative
splitting scheme.

Remark 11. For our numerical experiment, we apply the
Zassenhaus formulaat the beginning of each integration step,
as the so-called preprocessor. Therefore, we obtain more
accurate starting conditions for the integration steps of the
iterative splitting scheme. Based on the regularity conditions
of the nested commutator, we apply only 1-2 Zassenhaus
exponents.

In the following, we explain the final algorithm of
the embedded Zassenhaus formula to the iterative splitting
scheme.

Algorithm 12. We compute 𝑁 time steps, where each time
step Δ𝑡

𝑛
is given as Δ𝑡

𝑛
= 𝑡
𝑛+1

− 𝑡
𝑛 with 𝑛 = 0, . . . , 𝑁 − 1.

Further 𝑐(𝑡
0
) is the initial condition of the Cauchy problem

(1), and we compute 𝑐(𝑡1), . . . , 𝑐(𝑡𝑁) successively. We have the
following two steps; first we apply the Zassenhaus formula
as initialization of 𝑐

0
(𝑡
𝑛+1

) for the iterative scheme; second
we apply the iterative splitting scheme to the initial value
problem (1) and compute the final solution 𝑐(𝑡

𝑛+1
) as follows.

(1) We start with 𝑗 = 2 and compute the Zassenhaus
formula.

(2) We compute the matrix norm for the Zassenhauss
exponents 𝐶

𝑗
.

If errZass
𝑗

≤ err
1
, then we start with the iterative

splitting scheme with 𝑐
0
(𝑡) = 𝑐Zass

𝑗

, 𝑖 = 1 and go to
(3), else 𝑗 = 𝑗 + 1 and we go to (1).

(3) If the error of the iterative scheme erriter ≤ err
2
, then

we are finished; else 𝑖 = 𝑖+1, and we compute the next
iterative step, till erriter ≤ err

2
.

3. Numerical Examples

In this section, we discuss examples of the use of embedding
Zassenhaus product methods in iterative splitting schemes.
In the first example, we demonstrate somewhat artificially
how the proposed Zassenhaus splitting method avoids the
splitting error up to a certain order. The next example shows
the benefit of the combined splitting schemes for applications
to multiphysics problems.

In the following, we consider a benchmark example to
validate the theoretical results and real life problems to apply
our schemes.

We applied the following splitting schemes, given in
Table 1.

3.1. Benchmark Problem: Matrix Examples. In the following,
the idea of thematrix example is to present the decomposition
into two simpler matrices. In context of the multiphysics

Table 1: Applied splitting schemes.

Abbreviation in
the examples Splitting methods

A-B A-B splitting
Strang Strang splitting
𝑐
1

Iterative splitting with one iterative step

𝑐
2

Iterative splitting with one iterative step and one
Zassenhaus step as prestep

𝑐
3

Iterative splitting with one iterative step and two
Zassenhaus steps as presteps

𝑐
4

Iterative splitting with two iterative steps and
two Zassenhaus steps as presteps

𝑐
5

Iterative splitting with three iterative steps and
two Zassenhaus steps as presteps

𝑐
6

Iterative splitting with four iterative steps and
two Zassenhaus steps as presteps

problems, even such simple problems can be seen as test
examples. We assume that each simple matrix is presenting a
basic single physics problems, for example, reaction process
between two species, while the combination of the two
matrices results in a more complicate physics problem, for
example, coupled reaction process between two species; see
[2].

We consider the matrix equation

𝑢
󸀠
(𝑡) = [

1 2

3 0
] 𝑢, 𝑢 (0) = 𝑢

0
= (

0

1
) , 𝑡 ∈ [0, 1] , (31)

the exact solution of which is

𝑢 (𝑡) =
2 (𝑒
3𝑡

− 𝑒
−2𝑡

)

5
. (32)

We split the matrix as

[
1 2

3 0
] = [

1 1

1 0
] + [

0 1

2 0
] = 𝐴 + 𝐵, (33)

where [𝐴, 𝐵] ̸= 0. For this simple example, we did not obtain
nilpotent matrices for the commutators.

We apply 10–100 time steps for the computations. The
final integration time of each single time step was less than
<1 [sec], such that we need at least for such benchmark
problems about 1–10 [sec]. Figure 1 presents the numerical
errors, that is, the difference between the exact and the
numerical solution.

Figure 2 presents the CPU times needed by the standard
and the iterative splitting schemes. The application of the
Zassenhaus formula did not increase, while the next Zassen-
haus coefficients are at least nearly nilpotent matrices, and we
can neglect the computational time.Moreover different time-
steps did not influence the computations of the Zassenhaus
exponents, which is a preprocess. First we compute and save
all the Zassenhaus exponents, and later we multiply with the
necessary time steps.
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Figure 1: Numerical errors of the standard splitting scheme and the
iterative schemes with the Zassenhaus formula, where we have at
least 1, . . . , 4 iterative steps.

Remark 13. We see that the errors decrease significantly
with increasing order of approximation for the initialisa-
tion process from the Zassenhaus splitting (we apply 1–3
Zassenhaus coefficients). Here we apply commutators, which
did not reduce their matrix rank; therefore we have the
same computation time as for the pure iterative schemes.
Overall, we have their benefits in the application of the
Zassenhaus product schemes to the standard Lie-Trotter or
Strang-Marchuk splitting. Similar results are given withmore
iterative steps 𝑖 = 3, . . . , 6, as expected.

3.2. Real Life Problems: Multiphase Examples. In the next
examples, we simulate coupled transport and reaction equa-
tions with different phases, so-called multiphase problems;
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Figure 2: CPU times of the standard splitting scheme and the
iterative schemes with the Zassenhaus formula, where we have at
least 1, . . . , 4 iterative steps.

see [9].The equations are coupledwith the reaction terms and
are presented as follows:

𝜕
𝑡
𝑅
𝑖
𝑢
𝑖
+ ∇ ⋅ v𝑢

𝑖
= − 𝜆

𝑖
𝑅
𝑖
𝑢
𝑖
+ 𝜆
𝑖−1

𝑅
𝑖−1

𝑢
𝑖−1

+ 𝛽 (−𝑢
𝑖
+ 𝑔
𝑖
) , inΩ × (0, 𝑇) ,

𝑢
𝑖,0

(𝑥) = 𝑢
𝑖
(𝑥, 0) , on Ω,

𝜕
𝑡
𝑅
𝑖
𝑔
𝑖
= − 𝜆

𝑖
𝑅
𝑖
𝑔
𝑖
+ 𝜆
𝑖−1

𝑅
𝑖−1

𝑔
𝑖−1

+ 𝛽 (−𝑔
𝑖
+ 𝑢
𝑖
) , in Ω × (0, 𝑇) ,

𝑔
𝑖,0

(𝑥) = 𝑔
𝑖
(𝑥, 0) , on Ω,

𝑖 = 1, . . . , 𝑚,

(34)
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where 𝑚 is the number of equations and 𝑖 is the index of
each component. The unknown mobile concentrations 𝑢

𝑖
=

𝑢
𝑖
(𝑥, 𝑡) are taken in Ω × (0, 𝑇) ⊂ R𝑛 × R+, where 𝑛 is the

spatial dimension. The unknown immobile concentrations
𝑔
𝑖
= 𝑔
𝑖
(𝑥, 𝑡) are taken in Ω × (0, 𝑇) ⊂ R𝑛 × R+, where 𝑛 is

the spatial dimension.The retardation factors𝑅
𝑖
are constant,

and 𝑅
𝑖

≥ 0. The kinetic part is given by the factors 𝜆
𝑖
.

They are constant and 𝜆
𝑖
≥ 0. For the initialisation of the

kinetic part, we set 𝜆
0

= 0. The kinetic part is linear and
irreversible, so the successors have only one predecessor. The
initial conditions are given for each component 𝑖 as constants
or linear impulses. For the boundary conditions, we have
trivial inflow and outflow conditions with 𝑢

𝑖
= 0 at the inflow

boundary. The transport part is given by the velocity v ∈ R𝑛

and is piecewise constant; see [2]. The exchange between the
mobile and immobile part is given by 𝛽.

In the following, we discuss the one-phase and two-phase
examples.

3.2.1. One-Phase Example. The next example is a simplified
real life problem with a multiphase transport-reaction equa-
tion. We treat the mobile and immobile pores in a porous
media. Such simulations are made about waste scenarios; see
[2, 24].

We concentrate on the computational benefits of a fast
computation of the mixed iterative scheme with the Zassen-
haus formula.

The one phase equation is

𝜕
𝑡
𝑐
1
+ ∇ ⋅ F

1
𝑐
1
= −𝜆
1
𝑐
1
, in Ω × [0, 𝑡] ,

𝜕
𝑡
𝑐
2
+ ∇ ⋅ F

2
𝑐
2
= 𝜆
1
𝑐
1
− 𝜆
2
𝑐
2
, in Ω × [0, 𝑡] ,

F
𝑖
= v
𝑖
− 𝐷
𝑖
∇, 𝑖 = 1, 2,

𝑐
1
(x, 𝑡) = 𝑐

1,0
(x) , 𝑐

2
(x, 𝑡) = 𝑐

2,0
(x) , on Ω,

𝑐
1 (x, 𝑡) = 𝑐

1,1 (x, 𝑡) , 𝑐
2 (x, 𝑡) = 𝑐

2,1 (x, 𝑡) ,

on 𝜕Ω × [0, 𝑡] .

(35)

Here the parameters take the values V
1
= 0.1, V

2
= 0.05,𝐷

1
=

0.01,𝐷
2
= 0.005, and 𝜆

1
= 𝜆
2
= 0.1.

We now turn to the finite difference schemes and
semidiscretise the equation, with its convection and diffusion
operators as follows:

𝜕
𝑡
c = (𝐴

1
+ 𝐴
2
) c. (36)

We obtain the two matrices and decouple the diffusion and
convection parts as follows:

𝐴
1
= (

𝐴diff 0

0 𝐴diff
) ∈ R

2𝐼×2𝐼
,

𝐴
2
= (

𝐴Conv 0

0 𝐴Conv
) + (

−Λ
1

0

Λ
1

−Λ
2

) ∈ R
2𝐼×2𝐼

.

(37)

We apply the splitting method to the operators 𝐴
1
and 𝐴

2

given in Section 2.1.

The submatrices are

𝐴diff,𝑖 =
𝐷
𝑖

Δ𝑥2
𝑅
1
=

𝐷
𝑖

Δ𝑥2
⋅ (

−2 1

1 −2 1

d d d
1 −2 1

1 −2

) ∈ R
𝐼×𝐼

,

𝐴conv,𝑖 = −
V
𝑖

Δ𝑥
𝑅
2
= −

V
𝑖

Δ𝑥
⋅ (

1

−1 1

d d
−1 1

−1 1

) ∈ R
𝐼×𝐼

,

(38)

where 𝐼 is the number of spatial points and Δ𝑥 is the spatial
step size. Consider

Λ
1
= (

𝜆
1

0

0 𝜆
1

0

d d d
0 𝜆
1

0

0 𝜆
1

) ∈ R
𝐼×𝐼

,

Λ
2
= (

𝜆
2

0

0 𝜆
2

0

d d d
0 𝜆
2

0

0 𝜆
2

) ∈ R
𝐼×𝐼

.

(39)

We have the commutator

[𝐴
1
, 𝐴
2
] = (

0 0

𝐷
2
− 𝐷
1

Δ𝑥2
𝑅
1
Λ
1

0
) ∈ R

2𝐼×2𝐼
, (40)

where we assume that [𝑅
1
, 𝑅
2
] ≈ 0. This is a nilpotent

commutator, and the computation time needed for the
commutators of such operators is less than that for the full
operators. Furthermore, we assume that we have a bounded
spatial step size, which is given by Δ𝑥 = 0.1 ≫ 0, so that
we scale the singular entry (𝐷

2
− 𝐷
1
)/Δ𝑥
2
≈ 1 and evade a

blowup in such matrices.
We have obtained the optimal results of a basically

constant CPU time for decreasing time steps, which increase
in the standard scheme.

We apply 10–100 timesteps for the computations with 10–
100 spatial points. The final integration time of each single
time step was about 1–10 [sec], such that we need at least for
such benchmark problems about 100–1000 [sec].

Figure 3 presents the numerical error, that is, the differ-
ence between the exact and the numerical solution.

Figure 4 presents the CPU time of the standard and
the iterative splitting schemes. Based on the preprocess of
computing the Zassenhaus exponents at the beginning and
store the matrices, we could save additional computational
time with larger time steps.

Remark 14. For the iterative schemes with embedded Zassen-
haus products, we can reach improved results more quickly.
The benefits come from the constant CPU time needed for
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Figure 3: Numerical errors of the standard splitting scheme and the
iterative schemes with the Zassenhaus formula, where we have at
least 1, . . . , 4 iterative steps.
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Figure 4: CPU time of the standard splitting scheme and the
iterative schemes with the Zassenhaus formula, where we have at
least 1, . . . , 4 iterative steps.
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calculating the nilpotent commutators in the Zassenhaus
formula. So it makes sense to have 1–3 Zassenhaus steps
before starting the iterative scheme. At that point, only 2-3
iterative steps are needed to obtainmore accurate results than
those from the expensive standard schemes. Here, too, we
obtain the best results with the one-sided iterative schemes.

Remark 15. Based on our restriction to 𝐷
1
, 𝐷
2
, and Δ𝑥 with

(𝐷
2
− 𝐷
1
)/Δ𝑥
2

≈ 1, we can control the delicate blowup
of the computed commutators. By the way, if we neglect
the restriction and Δ𝑥 with (𝐷

2
− 𝐷
1
)/Δ𝑥
2

→ ∞, the
commutator blows up and we lose the benefits of such an
algorithm.This is a limitation of applying such an embedded
Zassenhaus formula.

3.2.2. Two Phase Example. The next example is a more
delicate real life problem involving a multiphase transport-
reaction equation. We treat mobile and immobile pores in a
porousmedia. Such simulations aremade forwaste scenarios;
see [2].

We concentrate on the computational benefits of a fast
computation of the commutators and their use for the
initialisation of the iterative splitting scheme.

The equation is

𝜕
𝑡
𝑐
1
+ ∇ ⋅ F𝑐

1
= 𝑔 (−𝑐

1
+ 𝑐
1,𝑖𝑚

) − 𝜆
1
𝑐
1
, in Ω × [0, 𝑡] ,

𝜕
𝑡
𝑐
2
+ ∇ ⋅ F𝑐

2
= 𝑔 (−𝑐

2
+ 𝑐
2,𝑖𝑚

) + 𝜆
1
𝑐
1
− 𝜆
2
𝑐
2
, in Ω × [0, 𝑡] ,

F = v − 𝐷∇,

𝜕
𝑡
𝑐
1,𝑖𝑚

= 𝑔 (𝑐
1
− 𝑐
1,𝑖𝑚

) − 𝜆
1
𝑐
1,𝑖𝑚

, in Ω × [0, 𝑡] ,

𝜕
𝑡
𝑐
2,𝑖𝑚

= 𝑔 (𝑐
2
− 𝑐
2,𝑖𝑚

) + 𝜆
1
𝑐
1,𝑖𝑚

− 𝜆
2
𝑐
2,𝑖𝑚

, in Ω × [0, 𝑡] ,

𝑐
1
(x, 𝑡) = 𝑐

1,0
(x) , 𝑐

2
(x, 𝑡) = 𝑐

2,0
(x) , on Ω,

𝑐
1
(x, 𝑡) = 𝑐

1,1
(x, 𝑡) , 𝑐

2
(x, 𝑡) = 𝑐

2,1
(x, 𝑡) ,

on 𝜕Ω × [0, 𝑡] ,

𝑐
1,𝑖𝑚

(x, 𝑡) = 0, 𝑐
2,𝑖𝑚

(x, 𝑡) = 0, on Ω,

𝑐
1,𝑖𝑚 (x, 𝑡) = 0, 𝑐

2,𝑖𝑚 (x, 𝑡) = 0, on 𝜕Ω × [0, 𝑡] .

(41)

Here the parameters are V = 0.1, 𝐷 = 0.01, 𝜆
1
= 𝜆
2
= 0.1,

and 𝑔 = 0.01.
We next treat the semidiscretised equation given by the

matrices

𝜕
𝑡
C = (

𝐴 − Λ
1
− 𝐺 0 𝐺 0

Λ
1

𝐴 − Λ
2
− 𝐺 0 𝐺

𝐺 0 −Λ
1
− 𝐺 0

0 𝐺 Λ
1

−Λ
2
− 𝐺

)C,

(42)

where C = (c1, c2, c1𝑖𝑚, c2𝑖𝑚)
𝑇, while c1 = (𝑐

1,1
, . . . , 𝑐

1,𝐼
) is the

solution of the first species in themobile phase in each spatial
discretisation point (𝑖 = 1, . . . , 𝐼), and the same for the other
solution vectors.

We have the following two operators for the splitting
method:

𝐴 =
𝐷

Δ𝑥2
⋅ (

−2 1

1 −2 1

d d d
1 −2 1

1 −2

),

+
V
Δ𝑥

⋅ (

1

−1 1

d d
−1 1

−1 1

) ∈ R
𝐼×𝐼

,

(43)

where 𝐼 is the number of spatial points.
Consider

Λ
1
= (

𝜆
1

0

0 𝜆
1

0

d d d
0 𝜆
1

0

0 𝜆
1

),

Λ
2
= (

𝜆
2

0

0 𝜆
2

0

d d d
0 𝜆
2

0

0 𝜆
2

) ∈ R
𝐼×𝐼

,

𝐺 = (

𝑔 0

0 𝑔 0

d d d
0 𝑔 0

0 𝑔

) ∈ R
𝐼×𝐼

.

(44)

We decouple this into the following matrices:

𝐴 = (

𝐴 0 0 0

0 𝐴 0 0

0 0 0 0

0 0 0 0

) ∈ R
4𝐼×4𝐼

,

𝐵
1
= (

−Λ
1

0 0 0

Λ
1

−Λ
2

0 0

0 0 −Λ
1

0

0 0 Λ
1

−Λ
2

),

𝐵
2
= (

−𝐺 0 𝐺 0

0 −𝐺 0 𝐺

𝐺 0 −𝐺 0

0 𝐺 0 −𝐺

) ∈ R
4𝐼×4𝐼

.

(45)

For the operators 𝐴 and 𝐵 = 𝐵
1
+ 𝐵
2
and 𝐵 we apply the

iterative splitting method given in Section 2.1.
Based on the decomposition,𝐴 is block diagonal and 𝐵 is

tridiagonal.
The commutator is

[𝐴, 𝐵] = (

0 0 𝐴𝐺 0

0 0 0 𝐴𝐺

−𝐴𝐺 0 0 0

0 −𝐴𝐺 0 0

) ∈ R
4𝐼×4𝐼

, (46)
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Figure 5: Numerical errors and CPU time of the standard splitting
scheme and the iterative schemes with Zassenhaus formula, where
we have at least 1, . . . , 4 iterative steps.

where we have a sparser operator than the main operator 𝐵,
and therefore we save computation time in computing such
operators. Further we assume that we have a bounded spatial
step size, which is given by Δ𝑥 = 0.1 ≫ 0, so that we scale the
singular entry𝐷/Δ𝑥

2
≈ 1 and V/Δ𝑥 ≈ 1.

Figure 5 presents the numerical error, that is, the differ-
ence between the exact and the numerical solution and the
CPU time required. The optimal results are from the one-
sided iterative schemes on the operator 𝐵.

Remark 16. We obtain the same results as in the one-
phase example, because of the basically constant CPU
time for decreasing time steps of the iterative scheme; we
obtain optimal results when applying 1–3 Zassenhaus steps.
Therefore, with the embedded Zassenhaus formula, we can

reach improved results more quickly than with the standard
schemes. With 2-3 more iterative steps, we obtain more
accurate results. With the one-sided iterative schemes, we
reach the best convergence results when using the more
delicate operator 𝐵.

4. Conclusions and Discussion

In this paper, we have presented a novel splitting scheme
combining the ideas of iterative and sequential schemes based
on the Zassenhaus formula. Here the idea is to decouple
the expensive iterative computation of the schemes based
only on the matrix exponential, obtaining simpler embedded
Zassenhaus schemes based on nilpotent commutators. Such
combinations have the benefit of reducing the computation
time because the commutators can be computed very cheaply.
On the other hand, simple linear iterative steps can be done
very cheaply if they are initialised with a sufficiently accurate
starting solution, and this accelerates the solvers. The error
analysis showed that these are stablemethods for higher order
schemes. In the applications, we were able to demonstrate
the speedup from the Zassenhaus enhanced method and
were able to apply it to multiphysics applications. In the
future, we will concentrate on linear and nonlinear matrix-
dependent schemes, that switch between noniterative and
iterative schemes based on Zassenhaus products.
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